mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-25 15:24:17 +08:00
72875d8a4d
Users were expected to use kvm_check_request() for testing and clearing, but request have expanded their use since then and some users want to only test or do a faster clear. Make sure that requests are not directly accessed with bit operations. Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2830 lines
75 KiB
C
2830 lines
75 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* KVM/MIPS: Instruction/Exception emulation
|
|
*
|
|
* Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
|
|
* Authors: Sanjay Lal <sanjayl@kymasys.com>
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/random.h>
|
|
#include <asm/page.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cacheops.h>
|
|
#include <asm/cpu-info.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/inst.h>
|
|
|
|
#undef CONFIG_MIPS_MT
|
|
#include <asm/r4kcache.h>
|
|
#define CONFIG_MIPS_MT
|
|
|
|
#include "interrupt.h"
|
|
#include "commpage.h"
|
|
|
|
#include "trace.h"
|
|
|
|
/*
|
|
* Compute the return address and do emulate branch simulation, if required.
|
|
* This function should be called only in branch delay slot active.
|
|
*/
|
|
static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
|
|
unsigned long *out)
|
|
{
|
|
unsigned int dspcontrol;
|
|
union mips_instruction insn;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
long epc = instpc;
|
|
long nextpc;
|
|
int err;
|
|
|
|
if (epc & 3) {
|
|
kvm_err("%s: unaligned epc\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Read the instruction */
|
|
err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
|
|
if (err)
|
|
return err;
|
|
|
|
switch (insn.i_format.opcode) {
|
|
/* jr and jalr are in r_format format. */
|
|
case spec_op:
|
|
switch (insn.r_format.func) {
|
|
case jalr_op:
|
|
arch->gprs[insn.r_format.rd] = epc + 8;
|
|
/* Fall through */
|
|
case jr_op:
|
|
nextpc = arch->gprs[insn.r_format.rs];
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* This group contains:
|
|
* bltz_op, bgez_op, bltzl_op, bgezl_op,
|
|
* bltzal_op, bgezal_op, bltzall_op, bgezall_op.
|
|
*/
|
|
case bcond_op:
|
|
switch (insn.i_format.rt) {
|
|
case bltz_op:
|
|
case bltzl_op:
|
|
if ((long)arch->gprs[insn.i_format.rs] < 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case bgez_op:
|
|
case bgezl_op:
|
|
if ((long)arch->gprs[insn.i_format.rs] >= 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case bltzal_op:
|
|
case bltzall_op:
|
|
arch->gprs[31] = epc + 8;
|
|
if ((long)arch->gprs[insn.i_format.rs] < 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case bgezal_op:
|
|
case bgezall_op:
|
|
arch->gprs[31] = epc + 8;
|
|
if ((long)arch->gprs[insn.i_format.rs] >= 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
case bposge32_op:
|
|
if (!cpu_has_dsp) {
|
|
kvm_err("%s: DSP branch but not DSP ASE\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dspcontrol = rddsp(0x01);
|
|
|
|
if (dspcontrol >= 32)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
|
|
/* These are unconditional and in j_format. */
|
|
case jal_op:
|
|
arch->gprs[31] = instpc + 8;
|
|
case j_op:
|
|
epc += 4;
|
|
epc >>= 28;
|
|
epc <<= 28;
|
|
epc |= (insn.j_format.target << 2);
|
|
nextpc = epc;
|
|
break;
|
|
|
|
/* These are conditional and in i_format. */
|
|
case beq_op:
|
|
case beql_op:
|
|
if (arch->gprs[insn.i_format.rs] ==
|
|
arch->gprs[insn.i_format.rt])
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case bne_op:
|
|
case bnel_op:
|
|
if (arch->gprs[insn.i_format.rs] !=
|
|
arch->gprs[insn.i_format.rt])
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case blez_op: /* POP06 */
|
|
#ifndef CONFIG_CPU_MIPSR6
|
|
case blezl_op: /* removed in R6 */
|
|
#endif
|
|
if (insn.i_format.rt != 0)
|
|
goto compact_branch;
|
|
if ((long)arch->gprs[insn.i_format.rs] <= 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
case bgtz_op: /* POP07 */
|
|
#ifndef CONFIG_CPU_MIPSR6
|
|
case bgtzl_op: /* removed in R6 */
|
|
#endif
|
|
if (insn.i_format.rt != 0)
|
|
goto compact_branch;
|
|
if ((long)arch->gprs[insn.i_format.rs] > 0)
|
|
epc = epc + 4 + (insn.i_format.simmediate << 2);
|
|
else
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
|
|
/* And now the FPA/cp1 branch instructions. */
|
|
case cop1_op:
|
|
kvm_err("%s: unsupported cop1_op\n", __func__);
|
|
return -EINVAL;
|
|
|
|
#ifdef CONFIG_CPU_MIPSR6
|
|
/* R6 added the following compact branches with forbidden slots */
|
|
case blezl_op: /* POP26 */
|
|
case bgtzl_op: /* POP27 */
|
|
/* only rt == 0 isn't compact branch */
|
|
if (insn.i_format.rt != 0)
|
|
goto compact_branch;
|
|
return -EINVAL;
|
|
case pop10_op:
|
|
case pop30_op:
|
|
/* only rs == rt == 0 is reserved, rest are compact branches */
|
|
if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
|
|
goto compact_branch;
|
|
return -EINVAL;
|
|
case pop66_op:
|
|
case pop76_op:
|
|
/* only rs == 0 isn't compact branch */
|
|
if (insn.i_format.rs != 0)
|
|
goto compact_branch;
|
|
return -EINVAL;
|
|
compact_branch:
|
|
/*
|
|
* If we've hit an exception on the forbidden slot, then
|
|
* the branch must not have been taken.
|
|
*/
|
|
epc += 8;
|
|
nextpc = epc;
|
|
break;
|
|
#else
|
|
compact_branch:
|
|
/* Fall through - Compact branches not supported before R6 */
|
|
#endif
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
*out = nextpc;
|
|
return 0;
|
|
}
|
|
|
|
enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
|
|
{
|
|
int err;
|
|
|
|
if (cause & CAUSEF_BD) {
|
|
err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
|
|
&vcpu->arch.pc);
|
|
if (err)
|
|
return EMULATE_FAIL;
|
|
} else {
|
|
vcpu->arch.pc += 4;
|
|
}
|
|
|
|
kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
/**
|
|
* kvm_get_badinstr() - Get bad instruction encoding.
|
|
* @opc: Guest pointer to faulting instruction.
|
|
* @vcpu: KVM VCPU information.
|
|
*
|
|
* Gets the instruction encoding of the faulting instruction, using the saved
|
|
* BadInstr register value if it exists, otherwise falling back to reading guest
|
|
* memory at @opc.
|
|
*
|
|
* Returns: The instruction encoding of the faulting instruction.
|
|
*/
|
|
int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
|
|
{
|
|
if (cpu_has_badinstr) {
|
|
*out = vcpu->arch.host_cp0_badinstr;
|
|
return 0;
|
|
} else {
|
|
return kvm_get_inst(opc, vcpu, out);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_get_badinstrp() - Get bad prior instruction encoding.
|
|
* @opc: Guest pointer to prior faulting instruction.
|
|
* @vcpu: KVM VCPU information.
|
|
*
|
|
* Gets the instruction encoding of the prior faulting instruction (the branch
|
|
* containing the delay slot which faulted), using the saved BadInstrP register
|
|
* value if it exists, otherwise falling back to reading guest memory at @opc.
|
|
*
|
|
* Returns: The instruction encoding of the prior faulting instruction.
|
|
*/
|
|
int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
|
|
{
|
|
if (cpu_has_badinstrp) {
|
|
*out = vcpu->arch.host_cp0_badinstrp;
|
|
return 0;
|
|
} else {
|
|
return kvm_get_inst(opc, vcpu, out);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Returns: 1 if the CP0_Count timer is disabled by either the guest
|
|
* CP0_Cause.DC bit or the count_ctl.DC bit.
|
|
* 0 otherwise (in which case CP0_Count timer is running).
|
|
*/
|
|
int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
|
|
return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
|
|
(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
|
|
*
|
|
* Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
|
|
*
|
|
* Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
|
|
*/
|
|
static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
|
|
{
|
|
s64 now_ns, periods;
|
|
u64 delta;
|
|
|
|
now_ns = ktime_to_ns(now);
|
|
delta = now_ns + vcpu->arch.count_dyn_bias;
|
|
|
|
if (delta >= vcpu->arch.count_period) {
|
|
/* If delta is out of safe range the bias needs adjusting */
|
|
periods = div64_s64(now_ns, vcpu->arch.count_period);
|
|
vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
|
|
/* Recalculate delta with new bias */
|
|
delta = now_ns + vcpu->arch.count_dyn_bias;
|
|
}
|
|
|
|
/*
|
|
* We've ensured that:
|
|
* delta < count_period
|
|
*
|
|
* Therefore the intermediate delta*count_hz will never overflow since
|
|
* at the boundary condition:
|
|
* delta = count_period
|
|
* delta = NSEC_PER_SEC * 2^32 / count_hz
|
|
* delta * count_hz = NSEC_PER_SEC * 2^32
|
|
*/
|
|
return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_time() - Get effective current time.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Get effective monotonic ktime. This is usually a straightforward ktime_get(),
|
|
* except when the master disable bit is set in count_ctl, in which case it is
|
|
* count_resume, i.e. the time that the count was disabled.
|
|
*
|
|
* Returns: Effective monotonic ktime for CP0_Count.
|
|
*/
|
|
static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
|
|
return vcpu->arch.count_resume;
|
|
|
|
return ktime_get();
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_read_count_running() - Read the current count value as if running.
|
|
* @vcpu: Virtual CPU.
|
|
* @now: Kernel time to read CP0_Count at.
|
|
*
|
|
* Returns the current guest CP0_Count register at time @now and handles if the
|
|
* timer interrupt is pending and hasn't been handled yet.
|
|
*
|
|
* Returns: The current value of the guest CP0_Count register.
|
|
*/
|
|
static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
ktime_t expires, threshold;
|
|
u32 count, compare;
|
|
int running;
|
|
|
|
/* Calculate the biased and scaled guest CP0_Count */
|
|
count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
|
|
compare = kvm_read_c0_guest_compare(cop0);
|
|
|
|
/*
|
|
* Find whether CP0_Count has reached the closest timer interrupt. If
|
|
* not, we shouldn't inject it.
|
|
*/
|
|
if ((s32)(count - compare) < 0)
|
|
return count;
|
|
|
|
/*
|
|
* The CP0_Count we're going to return has already reached the closest
|
|
* timer interrupt. Quickly check if it really is a new interrupt by
|
|
* looking at whether the interval until the hrtimer expiry time is
|
|
* less than 1/4 of the timer period.
|
|
*/
|
|
expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
|
|
threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
|
|
if (ktime_before(expires, threshold)) {
|
|
/*
|
|
* Cancel it while we handle it so there's no chance of
|
|
* interference with the timeout handler.
|
|
*/
|
|
running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
|
|
|
|
/* Nothing should be waiting on the timeout */
|
|
kvm_mips_callbacks->queue_timer_int(vcpu);
|
|
|
|
/*
|
|
* Restart the timer if it was running based on the expiry time
|
|
* we read, so that we don't push it back 2 periods.
|
|
*/
|
|
if (running) {
|
|
expires = ktime_add_ns(expires,
|
|
vcpu->arch.count_period);
|
|
hrtimer_start(&vcpu->arch.comparecount_timer, expires,
|
|
HRTIMER_MODE_ABS);
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_read_count() - Read the current count value.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Read the current guest CP0_Count value, taking into account whether the timer
|
|
* is stopped.
|
|
*
|
|
* Returns: The current guest CP0_Count value.
|
|
*/
|
|
u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
|
|
/* If count disabled just read static copy of count */
|
|
if (kvm_mips_count_disabled(vcpu))
|
|
return kvm_read_c0_guest_count(cop0);
|
|
|
|
return kvm_mips_read_count_running(vcpu, ktime_get());
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
|
|
* @vcpu: Virtual CPU.
|
|
* @count: Output pointer for CP0_Count value at point of freeze.
|
|
*
|
|
* Freeze the hrtimer safely and return both the ktime and the CP0_Count value
|
|
* at the point it was frozen. It is guaranteed that any pending interrupts at
|
|
* the point it was frozen are handled, and none after that point.
|
|
*
|
|
* This is useful where the time/CP0_Count is needed in the calculation of the
|
|
* new parameters.
|
|
*
|
|
* Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
|
|
*
|
|
* Returns: The ktime at the point of freeze.
|
|
*/
|
|
ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
|
|
{
|
|
ktime_t now;
|
|
|
|
/* stop hrtimer before finding time */
|
|
hrtimer_cancel(&vcpu->arch.comparecount_timer);
|
|
now = ktime_get();
|
|
|
|
/* find count at this point and handle pending hrtimer */
|
|
*count = kvm_mips_read_count_running(vcpu, now);
|
|
|
|
return now;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
|
|
* @vcpu: Virtual CPU.
|
|
* @now: ktime at point of resume.
|
|
* @count: CP0_Count at point of resume.
|
|
*
|
|
* Resumes the timer and updates the timer expiry based on @now and @count.
|
|
* This can be used in conjunction with kvm_mips_freeze_timer() when timer
|
|
* parameters need to be changed.
|
|
*
|
|
* It is guaranteed that a timer interrupt immediately after resume will be
|
|
* handled, but not if CP_Compare is exactly at @count. That case is already
|
|
* handled by kvm_mips_freeze_timer().
|
|
*
|
|
* Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
|
|
*/
|
|
static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
|
|
ktime_t now, u32 count)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
u32 compare;
|
|
u64 delta;
|
|
ktime_t expire;
|
|
|
|
/* Calculate timeout (wrap 0 to 2^32) */
|
|
compare = kvm_read_c0_guest_compare(cop0);
|
|
delta = (u64)(u32)(compare - count - 1) + 1;
|
|
delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
|
|
expire = ktime_add_ns(now, delta);
|
|
|
|
/* Update hrtimer to use new timeout */
|
|
hrtimer_cancel(&vcpu->arch.comparecount_timer);
|
|
hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
|
|
* @vcpu: Virtual CPU.
|
|
* @before: Time before Count was saved, lower bound of drift calculation.
|
|
* @count: CP0_Count at point of restore.
|
|
* @min_drift: Minimum amount of drift permitted before correction.
|
|
* Must be <= 0.
|
|
*
|
|
* Restores the timer from a particular @count, accounting for drift. This can
|
|
* be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
|
|
* to be used for a period of time, but the exact ktime corresponding to the
|
|
* final Count that must be restored is not known.
|
|
*
|
|
* It is gauranteed that a timer interrupt immediately after restore will be
|
|
* handled, but not if CP0_Compare is exactly at @count. That case should
|
|
* already be handled when the hardware timer state is saved.
|
|
*
|
|
* Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
|
|
* stopped).
|
|
*
|
|
* Returns: Amount of correction to count_bias due to drift.
|
|
*/
|
|
int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
|
|
u32 count, int min_drift)
|
|
{
|
|
ktime_t now, count_time;
|
|
u32 now_count, before_count;
|
|
u64 delta;
|
|
int drift, ret = 0;
|
|
|
|
/* Calculate expected count at before */
|
|
before_count = vcpu->arch.count_bias +
|
|
kvm_mips_ktime_to_count(vcpu, before);
|
|
|
|
/*
|
|
* Detect significantly negative drift, where count is lower than
|
|
* expected. Some negative drift is expected when hardware counter is
|
|
* set after kvm_mips_freeze_timer(), and it is harmless to allow the
|
|
* time to jump forwards a little, within reason. If the drift is too
|
|
* significant, adjust the bias to avoid a big Guest.CP0_Count jump.
|
|
*/
|
|
drift = count - before_count;
|
|
if (drift < min_drift) {
|
|
count_time = before;
|
|
vcpu->arch.count_bias += drift;
|
|
ret = drift;
|
|
goto resume;
|
|
}
|
|
|
|
/* Calculate expected count right now */
|
|
now = ktime_get();
|
|
now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
|
|
|
|
/*
|
|
* Detect positive drift, where count is higher than expected, and
|
|
* adjust the bias to avoid guest time going backwards.
|
|
*/
|
|
drift = count - now_count;
|
|
if (drift > 0) {
|
|
count_time = now;
|
|
vcpu->arch.count_bias += drift;
|
|
ret = drift;
|
|
goto resume;
|
|
}
|
|
|
|
/* Subtract nanosecond delta to find ktime when count was read */
|
|
delta = (u64)(u32)(now_count - count);
|
|
delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
|
|
count_time = ktime_sub_ns(now, delta);
|
|
|
|
resume:
|
|
/* Resume using the calculated ktime */
|
|
kvm_mips_resume_hrtimer(vcpu, count_time, count);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_write_count() - Modify the count and update timer.
|
|
* @vcpu: Virtual CPU.
|
|
* @count: Guest CP0_Count value to set.
|
|
*
|
|
* Sets the CP0_Count value and updates the timer accordingly.
|
|
*/
|
|
void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
ktime_t now;
|
|
|
|
/* Calculate bias */
|
|
now = kvm_mips_count_time(vcpu);
|
|
vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
|
|
|
|
if (kvm_mips_count_disabled(vcpu))
|
|
/* The timer's disabled, adjust the static count */
|
|
kvm_write_c0_guest_count(cop0, count);
|
|
else
|
|
/* Update timeout */
|
|
kvm_mips_resume_hrtimer(vcpu, now, count);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_init_count() - Initialise timer.
|
|
* @vcpu: Virtual CPU.
|
|
* @count_hz: Frequency of timer.
|
|
*
|
|
* Initialise the timer to the specified frequency, zero it, and set it going if
|
|
* it's enabled.
|
|
*/
|
|
void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
|
|
{
|
|
vcpu->arch.count_hz = count_hz;
|
|
vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
|
|
vcpu->arch.count_dyn_bias = 0;
|
|
|
|
/* Starting at 0 */
|
|
kvm_mips_write_count(vcpu, 0);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_set_count_hz() - Update the frequency of the timer.
|
|
* @vcpu: Virtual CPU.
|
|
* @count_hz: Frequency of CP0_Count timer in Hz.
|
|
*
|
|
* Change the frequency of the CP0_Count timer. This is done atomically so that
|
|
* CP0_Count is continuous and no timer interrupt is lost.
|
|
*
|
|
* Returns: -EINVAL if @count_hz is out of range.
|
|
* 0 on success.
|
|
*/
|
|
int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
int dc;
|
|
ktime_t now;
|
|
u32 count;
|
|
|
|
/* ensure the frequency is in a sensible range... */
|
|
if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
|
|
return -EINVAL;
|
|
/* ... and has actually changed */
|
|
if (vcpu->arch.count_hz == count_hz)
|
|
return 0;
|
|
|
|
/* Safely freeze timer so we can keep it continuous */
|
|
dc = kvm_mips_count_disabled(vcpu);
|
|
if (dc) {
|
|
now = kvm_mips_count_time(vcpu);
|
|
count = kvm_read_c0_guest_count(cop0);
|
|
} else {
|
|
now = kvm_mips_freeze_hrtimer(vcpu, &count);
|
|
}
|
|
|
|
/* Update the frequency */
|
|
vcpu->arch.count_hz = count_hz;
|
|
vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
|
|
vcpu->arch.count_dyn_bias = 0;
|
|
|
|
/* Calculate adjusted bias so dynamic count is unchanged */
|
|
vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
|
|
|
|
/* Update and resume hrtimer */
|
|
if (!dc)
|
|
kvm_mips_resume_hrtimer(vcpu, now, count);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_write_compare() - Modify compare and update timer.
|
|
* @vcpu: Virtual CPU.
|
|
* @compare: New CP0_Compare value.
|
|
* @ack: Whether to acknowledge timer interrupt.
|
|
*
|
|
* Update CP0_Compare to a new value and update the timeout.
|
|
* If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
|
|
* any pending timer interrupt is preserved.
|
|
*/
|
|
void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
int dc;
|
|
u32 old_compare = kvm_read_c0_guest_compare(cop0);
|
|
s32 delta = compare - old_compare;
|
|
u32 cause;
|
|
ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
|
|
u32 count;
|
|
|
|
/* if unchanged, must just be an ack */
|
|
if (old_compare == compare) {
|
|
if (!ack)
|
|
return;
|
|
kvm_mips_callbacks->dequeue_timer_int(vcpu);
|
|
kvm_write_c0_guest_compare(cop0, compare);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
|
|
* too to prevent guest CP0_Count hitting guest CP0_Compare.
|
|
*
|
|
* The new GTOffset corresponds to the new value of CP0_Compare, and is
|
|
* set prior to it being written into the guest context. We disable
|
|
* preemption until the new value is written to prevent restore of a
|
|
* GTOffset corresponding to the old CP0_Compare value.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta > 0) {
|
|
preempt_disable();
|
|
write_c0_gtoffset(compare - read_c0_count());
|
|
back_to_back_c0_hazard();
|
|
}
|
|
|
|
/* freeze_hrtimer() takes care of timer interrupts <= count */
|
|
dc = kvm_mips_count_disabled(vcpu);
|
|
if (!dc)
|
|
now = kvm_mips_freeze_hrtimer(vcpu, &count);
|
|
|
|
if (ack)
|
|
kvm_mips_callbacks->dequeue_timer_int(vcpu);
|
|
else if (IS_ENABLED(CONFIG_KVM_MIPS_VZ))
|
|
/*
|
|
* With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
|
|
* preserve guest CP0_Cause.TI if we don't want to ack it.
|
|
*/
|
|
cause = kvm_read_c0_guest_cause(cop0);
|
|
|
|
kvm_write_c0_guest_compare(cop0, compare);
|
|
|
|
if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
|
|
if (delta > 0)
|
|
preempt_enable();
|
|
|
|
back_to_back_c0_hazard();
|
|
|
|
if (!ack && cause & CAUSEF_TI)
|
|
kvm_write_c0_guest_cause(cop0, cause);
|
|
}
|
|
|
|
/* resume_hrtimer() takes care of timer interrupts > count */
|
|
if (!dc)
|
|
kvm_mips_resume_hrtimer(vcpu, now, count);
|
|
|
|
/*
|
|
* If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
|
|
* until after the new CP0_Compare is written, otherwise new guest
|
|
* CP0_Count could hit new guest CP0_Compare.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta <= 0)
|
|
write_c0_gtoffset(compare - read_c0_count());
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_disable() - Disable count.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Disable the CP0_Count timer. A timer interrupt on or before the final stop
|
|
* time will be handled but not after.
|
|
*
|
|
* Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
|
|
* count_ctl.DC has been set (count disabled).
|
|
*
|
|
* Returns: The time that the timer was stopped.
|
|
*/
|
|
static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
u32 count;
|
|
ktime_t now;
|
|
|
|
/* Stop hrtimer */
|
|
hrtimer_cancel(&vcpu->arch.comparecount_timer);
|
|
|
|
/* Set the static count from the dynamic count, handling pending TI */
|
|
now = ktime_get();
|
|
count = kvm_mips_read_count_running(vcpu, now);
|
|
kvm_write_c0_guest_count(cop0, count);
|
|
|
|
return now;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
|
|
* before the final stop time will be handled if the timer isn't disabled by
|
|
* count_ctl.DC, but not after.
|
|
*
|
|
* Assumes CP0_Cause.DC is clear (count enabled).
|
|
*/
|
|
void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
|
|
if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
|
|
kvm_mips_count_disable(vcpu);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
|
|
* the start time will be handled if the timer isn't disabled by count_ctl.DC,
|
|
* potentially before even returning, so the caller should be careful with
|
|
* ordering of CP0_Cause modifications so as not to lose it.
|
|
*
|
|
* Assumes CP0_Cause.DC is set (count disabled).
|
|
*/
|
|
void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
u32 count;
|
|
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
|
|
|
|
/*
|
|
* Set the dynamic count to match the static count.
|
|
* This starts the hrtimer if count_ctl.DC allows it.
|
|
* Otherwise it conveniently updates the biases.
|
|
*/
|
|
count = kvm_read_c0_guest_count(cop0);
|
|
kvm_mips_write_count(vcpu, count);
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_set_count_ctl() - Update the count control KVM register.
|
|
* @vcpu: Virtual CPU.
|
|
* @count_ctl: Count control register new value.
|
|
*
|
|
* Set the count control KVM register. The timer is updated accordingly.
|
|
*
|
|
* Returns: -EINVAL if reserved bits are set.
|
|
* 0 on success.
|
|
*/
|
|
int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
s64 changed = count_ctl ^ vcpu->arch.count_ctl;
|
|
s64 delta;
|
|
ktime_t expire, now;
|
|
u32 count, compare;
|
|
|
|
/* Only allow defined bits to be changed */
|
|
if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
|
|
return -EINVAL;
|
|
|
|
/* Apply new value */
|
|
vcpu->arch.count_ctl = count_ctl;
|
|
|
|
/* Master CP0_Count disable */
|
|
if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
|
|
/* Is CP0_Cause.DC already disabling CP0_Count? */
|
|
if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
|
|
if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
|
|
/* Just record the current time */
|
|
vcpu->arch.count_resume = ktime_get();
|
|
} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
|
|
/* disable timer and record current time */
|
|
vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
|
|
} else {
|
|
/*
|
|
* Calculate timeout relative to static count at resume
|
|
* time (wrap 0 to 2^32).
|
|
*/
|
|
count = kvm_read_c0_guest_count(cop0);
|
|
compare = kvm_read_c0_guest_compare(cop0);
|
|
delta = (u64)(u32)(compare - count - 1) + 1;
|
|
delta = div_u64(delta * NSEC_PER_SEC,
|
|
vcpu->arch.count_hz);
|
|
expire = ktime_add_ns(vcpu->arch.count_resume, delta);
|
|
|
|
/* Handle pending interrupt */
|
|
now = ktime_get();
|
|
if (ktime_compare(now, expire) >= 0)
|
|
/* Nothing should be waiting on the timeout */
|
|
kvm_mips_callbacks->queue_timer_int(vcpu);
|
|
|
|
/* Resume hrtimer without changing bias */
|
|
count = kvm_mips_read_count_running(vcpu, now);
|
|
kvm_mips_resume_hrtimer(vcpu, now, count);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_set_count_resume() - Update the count resume KVM register.
|
|
* @vcpu: Virtual CPU.
|
|
* @count_resume: Count resume register new value.
|
|
*
|
|
* Set the count resume KVM register.
|
|
*
|
|
* Returns: -EINVAL if out of valid range (0..now).
|
|
* 0 on success.
|
|
*/
|
|
int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
|
|
{
|
|
/*
|
|
* It doesn't make sense for the resume time to be in the future, as it
|
|
* would be possible for the next interrupt to be more than a full
|
|
* period in the future.
|
|
*/
|
|
if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
|
|
return -EINVAL;
|
|
|
|
vcpu->arch.count_resume = ns_to_ktime(count_resume);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_count_timeout() - Push timer forward on timeout.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Handle an hrtimer event by push the hrtimer forward a period.
|
|
*
|
|
* Returns: The hrtimer_restart value to return to the hrtimer subsystem.
|
|
*/
|
|
enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Add the Count period to the current expiry time */
|
|
hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
|
|
vcpu->arch.count_period);
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
|
|
kvm_clear_c0_guest_status(cop0, ST0_ERL);
|
|
vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
|
|
} else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
|
|
kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
|
|
kvm_read_c0_guest_epc(cop0));
|
|
kvm_clear_c0_guest_status(cop0, ST0_EXL);
|
|
vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
|
|
|
|
} else {
|
|
kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
|
|
vcpu->arch.pc);
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
|
|
vcpu->arch.pending_exceptions);
|
|
|
|
++vcpu->stat.wait_exits;
|
|
trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
|
|
if (!vcpu->arch.pending_exceptions) {
|
|
kvm_vz_lose_htimer(vcpu);
|
|
vcpu->arch.wait = 1;
|
|
kvm_vcpu_block(vcpu);
|
|
|
|
/*
|
|
* We we are runnable, then definitely go off to user space to
|
|
* check if any I/O interrupts are pending.
|
|
*/
|
|
if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
|
|
kvm_clear_request(KVM_REQ_UNHALT, vcpu);
|
|
vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
|
|
}
|
|
}
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
static void kvm_mips_change_entryhi(struct kvm_vcpu *vcpu,
|
|
unsigned long entryhi)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
|
|
int cpu, i;
|
|
u32 nasid = entryhi & KVM_ENTRYHI_ASID;
|
|
|
|
if (((kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID) != nasid)) {
|
|
trace_kvm_asid_change(vcpu, kvm_read_c0_guest_entryhi(cop0) &
|
|
KVM_ENTRYHI_ASID, nasid);
|
|
|
|
/*
|
|
* Flush entries from the GVA page tables.
|
|
* Guest user page table will get flushed lazily on re-entry to
|
|
* guest user if the guest ASID actually changes.
|
|
*/
|
|
kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_KERN);
|
|
|
|
/*
|
|
* Regenerate/invalidate kernel MMU context.
|
|
* The user MMU context will be regenerated lazily on re-entry
|
|
* to guest user if the guest ASID actually changes.
|
|
*/
|
|
preempt_disable();
|
|
cpu = smp_processor_id();
|
|
get_new_mmu_context(kern_mm, cpu);
|
|
for_each_possible_cpu(i)
|
|
if (i != cpu)
|
|
cpu_context(i, kern_mm) = 0;
|
|
preempt_enable();
|
|
}
|
|
kvm_write_c0_guest_entryhi(cop0, entryhi);
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_mips_tlb *tlb;
|
|
unsigned long pc = vcpu->arch.pc;
|
|
int index;
|
|
|
|
index = kvm_read_c0_guest_index(cop0);
|
|
if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
|
|
/* UNDEFINED */
|
|
kvm_debug("[%#lx] TLBR Index %#x out of range\n", pc, index);
|
|
index &= KVM_MIPS_GUEST_TLB_SIZE - 1;
|
|
}
|
|
|
|
tlb = &vcpu->arch.guest_tlb[index];
|
|
kvm_write_c0_guest_pagemask(cop0, tlb->tlb_mask);
|
|
kvm_write_c0_guest_entrylo0(cop0, tlb->tlb_lo[0]);
|
|
kvm_write_c0_guest_entrylo1(cop0, tlb->tlb_lo[1]);
|
|
kvm_mips_change_entryhi(vcpu, tlb->tlb_hi);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
|
|
* @vcpu: VCPU with changed mappings.
|
|
* @tlb: TLB entry being removed.
|
|
*
|
|
* This is called to indicate a single change in guest MMU mappings, so that we
|
|
* can arrange TLB flushes on this and other CPUs.
|
|
*/
|
|
static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
|
|
struct kvm_mips_tlb *tlb)
|
|
{
|
|
struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
|
|
struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
|
|
int cpu, i;
|
|
bool user;
|
|
|
|
/* No need to flush for entries which are already invalid */
|
|
if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
|
|
return;
|
|
/* Don't touch host kernel page tables or TLB mappings */
|
|
if ((unsigned long)tlb->tlb_hi > 0x7fffffff)
|
|
return;
|
|
/* User address space doesn't need flushing for KSeg2/3 changes */
|
|
user = tlb->tlb_hi < KVM_GUEST_KSEG0;
|
|
|
|
preempt_disable();
|
|
|
|
/* Invalidate page table entries */
|
|
kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user);
|
|
|
|
/*
|
|
* Probe the shadow host TLB for the entry being overwritten, if one
|
|
* matches, invalidate it
|
|
*/
|
|
kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true);
|
|
|
|
/* Invalidate the whole ASID on other CPUs */
|
|
cpu = smp_processor_id();
|
|
for_each_possible_cpu(i) {
|
|
if (i == cpu)
|
|
continue;
|
|
if (user)
|
|
cpu_context(i, user_mm) = 0;
|
|
cpu_context(i, kern_mm) = 0;
|
|
}
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
/* Write Guest TLB Entry @ Index */
|
|
enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
int index = kvm_read_c0_guest_index(cop0);
|
|
struct kvm_mips_tlb *tlb = NULL;
|
|
unsigned long pc = vcpu->arch.pc;
|
|
|
|
if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
|
|
kvm_debug("%s: illegal index: %d\n", __func__, index);
|
|
kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
|
|
pc, index, kvm_read_c0_guest_entryhi(cop0),
|
|
kvm_read_c0_guest_entrylo0(cop0),
|
|
kvm_read_c0_guest_entrylo1(cop0),
|
|
kvm_read_c0_guest_pagemask(cop0));
|
|
index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
|
|
}
|
|
|
|
tlb = &vcpu->arch.guest_tlb[index];
|
|
|
|
kvm_mips_invalidate_guest_tlb(vcpu, tlb);
|
|
|
|
tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
|
|
tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
|
|
tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
|
|
tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
|
|
|
|
kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
|
|
pc, index, kvm_read_c0_guest_entryhi(cop0),
|
|
kvm_read_c0_guest_entrylo0(cop0),
|
|
kvm_read_c0_guest_entrylo1(cop0),
|
|
kvm_read_c0_guest_pagemask(cop0));
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
/* Write Guest TLB Entry @ Random Index */
|
|
enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_mips_tlb *tlb = NULL;
|
|
unsigned long pc = vcpu->arch.pc;
|
|
int index;
|
|
|
|
get_random_bytes(&index, sizeof(index));
|
|
index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
|
|
|
|
tlb = &vcpu->arch.guest_tlb[index];
|
|
|
|
kvm_mips_invalidate_guest_tlb(vcpu, tlb);
|
|
|
|
tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
|
|
tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
|
|
tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
|
|
tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
|
|
|
|
kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
|
|
pc, index, kvm_read_c0_guest_entryhi(cop0),
|
|
kvm_read_c0_guest_entrylo0(cop0),
|
|
kvm_read_c0_guest_entrylo1(cop0));
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
long entryhi = kvm_read_c0_guest_entryhi(cop0);
|
|
unsigned long pc = vcpu->arch.pc;
|
|
int index = -1;
|
|
|
|
index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
|
|
|
|
kvm_write_c0_guest_index(cop0, index);
|
|
|
|
kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
|
|
index);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Finds the mask of bits which are writable in the guest's Config1 CP0
|
|
* register, by userland (currently read-only to the guest).
|
|
*/
|
|
unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned int mask = 0;
|
|
|
|
/* Permit FPU to be present if FPU is supported */
|
|
if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
|
|
mask |= MIPS_CONF1_FP;
|
|
|
|
return mask;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Finds the mask of bits which are writable in the guest's Config3 CP0
|
|
* register, by userland (currently read-only to the guest).
|
|
*/
|
|
unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Config4 and ULRI are optional */
|
|
unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
|
|
|
|
/* Permit MSA to be present if MSA is supported */
|
|
if (kvm_mips_guest_can_have_msa(&vcpu->arch))
|
|
mask |= MIPS_CONF3_MSA;
|
|
|
|
return mask;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Finds the mask of bits which are writable in the guest's Config4 CP0
|
|
* register, by userland (currently read-only to the guest).
|
|
*/
|
|
unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Config5 is optional */
|
|
unsigned int mask = MIPS_CONF_M;
|
|
|
|
/* KScrExist */
|
|
mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT;
|
|
|
|
return mask;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Finds the mask of bits which are writable in the guest's Config5 CP0
|
|
* register, by the guest itself.
|
|
*/
|
|
unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned int mask = 0;
|
|
|
|
/* Permit MSAEn changes if MSA supported and enabled */
|
|
if (kvm_mips_guest_has_msa(&vcpu->arch))
|
|
mask |= MIPS_CONF5_MSAEN;
|
|
|
|
/*
|
|
* Permit guest FPU mode changes if FPU is enabled and the relevant
|
|
* feature exists according to FIR register.
|
|
*/
|
|
if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
|
|
if (cpu_has_fre)
|
|
mask |= MIPS_CONF5_FRE;
|
|
/* We don't support UFR or UFE */
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
|
|
u32 *opc, u32 cause,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
u32 rt, rd, sel;
|
|
unsigned long curr_pc;
|
|
|
|
/*
|
|
* Update PC and hold onto current PC in case there is
|
|
* an error and we want to rollback the PC
|
|
*/
|
|
curr_pc = vcpu->arch.pc;
|
|
er = update_pc(vcpu, cause);
|
|
if (er == EMULATE_FAIL)
|
|
return er;
|
|
|
|
if (inst.co_format.co) {
|
|
switch (inst.co_format.func) {
|
|
case tlbr_op: /* Read indexed TLB entry */
|
|
er = kvm_mips_emul_tlbr(vcpu);
|
|
break;
|
|
case tlbwi_op: /* Write indexed */
|
|
er = kvm_mips_emul_tlbwi(vcpu);
|
|
break;
|
|
case tlbwr_op: /* Write random */
|
|
er = kvm_mips_emul_tlbwr(vcpu);
|
|
break;
|
|
case tlbp_op: /* TLB Probe */
|
|
er = kvm_mips_emul_tlbp(vcpu);
|
|
break;
|
|
case rfe_op:
|
|
kvm_err("!!!COP0_RFE!!!\n");
|
|
break;
|
|
case eret_op:
|
|
er = kvm_mips_emul_eret(vcpu);
|
|
goto dont_update_pc;
|
|
case wait_op:
|
|
er = kvm_mips_emul_wait(vcpu);
|
|
break;
|
|
case hypcall_op:
|
|
er = kvm_mips_emul_hypcall(vcpu, inst);
|
|
break;
|
|
}
|
|
} else {
|
|
rt = inst.c0r_format.rt;
|
|
rd = inst.c0r_format.rd;
|
|
sel = inst.c0r_format.sel;
|
|
|
|
switch (inst.c0r_format.rs) {
|
|
case mfc_op:
|
|
#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
|
|
cop0->stat[rd][sel]++;
|
|
#endif
|
|
/* Get reg */
|
|
if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
|
|
vcpu->arch.gprs[rt] =
|
|
(s32)kvm_mips_read_count(vcpu);
|
|
} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
|
|
vcpu->arch.gprs[rt] = 0x0;
|
|
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
|
|
kvm_mips_trans_mfc0(inst, opc, vcpu);
|
|
#endif
|
|
} else {
|
|
vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
|
|
|
|
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
|
|
kvm_mips_trans_mfc0(inst, opc, vcpu);
|
|
#endif
|
|
}
|
|
|
|
trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
|
|
KVM_TRACE_COP0(rd, sel),
|
|
vcpu->arch.gprs[rt]);
|
|
break;
|
|
|
|
case dmfc_op:
|
|
vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
|
|
|
|
trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
|
|
KVM_TRACE_COP0(rd, sel),
|
|
vcpu->arch.gprs[rt]);
|
|
break;
|
|
|
|
case mtc_op:
|
|
#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
|
|
cop0->stat[rd][sel]++;
|
|
#endif
|
|
trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
|
|
KVM_TRACE_COP0(rd, sel),
|
|
vcpu->arch.gprs[rt]);
|
|
|
|
if ((rd == MIPS_CP0_TLB_INDEX)
|
|
&& (vcpu->arch.gprs[rt] >=
|
|
KVM_MIPS_GUEST_TLB_SIZE)) {
|
|
kvm_err("Invalid TLB Index: %ld",
|
|
vcpu->arch.gprs[rt]);
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
|
|
/*
|
|
* Preserve core number, and keep the exception
|
|
* base in guest KSeg0.
|
|
*/
|
|
kvm_change_c0_guest_ebase(cop0, 0x1ffff000,
|
|
vcpu->arch.gprs[rt]);
|
|
} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
|
|
kvm_mips_change_entryhi(vcpu,
|
|
vcpu->arch.gprs[rt]);
|
|
}
|
|
/* Are we writing to COUNT */
|
|
else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
|
|
kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
|
|
goto done;
|
|
} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
|
|
/* If we are writing to COMPARE */
|
|
/* Clear pending timer interrupt, if any */
|
|
kvm_mips_write_compare(vcpu,
|
|
vcpu->arch.gprs[rt],
|
|
true);
|
|
} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
|
|
unsigned int old_val, val, change;
|
|
|
|
old_val = kvm_read_c0_guest_status(cop0);
|
|
val = vcpu->arch.gprs[rt];
|
|
change = val ^ old_val;
|
|
|
|
/* Make sure that the NMI bit is never set */
|
|
val &= ~ST0_NMI;
|
|
|
|
/*
|
|
* Don't allow CU1 or FR to be set unless FPU
|
|
* capability enabled and exists in guest
|
|
* configuration.
|
|
*/
|
|
if (!kvm_mips_guest_has_fpu(&vcpu->arch))
|
|
val &= ~(ST0_CU1 | ST0_FR);
|
|
|
|
/*
|
|
* Also don't allow FR to be set if host doesn't
|
|
* support it.
|
|
*/
|
|
if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
|
|
val &= ~ST0_FR;
|
|
|
|
|
|
/* Handle changes in FPU mode */
|
|
preempt_disable();
|
|
|
|
/*
|
|
* FPU and Vector register state is made
|
|
* UNPREDICTABLE by a change of FR, so don't
|
|
* even bother saving it.
|
|
*/
|
|
if (change & ST0_FR)
|
|
kvm_drop_fpu(vcpu);
|
|
|
|
/*
|
|
* If MSA state is already live, it is undefined
|
|
* how it interacts with FR=0 FPU state, and we
|
|
* don't want to hit reserved instruction
|
|
* exceptions trying to save the MSA state later
|
|
* when CU=1 && FR=1, so play it safe and save
|
|
* it first.
|
|
*/
|
|
if (change & ST0_CU1 && !(val & ST0_FR) &&
|
|
vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
|
|
kvm_lose_fpu(vcpu);
|
|
|
|
/*
|
|
* Propagate CU1 (FPU enable) changes
|
|
* immediately if the FPU context is already
|
|
* loaded. When disabling we leave the context
|
|
* loaded so it can be quickly enabled again in
|
|
* the near future.
|
|
*/
|
|
if (change & ST0_CU1 &&
|
|
vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
|
|
change_c0_status(ST0_CU1, val);
|
|
|
|
preempt_enable();
|
|
|
|
kvm_write_c0_guest_status(cop0, val);
|
|
|
|
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
|
|
/*
|
|
* If FPU present, we need CU1/FR bits to take
|
|
* effect fairly soon.
|
|
*/
|
|
if (!kvm_mips_guest_has_fpu(&vcpu->arch))
|
|
kvm_mips_trans_mtc0(inst, opc, vcpu);
|
|
#endif
|
|
} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
|
|
unsigned int old_val, val, change, wrmask;
|
|
|
|
old_val = kvm_read_c0_guest_config5(cop0);
|
|
val = vcpu->arch.gprs[rt];
|
|
|
|
/* Only a few bits are writable in Config5 */
|
|
wrmask = kvm_mips_config5_wrmask(vcpu);
|
|
change = (val ^ old_val) & wrmask;
|
|
val = old_val ^ change;
|
|
|
|
|
|
/* Handle changes in FPU/MSA modes */
|
|
preempt_disable();
|
|
|
|
/*
|
|
* Propagate FRE changes immediately if the FPU
|
|
* context is already loaded.
|
|
*/
|
|
if (change & MIPS_CONF5_FRE &&
|
|
vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
|
|
change_c0_config5(MIPS_CONF5_FRE, val);
|
|
|
|
/*
|
|
* Propagate MSAEn changes immediately if the
|
|
* MSA context is already loaded. When disabling
|
|
* we leave the context loaded so it can be
|
|
* quickly enabled again in the near future.
|
|
*/
|
|
if (change & MIPS_CONF5_MSAEN &&
|
|
vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
|
|
change_c0_config5(MIPS_CONF5_MSAEN,
|
|
val);
|
|
|
|
preempt_enable();
|
|
|
|
kvm_write_c0_guest_config5(cop0, val);
|
|
} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
|
|
u32 old_cause, new_cause;
|
|
|
|
old_cause = kvm_read_c0_guest_cause(cop0);
|
|
new_cause = vcpu->arch.gprs[rt];
|
|
/* Update R/W bits */
|
|
kvm_change_c0_guest_cause(cop0, 0x08800300,
|
|
new_cause);
|
|
/* DC bit enabling/disabling timer? */
|
|
if ((old_cause ^ new_cause) & CAUSEF_DC) {
|
|
if (new_cause & CAUSEF_DC)
|
|
kvm_mips_count_disable_cause(vcpu);
|
|
else
|
|
kvm_mips_count_enable_cause(vcpu);
|
|
}
|
|
} else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
|
|
u32 mask = MIPS_HWRENA_CPUNUM |
|
|
MIPS_HWRENA_SYNCISTEP |
|
|
MIPS_HWRENA_CC |
|
|
MIPS_HWRENA_CCRES;
|
|
|
|
if (kvm_read_c0_guest_config3(cop0) &
|
|
MIPS_CONF3_ULRI)
|
|
mask |= MIPS_HWRENA_ULR;
|
|
cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
|
|
} else {
|
|
cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
|
|
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
|
|
kvm_mips_trans_mtc0(inst, opc, vcpu);
|
|
#endif
|
|
}
|
|
break;
|
|
|
|
case dmtc_op:
|
|
kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
|
|
vcpu->arch.pc, rt, rd, sel);
|
|
trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
|
|
KVM_TRACE_COP0(rd, sel),
|
|
vcpu->arch.gprs[rt]);
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
|
|
case mfmc0_op:
|
|
#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
|
|
cop0->stat[MIPS_CP0_STATUS][0]++;
|
|
#endif
|
|
if (rt != 0)
|
|
vcpu->arch.gprs[rt] =
|
|
kvm_read_c0_guest_status(cop0);
|
|
/* EI */
|
|
if (inst.mfmc0_format.sc) {
|
|
kvm_debug("[%#lx] mfmc0_op: EI\n",
|
|
vcpu->arch.pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_IE);
|
|
} else {
|
|
kvm_debug("[%#lx] mfmc0_op: DI\n",
|
|
vcpu->arch.pc);
|
|
kvm_clear_c0_guest_status(cop0, ST0_IE);
|
|
}
|
|
|
|
break;
|
|
|
|
case wrpgpr_op:
|
|
{
|
|
u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
|
|
u32 pss =
|
|
(cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
|
|
/*
|
|
* We don't support any shadow register sets, so
|
|
* SRSCtl[PSS] == SRSCtl[CSS] = 0
|
|
*/
|
|
if (css || pss) {
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
|
|
vcpu->arch.gprs[rt]);
|
|
vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
|
|
}
|
|
break;
|
|
default:
|
|
kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
|
|
vcpu->arch.pc, inst.c0r_format.rs);
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
done:
|
|
/* Rollback PC only if emulation was unsuccessful */
|
|
if (er == EMULATE_FAIL)
|
|
vcpu->arch.pc = curr_pc;
|
|
|
|
dont_update_pc:
|
|
/*
|
|
* This is for special instructions whose emulation
|
|
* updates the PC, so do not overwrite the PC under
|
|
* any circumstances
|
|
*/
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
|
|
u32 cause,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
enum emulation_result er;
|
|
u32 rt;
|
|
void *data = run->mmio.data;
|
|
unsigned long curr_pc;
|
|
|
|
/*
|
|
* Update PC and hold onto current PC in case there is
|
|
* an error and we want to rollback the PC
|
|
*/
|
|
curr_pc = vcpu->arch.pc;
|
|
er = update_pc(vcpu, cause);
|
|
if (er == EMULATE_FAIL)
|
|
return er;
|
|
|
|
rt = inst.i_format.rt;
|
|
|
|
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
|
|
vcpu->arch.host_cp0_badvaddr);
|
|
if (run->mmio.phys_addr == KVM_INVALID_ADDR)
|
|
goto out_fail;
|
|
|
|
switch (inst.i_format.opcode) {
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
|
|
case sd_op:
|
|
run->mmio.len = 8;
|
|
*(u64 *)data = vcpu->arch.gprs[rt];
|
|
|
|
kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u64 *)data);
|
|
break;
|
|
#endif
|
|
|
|
case sw_op:
|
|
run->mmio.len = 4;
|
|
*(u32 *)data = vcpu->arch.gprs[rt];
|
|
|
|
kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u32 *)data);
|
|
break;
|
|
|
|
case sh_op:
|
|
run->mmio.len = 2;
|
|
*(u16 *)data = vcpu->arch.gprs[rt];
|
|
|
|
kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u16 *)data);
|
|
break;
|
|
|
|
case sb_op:
|
|
run->mmio.len = 1;
|
|
*(u8 *)data = vcpu->arch.gprs[rt];
|
|
|
|
kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
|
|
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
|
|
vcpu->arch.gprs[rt], *(u8 *)data);
|
|
break;
|
|
|
|
default:
|
|
kvm_err("Store not yet supported (inst=0x%08x)\n",
|
|
inst.word);
|
|
goto out_fail;
|
|
}
|
|
|
|
run->mmio.is_write = 1;
|
|
vcpu->mmio_needed = 1;
|
|
vcpu->mmio_is_write = 1;
|
|
return EMULATE_DO_MMIO;
|
|
|
|
out_fail:
|
|
/* Rollback PC if emulation was unsuccessful */
|
|
vcpu->arch.pc = curr_pc;
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
|
|
u32 cause, struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
enum emulation_result er;
|
|
unsigned long curr_pc;
|
|
u32 op, rt;
|
|
|
|
rt = inst.i_format.rt;
|
|
op = inst.i_format.opcode;
|
|
|
|
/*
|
|
* Find the resume PC now while we have safe and easy access to the
|
|
* prior branch instruction, and save it for
|
|
* kvm_mips_complete_mmio_load() to restore later.
|
|
*/
|
|
curr_pc = vcpu->arch.pc;
|
|
er = update_pc(vcpu, cause);
|
|
if (er == EMULATE_FAIL)
|
|
return er;
|
|
vcpu->arch.io_pc = vcpu->arch.pc;
|
|
vcpu->arch.pc = curr_pc;
|
|
|
|
vcpu->arch.io_gpr = rt;
|
|
|
|
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
|
|
vcpu->arch.host_cp0_badvaddr);
|
|
if (run->mmio.phys_addr == KVM_INVALID_ADDR)
|
|
return EMULATE_FAIL;
|
|
|
|
vcpu->mmio_needed = 2; /* signed */
|
|
switch (op) {
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
|
|
case ld_op:
|
|
run->mmio.len = 8;
|
|
break;
|
|
|
|
case lwu_op:
|
|
vcpu->mmio_needed = 1; /* unsigned */
|
|
/* fall through */
|
|
#endif
|
|
case lw_op:
|
|
run->mmio.len = 4;
|
|
break;
|
|
|
|
case lhu_op:
|
|
vcpu->mmio_needed = 1; /* unsigned */
|
|
/* fall through */
|
|
case lh_op:
|
|
run->mmio.len = 2;
|
|
break;
|
|
|
|
case lbu_op:
|
|
vcpu->mmio_needed = 1; /* unsigned */
|
|
/* fall through */
|
|
case lb_op:
|
|
run->mmio.len = 1;
|
|
break;
|
|
|
|
default:
|
|
kvm_err("Load not yet supported (inst=0x%08x)\n",
|
|
inst.word);
|
|
vcpu->mmio_needed = 0;
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
run->mmio.is_write = 0;
|
|
vcpu->mmio_is_write = 0;
|
|
return EMULATE_DO_MMIO;
|
|
}
|
|
|
|
#ifndef CONFIG_KVM_MIPS_VZ
|
|
static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long),
|
|
unsigned long curr_pc,
|
|
unsigned long addr,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu,
|
|
u32 cause)
|
|
{
|
|
int err;
|
|
|
|
for (;;) {
|
|
/* Carefully attempt the cache operation */
|
|
kvm_trap_emul_gva_lockless_begin(vcpu);
|
|
err = fn(addr);
|
|
kvm_trap_emul_gva_lockless_end(vcpu);
|
|
|
|
if (likely(!err))
|
|
return EMULATE_DONE;
|
|
|
|
/*
|
|
* Try to handle the fault and retry, maybe we just raced with a
|
|
* GVA invalidation.
|
|
*/
|
|
switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) {
|
|
case KVM_MIPS_GVA:
|
|
case KVM_MIPS_GPA:
|
|
/* bad virtual or physical address */
|
|
return EMULATE_FAIL;
|
|
case KVM_MIPS_TLB:
|
|
/* no matching guest TLB */
|
|
vcpu->arch.host_cp0_badvaddr = addr;
|
|
vcpu->arch.pc = curr_pc;
|
|
kvm_mips_emulate_tlbmiss_ld(cause, NULL, run, vcpu);
|
|
return EMULATE_EXCEPT;
|
|
case KVM_MIPS_TLBINV:
|
|
/* invalid matching guest TLB */
|
|
vcpu->arch.host_cp0_badvaddr = addr;
|
|
vcpu->arch.pc = curr_pc;
|
|
kvm_mips_emulate_tlbinv_ld(cause, NULL, run, vcpu);
|
|
return EMULATE_EXCEPT;
|
|
default:
|
|
break;
|
|
};
|
|
}
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
|
|
u32 *opc, u32 cause,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
enum emulation_result er = EMULATE_DONE;
|
|
u32 cache, op_inst, op, base;
|
|
s16 offset;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
unsigned long va;
|
|
unsigned long curr_pc;
|
|
|
|
/*
|
|
* Update PC and hold onto current PC in case there is
|
|
* an error and we want to rollback the PC
|
|
*/
|
|
curr_pc = vcpu->arch.pc;
|
|
er = update_pc(vcpu, cause);
|
|
if (er == EMULATE_FAIL)
|
|
return er;
|
|
|
|
base = inst.i_format.rs;
|
|
op_inst = inst.i_format.rt;
|
|
if (cpu_has_mips_r6)
|
|
offset = inst.spec3_format.simmediate;
|
|
else
|
|
offset = inst.i_format.simmediate;
|
|
cache = op_inst & CacheOp_Cache;
|
|
op = op_inst & CacheOp_Op;
|
|
|
|
va = arch->gprs[base] + offset;
|
|
|
|
kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
|
|
cache, op, base, arch->gprs[base], offset);
|
|
|
|
/*
|
|
* Treat INDEX_INV as a nop, basically issued by Linux on startup to
|
|
* invalidate the caches entirely by stepping through all the
|
|
* ways/indexes
|
|
*/
|
|
if (op == Index_Writeback_Inv) {
|
|
kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
|
|
vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
|
|
arch->gprs[base], offset);
|
|
|
|
if (cache == Cache_D) {
|
|
#ifdef CONFIG_CPU_R4K_CACHE_TLB
|
|
r4k_blast_dcache();
|
|
#else
|
|
switch (boot_cpu_type()) {
|
|
case CPU_CAVIUM_OCTEON3:
|
|
/* locally flush icache */
|
|
local_flush_icache_range(0, 0);
|
|
break;
|
|
default:
|
|
__flush_cache_all();
|
|
break;
|
|
}
|
|
#endif
|
|
} else if (cache == Cache_I) {
|
|
#ifdef CONFIG_CPU_R4K_CACHE_TLB
|
|
r4k_blast_icache();
|
|
#else
|
|
switch (boot_cpu_type()) {
|
|
case CPU_CAVIUM_OCTEON3:
|
|
/* locally flush icache */
|
|
local_flush_icache_range(0, 0);
|
|
break;
|
|
default:
|
|
flush_icache_all();
|
|
break;
|
|
}
|
|
#endif
|
|
} else {
|
|
kvm_err("%s: unsupported CACHE INDEX operation\n",
|
|
__func__);
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
|
|
kvm_mips_trans_cache_index(inst, opc, vcpu);
|
|
#endif
|
|
goto done;
|
|
}
|
|
|
|
/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
|
|
if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
|
|
/*
|
|
* Perform the dcache part of icache synchronisation on the
|
|
* guest's behalf.
|
|
*/
|
|
er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
|
|
curr_pc, va, run, vcpu, cause);
|
|
if (er != EMULATE_DONE)
|
|
goto done;
|
|
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
|
|
/*
|
|
* Replace the CACHE instruction, with a SYNCI, not the same,
|
|
* but avoids a trap
|
|
*/
|
|
kvm_mips_trans_cache_va(inst, opc, vcpu);
|
|
#endif
|
|
} else if (op_inst == Hit_Invalidate_I) {
|
|
/* Perform the icache synchronisation on the guest's behalf */
|
|
er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
|
|
curr_pc, va, run, vcpu, cause);
|
|
if (er != EMULATE_DONE)
|
|
goto done;
|
|
er = kvm_mips_guest_cache_op(protected_flush_icache_line,
|
|
curr_pc, va, run, vcpu, cause);
|
|
if (er != EMULATE_DONE)
|
|
goto done;
|
|
|
|
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
|
|
/* Replace the CACHE instruction, with a SYNCI */
|
|
kvm_mips_trans_cache_va(inst, opc, vcpu);
|
|
#endif
|
|
} else {
|
|
kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
|
|
cache, op, base, arch->gprs[base], offset);
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
done:
|
|
/* Rollback PC only if emulation was unsuccessful */
|
|
if (er == EMULATE_FAIL)
|
|
vcpu->arch.pc = curr_pc;
|
|
/* Guest exception needs guest to resume */
|
|
if (er == EMULATE_EXCEPT)
|
|
er = EMULATE_DONE;
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
union mips_instruction inst;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
int err;
|
|
|
|
/* Fetch the instruction. */
|
|
if (cause & CAUSEF_BD)
|
|
opc += 1;
|
|
err = kvm_get_badinstr(opc, vcpu, &inst.word);
|
|
if (err)
|
|
return EMULATE_FAIL;
|
|
|
|
switch (inst.r_format.opcode) {
|
|
case cop0_op:
|
|
er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
|
|
break;
|
|
|
|
#ifndef CONFIG_CPU_MIPSR6
|
|
case cache_op:
|
|
++vcpu->stat.cache_exits;
|
|
trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
|
|
er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
|
|
break;
|
|
#else
|
|
case spec3_op:
|
|
switch (inst.spec3_format.func) {
|
|
case cache6_op:
|
|
++vcpu->stat.cache_exits;
|
|
trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
|
|
er = kvm_mips_emulate_cache(inst, opc, cause, run,
|
|
vcpu);
|
|
break;
|
|
default:
|
|
goto unknown;
|
|
};
|
|
break;
|
|
unknown:
|
|
#endif
|
|
|
|
default:
|
|
kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
|
|
inst.word);
|
|
kvm_arch_vcpu_dump_regs(vcpu);
|
|
er = EMULATE_FAIL;
|
|
break;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
#endif /* CONFIG_KVM_MIPS_VZ */
|
|
|
|
/**
|
|
* kvm_mips_guest_exception_base() - Find guest exception vector base address.
|
|
*
|
|
* Returns: The base address of the current guest exception vector, taking
|
|
* both Guest.CP0_Status.BEV and Guest.CP0_EBase into account.
|
|
*/
|
|
long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
|
|
if (kvm_read_c0_guest_status(cop0) & ST0_BEV)
|
|
return KVM_GUEST_CKSEG1ADDR(0x1fc00200);
|
|
else
|
|
return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_syscall(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_SYS << CAUSEB_EXCCODE));
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
} else {
|
|
kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) |
|
|
(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
|
|
arch->pc);
|
|
|
|
/* set pc to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
|
|
|
|
} else {
|
|
kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
|
|
arch->pc);
|
|
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
}
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_TLBL << CAUSEB_EXCCODE));
|
|
|
|
/* setup badvaddr, context and entryhi registers for the guest */
|
|
kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
|
|
/* XXXKYMA: is the context register used by linux??? */
|
|
kvm_write_c0_guest_entryhi(cop0, entryhi);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
unsigned long entryhi =
|
|
(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
|
|
(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
|
|
arch->pc);
|
|
} else {
|
|
kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
|
|
arch->pc);
|
|
}
|
|
|
|
/* set pc to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_TLBL << CAUSEB_EXCCODE));
|
|
|
|
/* setup badvaddr, context and entryhi registers for the guest */
|
|
kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
|
|
/* XXXKYMA: is the context register used by linux??? */
|
|
kvm_write_c0_guest_entryhi(cop0, entryhi);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
|
|
(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
|
|
arch->pc);
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
|
|
} else {
|
|
kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
|
|
arch->pc);
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
}
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_TLBS << CAUSEB_EXCCODE));
|
|
|
|
/* setup badvaddr, context and entryhi registers for the guest */
|
|
kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
|
|
/* XXXKYMA: is the context register used by linux??? */
|
|
kvm_write_c0_guest_entryhi(cop0, entryhi);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
|
|
(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
|
|
arch->pc);
|
|
} else {
|
|
kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
|
|
arch->pc);
|
|
}
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_TLBS << CAUSEB_EXCCODE));
|
|
|
|
/* setup badvaddr, context and entryhi registers for the guest */
|
|
kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
|
|
/* XXXKYMA: is the context register used by linux??? */
|
|
kvm_write_c0_guest_entryhi(cop0, entryhi);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
|
|
(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
|
|
arch->pc);
|
|
} else {
|
|
kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
|
|
arch->pc);
|
|
}
|
|
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_MOD << CAUSEB_EXCCODE));
|
|
|
|
/* setup badvaddr, context and entryhi registers for the guest */
|
|
kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
|
|
/* XXXKYMA: is the context register used by linux??? */
|
|
kvm_write_c0_guest_entryhi(cop0, entryhi);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
}
|
|
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_CPU << CAUSEB_EXCCODE));
|
|
kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_RI << CAUSEB_EXCCODE));
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
} else {
|
|
kvm_err("Trying to deliver RI when EXL is already set\n");
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_BP << CAUSEB_EXCCODE));
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
} else {
|
|
kvm_err("Trying to deliver BP when EXL is already set\n");
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_TR << CAUSEB_EXCCODE));
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
} else {
|
|
kvm_err("Trying to deliver TRAP when EXL is already set\n");
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_MSAFPE << CAUSEB_EXCCODE));
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
} else {
|
|
kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_FPE << CAUSEB_EXCCODE));
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
} else {
|
|
kvm_err("Trying to deliver FPE when EXL is already set\n");
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(EXCCODE_MSADIS << CAUSEB_EXCCODE));
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
|
|
} else {
|
|
kvm_err("Trying to deliver MSADIS when EXL is already set\n");
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
unsigned long curr_pc;
|
|
union mips_instruction inst;
|
|
int err;
|
|
|
|
/*
|
|
* Update PC and hold onto current PC in case there is
|
|
* an error and we want to rollback the PC
|
|
*/
|
|
curr_pc = vcpu->arch.pc;
|
|
er = update_pc(vcpu, cause);
|
|
if (er == EMULATE_FAIL)
|
|
return er;
|
|
|
|
/* Fetch the instruction. */
|
|
if (cause & CAUSEF_BD)
|
|
opc += 1;
|
|
err = kvm_get_badinstr(opc, vcpu, &inst.word);
|
|
if (err) {
|
|
kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err);
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
if (inst.r_format.opcode == spec3_op &&
|
|
inst.r_format.func == rdhwr_op &&
|
|
inst.r_format.rs == 0 &&
|
|
(inst.r_format.re >> 3) == 0) {
|
|
int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
|
|
int rd = inst.r_format.rd;
|
|
int rt = inst.r_format.rt;
|
|
int sel = inst.r_format.re & 0x7;
|
|
|
|
/* If usermode, check RDHWR rd is allowed by guest HWREna */
|
|
if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
|
|
kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
|
|
rd, opc);
|
|
goto emulate_ri;
|
|
}
|
|
switch (rd) {
|
|
case MIPS_HWR_CPUNUM: /* CPU number */
|
|
arch->gprs[rt] = vcpu->vcpu_id;
|
|
break;
|
|
case MIPS_HWR_SYNCISTEP: /* SYNCI length */
|
|
arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
|
|
current_cpu_data.icache.linesz);
|
|
break;
|
|
case MIPS_HWR_CC: /* Read count register */
|
|
arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
|
|
break;
|
|
case MIPS_HWR_CCRES: /* Count register resolution */
|
|
switch (current_cpu_data.cputype) {
|
|
case CPU_20KC:
|
|
case CPU_25KF:
|
|
arch->gprs[rt] = 1;
|
|
break;
|
|
default:
|
|
arch->gprs[rt] = 2;
|
|
}
|
|
break;
|
|
case MIPS_HWR_ULR: /* Read UserLocal register */
|
|
arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
|
|
break;
|
|
|
|
default:
|
|
kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
|
|
goto emulate_ri;
|
|
}
|
|
|
|
trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
|
|
vcpu->arch.gprs[rt]);
|
|
} else {
|
|
kvm_debug("Emulate RI not supported @ %p: %#x\n",
|
|
opc, inst.word);
|
|
goto emulate_ri;
|
|
}
|
|
|
|
return EMULATE_DONE;
|
|
|
|
emulate_ri:
|
|
/*
|
|
* Rollback PC (if in branch delay slot then the PC already points to
|
|
* branch target), and pass the RI exception to the guest OS.
|
|
*/
|
|
vcpu->arch.pc = curr_pc;
|
|
return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
|
|
}
|
|
|
|
enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
|
|
struct kvm_run *run)
|
|
{
|
|
unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if (run->mmio.len > sizeof(*gpr)) {
|
|
kvm_err("Bad MMIO length: %d", run->mmio.len);
|
|
er = EMULATE_FAIL;
|
|
goto done;
|
|
}
|
|
|
|
/* Restore saved resume PC */
|
|
vcpu->arch.pc = vcpu->arch.io_pc;
|
|
|
|
switch (run->mmio.len) {
|
|
case 8:
|
|
*gpr = *(s64 *)run->mmio.data;
|
|
break;
|
|
|
|
case 4:
|
|
if (vcpu->mmio_needed == 2)
|
|
*gpr = *(s32 *)run->mmio.data;
|
|
else
|
|
*gpr = *(u32 *)run->mmio.data;
|
|
break;
|
|
|
|
case 2:
|
|
if (vcpu->mmio_needed == 2)
|
|
*gpr = *(s16 *) run->mmio.data;
|
|
else
|
|
*gpr = *(u16 *)run->mmio.data;
|
|
|
|
break;
|
|
case 1:
|
|
if (vcpu->mmio_needed == 2)
|
|
*gpr = *(s8 *) run->mmio.data;
|
|
else
|
|
*gpr = *(u8 *) run->mmio.data;
|
|
break;
|
|
}
|
|
|
|
done:
|
|
return er;
|
|
}
|
|
|
|
static enum emulation_result kvm_mips_emulate_exc(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_vcpu_arch *arch = &vcpu->arch;
|
|
enum emulation_result er = EMULATE_DONE;
|
|
|
|
if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
|
|
/* save old pc */
|
|
kvm_write_c0_guest_epc(cop0, arch->pc);
|
|
kvm_set_c0_guest_status(cop0, ST0_EXL);
|
|
|
|
if (cause & CAUSEF_BD)
|
|
kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
|
|
else
|
|
kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
|
|
|
|
kvm_change_c0_guest_cause(cop0, (0xff),
|
|
(exccode << CAUSEB_EXCCODE));
|
|
|
|
/* Set PC to the exception entry point */
|
|
arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
|
|
kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
|
|
|
|
kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
|
|
exccode, kvm_read_c0_guest_epc(cop0),
|
|
kvm_read_c0_guest_badvaddr(cop0));
|
|
} else {
|
|
kvm_err("Trying to deliver EXC when EXL is already set\n");
|
|
er = EMULATE_FAIL;
|
|
}
|
|
|
|
return er;
|
|
}
|
|
|
|
enum emulation_result kvm_mips_check_privilege(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
enum emulation_result er = EMULATE_DONE;
|
|
u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
|
|
unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
|
|
|
|
int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
|
|
|
|
if (usermode) {
|
|
switch (exccode) {
|
|
case EXCCODE_INT:
|
|
case EXCCODE_SYS:
|
|
case EXCCODE_BP:
|
|
case EXCCODE_RI:
|
|
case EXCCODE_TR:
|
|
case EXCCODE_MSAFPE:
|
|
case EXCCODE_FPE:
|
|
case EXCCODE_MSADIS:
|
|
break;
|
|
|
|
case EXCCODE_CPU:
|
|
if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
|
|
er = EMULATE_PRIV_FAIL;
|
|
break;
|
|
|
|
case EXCCODE_MOD:
|
|
break;
|
|
|
|
case EXCCODE_TLBL:
|
|
/*
|
|
* We we are accessing Guest kernel space, then send an
|
|
* address error exception to the guest
|
|
*/
|
|
if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
|
|
kvm_debug("%s: LD MISS @ %#lx\n", __func__,
|
|
badvaddr);
|
|
cause &= ~0xff;
|
|
cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
|
|
er = EMULATE_PRIV_FAIL;
|
|
}
|
|
break;
|
|
|
|
case EXCCODE_TLBS:
|
|
/*
|
|
* We we are accessing Guest kernel space, then send an
|
|
* address error exception to the guest
|
|
*/
|
|
if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
|
|
kvm_debug("%s: ST MISS @ %#lx\n", __func__,
|
|
badvaddr);
|
|
cause &= ~0xff;
|
|
cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
|
|
er = EMULATE_PRIV_FAIL;
|
|
}
|
|
break;
|
|
|
|
case EXCCODE_ADES:
|
|
kvm_debug("%s: address error ST @ %#lx\n", __func__,
|
|
badvaddr);
|
|
if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
|
|
cause &= ~0xff;
|
|
cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
|
|
}
|
|
er = EMULATE_PRIV_FAIL;
|
|
break;
|
|
case EXCCODE_ADEL:
|
|
kvm_debug("%s: address error LD @ %#lx\n", __func__,
|
|
badvaddr);
|
|
if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
|
|
cause &= ~0xff;
|
|
cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
|
|
}
|
|
er = EMULATE_PRIV_FAIL;
|
|
break;
|
|
default:
|
|
er = EMULATE_PRIV_FAIL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (er == EMULATE_PRIV_FAIL)
|
|
kvm_mips_emulate_exc(cause, opc, run, vcpu);
|
|
|
|
return er;
|
|
}
|
|
|
|
/*
|
|
* User Address (UA) fault, this could happen if
|
|
* (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
|
|
* case we pass on the fault to the guest kernel and let it handle it.
|
|
* (2) TLB entry is present in the Guest TLB but not in the shadow, in this
|
|
* case we inject the TLB from the Guest TLB into the shadow host TLB
|
|
*/
|
|
enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
|
|
u32 *opc,
|
|
struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu,
|
|
bool write_fault)
|
|
{
|
|
enum emulation_result er = EMULATE_DONE;
|
|
u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
|
|
unsigned long va = vcpu->arch.host_cp0_badvaddr;
|
|
int index;
|
|
|
|
kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
|
|
vcpu->arch.host_cp0_badvaddr);
|
|
|
|
/*
|
|
* KVM would not have got the exception if this entry was valid in the
|
|
* shadow host TLB. Check the Guest TLB, if the entry is not there then
|
|
* send the guest an exception. The guest exc handler should then inject
|
|
* an entry into the guest TLB.
|
|
*/
|
|
index = kvm_mips_guest_tlb_lookup(vcpu,
|
|
(va & VPN2_MASK) |
|
|
(kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
|
|
KVM_ENTRYHI_ASID));
|
|
if (index < 0) {
|
|
if (exccode == EXCCODE_TLBL) {
|
|
er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
|
|
} else if (exccode == EXCCODE_TLBS) {
|
|
er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
|
|
} else {
|
|
kvm_err("%s: invalid exc code: %d\n", __func__,
|
|
exccode);
|
|
er = EMULATE_FAIL;
|
|
}
|
|
} else {
|
|
struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
|
|
|
|
/*
|
|
* Check if the entry is valid, if not then setup a TLB invalid
|
|
* exception to the guest
|
|
*/
|
|
if (!TLB_IS_VALID(*tlb, va)) {
|
|
if (exccode == EXCCODE_TLBL) {
|
|
er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
|
|
vcpu);
|
|
} else if (exccode == EXCCODE_TLBS) {
|
|
er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
|
|
vcpu);
|
|
} else {
|
|
kvm_err("%s: invalid exc code: %d\n", __func__,
|
|
exccode);
|
|
er = EMULATE_FAIL;
|
|
}
|
|
} else {
|
|
kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
|
|
tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
|
|
/*
|
|
* OK we have a Guest TLB entry, now inject it into the
|
|
* shadow host TLB
|
|
*/
|
|
if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va,
|
|
write_fault)) {
|
|
kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
|
|
__func__, va, index, vcpu,
|
|
read_c0_entryhi());
|
|
er = EMULATE_FAIL;
|
|
}
|
|
}
|
|
}
|
|
|
|
return er;
|
|
}
|