linux/arch/arm64/kvm/sys_regs.c
Marc Zyngier be08c3cf3c Merge branch kvm-arm64/pkvm/fixed-features into kvmarm-master/next
* kvm-arm64/pkvm/fixed-features: (22 commits)
  : .
  : Add the pKVM fixed feature that allows a bunch of exceptions
  : to either be forbidden or be easily handled at EL2.
  : .
  KVM: arm64: pkvm: Give priority to standard traps over pvm handling
  KVM: arm64: pkvm: Pass vpcu instead of kvm to kvm_get_exit_handler_array()
  KVM: arm64: pkvm: Move kvm_handle_pvm_restricted around
  KVM: arm64: pkvm: Consolidate include files
  KVM: arm64: pkvm: Preserve pending SError on exit from AArch32
  KVM: arm64: pkvm: Handle GICv3 traps as required
  KVM: arm64: pkvm: Drop sysregs that should never be routed to the host
  KVM: arm64: pkvm: Drop AArch32-specific registers
  KVM: arm64: pkvm: Make the ERR/ERX*_EL1 registers RAZ/WI
  KVM: arm64: pkvm: Use a single function to expose all id-regs
  KVM: arm64: Fix early exit ptrauth handling
  KVM: arm64: Handle protected guests at 32 bits
  KVM: arm64: Trap access to pVM restricted features
  KVM: arm64: Move sanitized copies of CPU features
  KVM: arm64: Initialize trap registers for protected VMs
  KVM: arm64: Add handlers for protected VM System Registers
  KVM: arm64: Simplify masking out MTE in feature id reg
  KVM: arm64: Add missing field descriptor for MDCR_EL2
  KVM: arm64: Pass struct kvm to per-EC handlers
  KVM: arm64: Move early handlers to per-EC handlers
  ...

Signed-off-by: Marc Zyngier <maz@kernel.org>
2021-10-18 17:20:50 +01:00

2853 lines
76 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012,2013 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* Derived from arch/arm/kvm/coproc.c:
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Authors: Rusty Russell <rusty@rustcorp.com.au>
* Christoffer Dall <c.dall@virtualopensystems.com>
*/
#include <linux/bitfield.h>
#include <linux/bsearch.h>
#include <linux/kvm_host.h>
#include <linux/mm.h>
#include <linux/printk.h>
#include <linux/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/cputype.h>
#include <asm/debug-monitors.h>
#include <asm/esr.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/perf_event.h>
#include <asm/sysreg.h>
#include <trace/events/kvm.h>
#include "sys_regs.h"
#include "trace.h"
/*
* All of this file is extremely similar to the ARM coproc.c, but the
* types are different. My gut feeling is that it should be pretty
* easy to merge, but that would be an ABI breakage -- again. VFP
* would also need to be abstracted.
*
* For AArch32, we only take care of what is being trapped. Anything
* that has to do with init and userspace access has to go via the
* 64bit interface.
*/
static bool read_from_write_only(struct kvm_vcpu *vcpu,
struct sys_reg_params *params,
const struct sys_reg_desc *r)
{
WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
print_sys_reg_instr(params);
kvm_inject_undefined(vcpu);
return false;
}
static bool write_to_read_only(struct kvm_vcpu *vcpu,
struct sys_reg_params *params,
const struct sys_reg_desc *r)
{
WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
print_sys_reg_instr(params);
kvm_inject_undefined(vcpu);
return false;
}
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
{
u64 val = 0x8badf00d8badf00d;
if (vcpu->arch.sysregs_loaded_on_cpu &&
__vcpu_read_sys_reg_from_cpu(reg, &val))
return val;
return __vcpu_sys_reg(vcpu, reg);
}
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
{
if (vcpu->arch.sysregs_loaded_on_cpu &&
__vcpu_write_sys_reg_to_cpu(val, reg))
return;
__vcpu_sys_reg(vcpu, reg) = val;
}
/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
static u32 cache_levels;
/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
#define CSSELR_MAX 14
/* Which cache CCSIDR represents depends on CSSELR value. */
static u32 get_ccsidr(u32 csselr)
{
u32 ccsidr;
/* Make sure noone else changes CSSELR during this! */
local_irq_disable();
write_sysreg(csselr, csselr_el1);
isb();
ccsidr = read_sysreg(ccsidr_el1);
local_irq_enable();
return ccsidr;
}
/*
* See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
*/
static bool access_dcsw(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (!p->is_write)
return read_from_write_only(vcpu, p, r);
/*
* Only track S/W ops if we don't have FWB. It still indicates
* that the guest is a bit broken (S/W operations should only
* be done by firmware, knowing that there is only a single
* CPU left in the system, and certainly not from non-secure
* software).
*/
if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
kvm_set_way_flush(vcpu);
return true;
}
static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
{
switch (r->aarch32_map) {
case AA32_LO:
*mask = GENMASK_ULL(31, 0);
*shift = 0;
break;
case AA32_HI:
*mask = GENMASK_ULL(63, 32);
*shift = 32;
break;
default:
*mask = GENMASK_ULL(63, 0);
*shift = 0;
break;
}
}
/*
* Generic accessor for VM registers. Only called as long as HCR_TVM
* is set. If the guest enables the MMU, we stop trapping the VM
* sys_regs and leave it in complete control of the caches.
*/
static bool access_vm_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
bool was_enabled = vcpu_has_cache_enabled(vcpu);
u64 val, mask, shift;
BUG_ON(!p->is_write);
get_access_mask(r, &mask, &shift);
if (~mask) {
val = vcpu_read_sys_reg(vcpu, r->reg);
val &= ~mask;
} else {
val = 0;
}
val |= (p->regval & (mask >> shift)) << shift;
vcpu_write_sys_reg(vcpu, val, r->reg);
kvm_toggle_cache(vcpu, was_enabled);
return true;
}
static bool access_actlr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 mask, shift;
if (p->is_write)
return ignore_write(vcpu, p);
get_access_mask(r, &mask, &shift);
p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
return true;
}
/*
* Trap handler for the GICv3 SGI generation system register.
* Forward the request to the VGIC emulation.
* The cp15_64 code makes sure this automatically works
* for both AArch64 and AArch32 accesses.
*/
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
bool g1;
if (!p->is_write)
return read_from_write_only(vcpu, p, r);
/*
* In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
* Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
* depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
* equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
* group.
*/
if (p->Op0 == 0) { /* AArch32 */
switch (p->Op1) {
default: /* Keep GCC quiet */
case 0: /* ICC_SGI1R */
g1 = true;
break;
case 1: /* ICC_ASGI1R */
case 2: /* ICC_SGI0R */
g1 = false;
break;
}
} else { /* AArch64 */
switch (p->Op2) {
default: /* Keep GCC quiet */
case 5: /* ICC_SGI1R_EL1 */
g1 = true;
break;
case 6: /* ICC_ASGI1R_EL1 */
case 7: /* ICC_SGI0R_EL1 */
g1 = false;
break;
}
}
vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
return true;
}
static bool access_gic_sre(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write)
return ignore_write(vcpu, p);
p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
return true;
}
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write)
return ignore_write(vcpu, p);
else
return read_zero(vcpu, p);
}
/*
* ARMv8.1 mandates at least a trivial LORegion implementation, where all the
* RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
* system, these registers should UNDEF. LORID_EL1 being a RO register, we
* treat it separately.
*/
static bool trap_loregion(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
u32 sr = reg_to_encoding(r);
if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
kvm_inject_undefined(vcpu);
return false;
}
if (p->is_write && sr == SYS_LORID_EL1)
return write_to_read_only(vcpu, p, r);
return trap_raz_wi(vcpu, p, r);
}
static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
return ignore_write(vcpu, p);
} else {
p->regval = (1 << 3);
return true;
}
}
static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
return ignore_write(vcpu, p);
} else {
p->regval = read_sysreg(dbgauthstatus_el1);
return true;
}
}
/*
* We want to avoid world-switching all the DBG registers all the
* time:
*
* - If we've touched any debug register, it is likely that we're
* going to touch more of them. It then makes sense to disable the
* traps and start doing the save/restore dance
* - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
* then mandatory to save/restore the registers, as the guest
* depends on them.
*
* For this, we use a DIRTY bit, indicating the guest has modified the
* debug registers, used as follow:
*
* On guest entry:
* - If the dirty bit is set (because we're coming back from trapping),
* disable the traps, save host registers, restore guest registers.
* - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
* set the dirty bit, disable the traps, save host registers,
* restore guest registers.
* - Otherwise, enable the traps
*
* On guest exit:
* - If the dirty bit is set, save guest registers, restore host
* registers and clear the dirty bit. This ensure that the host can
* now use the debug registers.
*/
static bool trap_debug_regs(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
vcpu_write_sys_reg(vcpu, p->regval, r->reg);
vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
} else {
p->regval = vcpu_read_sys_reg(vcpu, r->reg);
}
trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
return true;
}
/*
* reg_to_dbg/dbg_to_reg
*
* A 32 bit write to a debug register leave top bits alone
* A 32 bit read from a debug register only returns the bottom bits
*
* All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
* hyp.S code switches between host and guest values in future.
*/
static void reg_to_dbg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd,
u64 *dbg_reg)
{
u64 mask, shift, val;
get_access_mask(rd, &mask, &shift);
val = *dbg_reg;
val &= ~mask;
val |= (p->regval & (mask >> shift)) << shift;
*dbg_reg = val;
vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
}
static void dbg_to_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd,
u64 *dbg_reg)
{
u64 mask, shift;
get_access_mask(rd, &mask, &shift);
p->regval = (*dbg_reg & mask) >> shift;
}
static bool trap_bvr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
if (p->is_write)
reg_to_dbg(vcpu, p, rd, dbg_reg);
else
dbg_to_reg(vcpu, p, rd, dbg_reg);
trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
return true;
}
static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static void reset_bvr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
}
static bool trap_bcr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
if (p->is_write)
reg_to_dbg(vcpu, p, rd, dbg_reg);
else
dbg_to_reg(vcpu, p, rd, dbg_reg);
trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
return true;
}
static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static void reset_bcr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
}
static bool trap_wvr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
if (p->is_write)
reg_to_dbg(vcpu, p, rd, dbg_reg);
else
dbg_to_reg(vcpu, p, rd, dbg_reg);
trace_trap_reg(__func__, rd->CRm, p->is_write,
vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
return true;
}
static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static void reset_wvr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
}
static bool trap_wcr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
if (p->is_write)
reg_to_dbg(vcpu, p, rd, dbg_reg);
else
dbg_to_reg(vcpu, p, rd, dbg_reg);
trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
return true;
}
static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static void reset_wcr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
}
static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
u64 amair = read_sysreg(amair_el1);
vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
}
static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
u64 actlr = read_sysreg(actlr_el1);
vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
}
static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
u64 mpidr;
/*
* Map the vcpu_id into the first three affinity level fields of
* the MPIDR. We limit the number of VCPUs in level 0 due to a
* limitation to 16 CPUs in that level in the ICC_SGIxR registers
* of the GICv3 to be able to address each CPU directly when
* sending IPIs.
*/
mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
}
static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
const struct sys_reg_desc *r)
{
if (kvm_vcpu_has_pmu(vcpu))
return 0;
return REG_HIDDEN;
}
static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
/* No PMU available, any PMU reg may UNDEF... */
if (!kvm_arm_support_pmu_v3())
return;
n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
n &= ARMV8_PMU_PMCR_N_MASK;
if (n)
mask |= GENMASK(n - 1, 0);
reset_unknown(vcpu, r);
__vcpu_sys_reg(vcpu, r->reg) &= mask;
}
static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
reset_unknown(vcpu, r);
__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
}
static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
reset_unknown(vcpu, r);
__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
}
static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
reset_unknown(vcpu, r);
__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
}
static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
u64 pmcr, val;
/* No PMU available, PMCR_EL0 may UNDEF... */
if (!kvm_arm_support_pmu_v3())
return;
pmcr = read_sysreg(pmcr_el0);
/*
* Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
* except PMCR.E resetting to zero.
*/
val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
| (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
if (!system_supports_32bit_el0())
val |= ARMV8_PMU_PMCR_LC;
__vcpu_sys_reg(vcpu, r->reg) = val;
}
static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
{
u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
if (!enabled)
kvm_inject_undefined(vcpu);
return !enabled;
}
static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
{
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
}
static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
{
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
}
static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
}
static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
}
static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 val;
if (pmu_access_el0_disabled(vcpu))
return false;
if (p->is_write) {
/* Only update writeable bits of PMCR */
val = __vcpu_sys_reg(vcpu, PMCR_EL0);
val &= ~ARMV8_PMU_PMCR_MASK;
val |= p->regval & ARMV8_PMU_PMCR_MASK;
if (!system_supports_32bit_el0())
val |= ARMV8_PMU_PMCR_LC;
__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
kvm_pmu_handle_pmcr(vcpu, val);
kvm_vcpu_pmu_restore_guest(vcpu);
} else {
/* PMCR.P & PMCR.C are RAZ */
val = __vcpu_sys_reg(vcpu, PMCR_EL0)
& ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
p->regval = val;
}
return true;
}
static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (pmu_access_event_counter_el0_disabled(vcpu))
return false;
if (p->is_write)
__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
else
/* return PMSELR.SEL field */
p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
& ARMV8_PMU_COUNTER_MASK;
return true;
}
static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 pmceid, mask, shift;
BUG_ON(p->is_write);
if (pmu_access_el0_disabled(vcpu))
return false;
get_access_mask(r, &mask, &shift);
pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
pmceid &= mask;
pmceid >>= shift;
p->regval = pmceid;
return true;
}
static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
{
u64 pmcr, val;
pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
kvm_inject_undefined(vcpu);
return false;
}
return true;
}
static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 idx = ~0UL;
if (r->CRn == 9 && r->CRm == 13) {
if (r->Op2 == 2) {
/* PMXEVCNTR_EL0 */
if (pmu_access_event_counter_el0_disabled(vcpu))
return false;
idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
& ARMV8_PMU_COUNTER_MASK;
} else if (r->Op2 == 0) {
/* PMCCNTR_EL0 */
if (pmu_access_cycle_counter_el0_disabled(vcpu))
return false;
idx = ARMV8_PMU_CYCLE_IDX;
}
} else if (r->CRn == 0 && r->CRm == 9) {
/* PMCCNTR */
if (pmu_access_event_counter_el0_disabled(vcpu))
return false;
idx = ARMV8_PMU_CYCLE_IDX;
} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
/* PMEVCNTRn_EL0 */
if (pmu_access_event_counter_el0_disabled(vcpu))
return false;
idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
}
/* Catch any decoding mistake */
WARN_ON(idx == ~0UL);
if (!pmu_counter_idx_valid(vcpu, idx))
return false;
if (p->is_write) {
if (pmu_access_el0_disabled(vcpu))
return false;
kvm_pmu_set_counter_value(vcpu, idx, p->regval);
} else {
p->regval = kvm_pmu_get_counter_value(vcpu, idx);
}
return true;
}
static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 idx, reg;
if (pmu_access_el0_disabled(vcpu))
return false;
if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
/* PMXEVTYPER_EL0 */
idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
reg = PMEVTYPER0_EL0 + idx;
} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
if (idx == ARMV8_PMU_CYCLE_IDX)
reg = PMCCFILTR_EL0;
else
/* PMEVTYPERn_EL0 */
reg = PMEVTYPER0_EL0 + idx;
} else {
BUG();
}
if (!pmu_counter_idx_valid(vcpu, idx))
return false;
if (p->is_write) {
kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
kvm_vcpu_pmu_restore_guest(vcpu);
} else {
p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
}
return true;
}
static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 val, mask;
if (pmu_access_el0_disabled(vcpu))
return false;
mask = kvm_pmu_valid_counter_mask(vcpu);
if (p->is_write) {
val = p->regval & mask;
if (r->Op2 & 0x1) {
/* accessing PMCNTENSET_EL0 */
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
kvm_pmu_enable_counter_mask(vcpu, val);
kvm_vcpu_pmu_restore_guest(vcpu);
} else {
/* accessing PMCNTENCLR_EL0 */
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
kvm_pmu_disable_counter_mask(vcpu, val);
}
} else {
p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
}
return true;
}
static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 mask = kvm_pmu_valid_counter_mask(vcpu);
if (check_pmu_access_disabled(vcpu, 0))
return false;
if (p->is_write) {
u64 val = p->regval & mask;
if (r->Op2 & 0x1)
/* accessing PMINTENSET_EL1 */
__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
else
/* accessing PMINTENCLR_EL1 */
__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
} else {
p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
}
return true;
}
static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 mask = kvm_pmu_valid_counter_mask(vcpu);
if (pmu_access_el0_disabled(vcpu))
return false;
if (p->is_write) {
if (r->CRm & 0x2)
/* accessing PMOVSSET_EL0 */
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
else
/* accessing PMOVSCLR_EL0 */
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
} else {
p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
}
return true;
}
static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 mask;
if (!p->is_write)
return read_from_write_only(vcpu, p, r);
if (pmu_write_swinc_el0_disabled(vcpu))
return false;
mask = kvm_pmu_valid_counter_mask(vcpu);
kvm_pmu_software_increment(vcpu, p->regval & mask);
return true;
}
static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
if (!vcpu_mode_priv(vcpu)) {
kvm_inject_undefined(vcpu);
return false;
}
__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
p->regval & ARMV8_PMU_USERENR_MASK;
} else {
p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
& ARMV8_PMU_USERENR_MASK;
}
return true;
}
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
{ SYS_DESC(SYS_DBGBVRn_EL1(n)), \
trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
{ SYS_DESC(SYS_DBGBCRn_EL1(n)), \
trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
{ SYS_DESC(SYS_DBGWVRn_EL1(n)), \
trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
{ SYS_DESC(SYS_DBGWCRn_EL1(n)), \
trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
#define PMU_SYS_REG(r) \
SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
/* Macro to expand the PMEVCNTRn_EL0 register */
#define PMU_PMEVCNTR_EL0(n) \
{ PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)), \
.reset = reset_pmevcntr, \
.access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
/* Macro to expand the PMEVTYPERn_EL0 register */
#define PMU_PMEVTYPER_EL0(n) \
{ PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)), \
.reset = reset_pmevtyper, \
.access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
kvm_inject_undefined(vcpu);
return false;
}
/* Macro to expand the AMU counter and type registers*/
#define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
#define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
#define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
#define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
}
/*
* If we land here on a PtrAuth access, that is because we didn't
* fixup the access on exit by allowing the PtrAuth sysregs. The only
* way this happens is when the guest does not have PtrAuth support
* enabled.
*/
#define __PTRAUTH_KEY(k) \
{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
.visibility = ptrauth_visibility}
#define PTRAUTH_KEY(k) \
__PTRAUTH_KEY(k ## KEYLO_EL1), \
__PTRAUTH_KEY(k ## KEYHI_EL1)
static bool access_arch_timer(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
enum kvm_arch_timers tmr;
enum kvm_arch_timer_regs treg;
u64 reg = reg_to_encoding(r);
switch (reg) {
case SYS_CNTP_TVAL_EL0:
case SYS_AARCH32_CNTP_TVAL:
tmr = TIMER_PTIMER;
treg = TIMER_REG_TVAL;
break;
case SYS_CNTP_CTL_EL0:
case SYS_AARCH32_CNTP_CTL:
tmr = TIMER_PTIMER;
treg = TIMER_REG_CTL;
break;
case SYS_CNTP_CVAL_EL0:
case SYS_AARCH32_CNTP_CVAL:
tmr = TIMER_PTIMER;
treg = TIMER_REG_CVAL;
break;
default:
BUG();
}
if (p->is_write)
kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
else
p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
return true;
}
/* Read a sanitised cpufeature ID register by sys_reg_desc */
static u64 read_id_reg(const struct kvm_vcpu *vcpu,
struct sys_reg_desc const *r, bool raz)
{
u32 id = reg_to_encoding(r);
u64 val;
if (raz)
return 0;
val = read_sanitised_ftr_reg(id);
switch (id) {
case SYS_ID_AA64PFR0_EL1:
if (!vcpu_has_sve(vcpu))
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_SVE);
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_AMU);
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2);
val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3);
val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
if (irqchip_in_kernel(vcpu->kvm) &&
vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_GIC);
val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_GIC), 1);
}
break;
case SYS_ID_AA64PFR1_EL1:
if (!kvm_has_mte(vcpu->kvm))
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_MTE);
break;
case SYS_ID_AA64ISAR1_EL1:
if (!vcpu_has_ptrauth(vcpu))
val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_APA) |
ARM64_FEATURE_MASK(ID_AA64ISAR1_API) |
ARM64_FEATURE_MASK(ID_AA64ISAR1_GPA) |
ARM64_FEATURE_MASK(ID_AA64ISAR1_GPI));
break;
case SYS_ID_AA64DFR0_EL1:
/* Limit debug to ARMv8.0 */
val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER);
val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), 6);
/* Limit guests to PMUv3 for ARMv8.4 */
val = cpuid_feature_cap_perfmon_field(val,
ID_AA64DFR0_PMUVER_SHIFT,
kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0);
/* Hide SPE from guests */
val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_PMSVER);
break;
case SYS_ID_DFR0_EL1:
/* Limit guests to PMUv3 for ARMv8.4 */
val = cpuid_feature_cap_perfmon_field(val,
ID_DFR0_PERFMON_SHIFT,
kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0);
break;
}
return val;
}
static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
const struct sys_reg_desc *r)
{
u32 id = reg_to_encoding(r);
switch (id) {
case SYS_ID_AA64ZFR0_EL1:
if (!vcpu_has_sve(vcpu))
return REG_RAZ;
break;
}
return 0;
}
/* cpufeature ID register access trap handlers */
static bool __access_id_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r,
bool raz)
{
if (p->is_write)
return write_to_read_only(vcpu, p, r);
p->regval = read_id_reg(vcpu, r, raz);
return true;
}
static bool access_id_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
bool raz = sysreg_visible_as_raz(vcpu, r);
return __access_id_reg(vcpu, p, r, raz);
}
static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
return __access_id_reg(vcpu, p, r, true);
}
static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
/* Visibility overrides for SVE-specific control registers */
static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
if (vcpu_has_sve(vcpu))
return 0;
return REG_HIDDEN;
}
static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
const u64 id = sys_reg_to_index(rd);
u8 csv2, csv3;
int err;
u64 val;
err = reg_from_user(&val, uaddr, id);
if (err)
return err;
/*
* Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
* it doesn't promise more than what is actually provided (the
* guest could otherwise be covered in ectoplasmic residue).
*/
csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
if (csv2 > 1 ||
(csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
return -EINVAL;
/* Same thing for CSV3 */
csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
if (csv3 > 1 ||
(csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
return -EINVAL;
/* We can only differ with CSV[23], and anything else is an error */
val ^= read_id_reg(vcpu, rd, false);
val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
(0xFUL << ID_AA64PFR0_CSV3_SHIFT));
if (val)
return -EINVAL;
vcpu->kvm->arch.pfr0_csv2 = csv2;
vcpu->kvm->arch.pfr0_csv3 = csv3 ;
return 0;
}
/*
* cpufeature ID register user accessors
*
* For now, these registers are immutable for userspace, so no values
* are stored, and for set_id_reg() we don't allow the effective value
* to be changed.
*/
static int __get_id_reg(const struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd, void __user *uaddr,
bool raz)
{
const u64 id = sys_reg_to_index(rd);
const u64 val = read_id_reg(vcpu, rd, raz);
return reg_to_user(uaddr, &val, id);
}
static int __set_id_reg(const struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd, void __user *uaddr,
bool raz)
{
const u64 id = sys_reg_to_index(rd);
int err;
u64 val;
err = reg_from_user(&val, uaddr, id);
if (err)
return err;
/* This is what we mean by invariant: you can't change it. */
if (val != read_id_reg(vcpu, rd, raz))
return -EINVAL;
return 0;
}
static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
bool raz = sysreg_visible_as_raz(vcpu, rd);
return __get_id_reg(vcpu, rd, uaddr, raz);
}
static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
bool raz = sysreg_visible_as_raz(vcpu, rd);
return __set_id_reg(vcpu, rd, uaddr, raz);
}
static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
return __set_id_reg(vcpu, rd, uaddr, true);
}
static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
const u64 id = sys_reg_to_index(rd);
const u64 val = 0;
return reg_to_user(uaddr, &val, id);
}
static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
int err;
u64 val;
/* Perform the access even if we are going to ignore the value */
err = reg_from_user(&val, uaddr, sys_reg_to_index(rd));
if (err)
return err;
return 0;
}
static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write)
return write_to_read_only(vcpu, p, r);
p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
return true;
}
static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write)
return write_to_read_only(vcpu, p, r);
p->regval = read_sysreg(clidr_el1);
return true;
}
static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
int reg = r->reg;
if (p->is_write)
vcpu_write_sys_reg(vcpu, p->regval, reg);
else
p->regval = vcpu_read_sys_reg(vcpu, reg);
return true;
}
static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u32 csselr;
if (p->is_write)
return write_to_read_only(vcpu, p, r);
csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
p->regval = get_ccsidr(csselr);
/*
* Guests should not be doing cache operations by set/way at all, and
* for this reason, we trap them and attempt to infer the intent, so
* that we can flush the entire guest's address space at the appropriate
* time.
* To prevent this trapping from causing performance problems, let's
* expose the geometry of all data and unified caches (which are
* guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
* [If guests should attempt to infer aliasing properties from the
* geometry (which is not permitted by the architecture), they would
* only do so for virtually indexed caches.]
*/
if (!(csselr & 1)) // data or unified cache
p->regval &= ~GENMASK(27, 3);
return true;
}
static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
if (kvm_has_mte(vcpu->kvm))
return 0;
return REG_HIDDEN;
}
#define MTE_REG(name) { \
SYS_DESC(SYS_##name), \
.access = undef_access, \
.reset = reset_unknown, \
.reg = name, \
.visibility = mte_visibility, \
}
/* sys_reg_desc initialiser for known cpufeature ID registers */
#define ID_SANITISED(name) { \
SYS_DESC(SYS_##name), \
.access = access_id_reg, \
.get_user = get_id_reg, \
.set_user = set_id_reg, \
.visibility = id_visibility, \
}
/*
* sys_reg_desc initialiser for architecturally unallocated cpufeature ID
* register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
* (1 <= crm < 8, 0 <= Op2 < 8).
*/
#define ID_UNALLOCATED(crm, op2) { \
Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
.access = access_raz_id_reg, \
.get_user = get_raz_reg, \
.set_user = set_raz_id_reg, \
}
/*
* sys_reg_desc initialiser for known ID registers that we hide from guests.
* For now, these are exposed just like unallocated ID regs: they appear
* RAZ for the guest.
*/
#define ID_HIDDEN(name) { \
SYS_DESC(SYS_##name), \
.access = access_raz_id_reg, \
.get_user = get_raz_reg, \
.set_user = set_raz_id_reg, \
}
/*
* Architected system registers.
* Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
*
* Debug handling: We do trap most, if not all debug related system
* registers. The implementation is good enough to ensure that a guest
* can use these with minimal performance degradation. The drawback is
* that we don't implement any of the external debug, none of the
* OSlock protocol. This should be revisited if we ever encounter a
* more demanding guest...
*/
static const struct sys_reg_desc sys_reg_descs[] = {
{ SYS_DESC(SYS_DC_ISW), access_dcsw },
{ SYS_DESC(SYS_DC_CSW), access_dcsw },
{ SYS_DESC(SYS_DC_CISW), access_dcsw },
DBG_BCR_BVR_WCR_WVR_EL1(0),
DBG_BCR_BVR_WCR_WVR_EL1(1),
{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
DBG_BCR_BVR_WCR_WVR_EL1(2),
DBG_BCR_BVR_WCR_WVR_EL1(3),
DBG_BCR_BVR_WCR_WVR_EL1(4),
DBG_BCR_BVR_WCR_WVR_EL1(5),
DBG_BCR_BVR_WCR_WVR_EL1(6),
DBG_BCR_BVR_WCR_WVR_EL1(7),
DBG_BCR_BVR_WCR_WVR_EL1(8),
DBG_BCR_BVR_WCR_WVR_EL1(9),
DBG_BCR_BVR_WCR_WVR_EL1(10),
DBG_BCR_BVR_WCR_WVR_EL1(11),
DBG_BCR_BVR_WCR_WVR_EL1(12),
DBG_BCR_BVR_WCR_WVR_EL1(13),
DBG_BCR_BVR_WCR_WVR_EL1(14),
DBG_BCR_BVR_WCR_WVR_EL1(15),
{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
// DBGDTR[TR]X_EL0 share the same encoding
{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
/*
* ID regs: all ID_SANITISED() entries here must have corresponding
* entries in arm64_ftr_regs[].
*/
/* AArch64 mappings of the AArch32 ID registers */
/* CRm=1 */
ID_SANITISED(ID_PFR0_EL1),
ID_SANITISED(ID_PFR1_EL1),
ID_SANITISED(ID_DFR0_EL1),
ID_HIDDEN(ID_AFR0_EL1),
ID_SANITISED(ID_MMFR0_EL1),
ID_SANITISED(ID_MMFR1_EL1),
ID_SANITISED(ID_MMFR2_EL1),
ID_SANITISED(ID_MMFR3_EL1),
/* CRm=2 */
ID_SANITISED(ID_ISAR0_EL1),
ID_SANITISED(ID_ISAR1_EL1),
ID_SANITISED(ID_ISAR2_EL1),
ID_SANITISED(ID_ISAR3_EL1),
ID_SANITISED(ID_ISAR4_EL1),
ID_SANITISED(ID_ISAR5_EL1),
ID_SANITISED(ID_MMFR4_EL1),
ID_SANITISED(ID_ISAR6_EL1),
/* CRm=3 */
ID_SANITISED(MVFR0_EL1),
ID_SANITISED(MVFR1_EL1),
ID_SANITISED(MVFR2_EL1),
ID_UNALLOCATED(3,3),
ID_SANITISED(ID_PFR2_EL1),
ID_HIDDEN(ID_DFR1_EL1),
ID_SANITISED(ID_MMFR5_EL1),
ID_UNALLOCATED(3,7),
/* AArch64 ID registers */
/* CRm=4 */
{ SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
.get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
ID_SANITISED(ID_AA64PFR1_EL1),
ID_UNALLOCATED(4,2),
ID_UNALLOCATED(4,3),
ID_SANITISED(ID_AA64ZFR0_EL1),
ID_UNALLOCATED(4,5),
ID_UNALLOCATED(4,6),
ID_UNALLOCATED(4,7),
/* CRm=5 */
ID_SANITISED(ID_AA64DFR0_EL1),
ID_SANITISED(ID_AA64DFR1_EL1),
ID_UNALLOCATED(5,2),
ID_UNALLOCATED(5,3),
ID_HIDDEN(ID_AA64AFR0_EL1),
ID_HIDDEN(ID_AA64AFR1_EL1),
ID_UNALLOCATED(5,6),
ID_UNALLOCATED(5,7),
/* CRm=6 */
ID_SANITISED(ID_AA64ISAR0_EL1),
ID_SANITISED(ID_AA64ISAR1_EL1),
ID_UNALLOCATED(6,2),
ID_UNALLOCATED(6,3),
ID_UNALLOCATED(6,4),
ID_UNALLOCATED(6,5),
ID_UNALLOCATED(6,6),
ID_UNALLOCATED(6,7),
/* CRm=7 */
ID_SANITISED(ID_AA64MMFR0_EL1),
ID_SANITISED(ID_AA64MMFR1_EL1),
ID_SANITISED(ID_AA64MMFR2_EL1),
ID_UNALLOCATED(7,3),
ID_UNALLOCATED(7,4),
ID_UNALLOCATED(7,5),
ID_UNALLOCATED(7,6),
ID_UNALLOCATED(7,7),
{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
MTE_REG(RGSR_EL1),
MTE_REG(GCR_EL1),
{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
PTRAUTH_KEY(APIA),
PTRAUTH_KEY(APIB),
PTRAUTH_KEY(APDA),
PTRAUTH_KEY(APDB),
PTRAUTH_KEY(APGA),
{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
MTE_REG(TFSR_EL1),
MTE_REG(TFSRE0_EL1),
{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
/* PMBIDR_EL1 is not trapped */
{ PMU_SYS_REG(SYS_PMINTENSET_EL1),
.access = access_pminten, .reg = PMINTENSET_EL1 },
{ PMU_SYS_REG(SYS_PMINTENCLR_EL1),
.access = access_pminten, .reg = PMINTENSET_EL1 },
{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
{ SYS_DESC(SYS_CLIDR_EL1), access_clidr },
{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
{ SYS_DESC(SYS_CTR_EL0), access_ctr },
{ PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
.reset = reset_pmcr, .reg = PMCR_EL0 },
{ PMU_SYS_REG(SYS_PMCNTENSET_EL0),
.access = access_pmcnten, .reg = PMCNTENSET_EL0 },
{ PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
.access = access_pmcnten, .reg = PMCNTENSET_EL0 },
{ PMU_SYS_REG(SYS_PMOVSCLR_EL0),
.access = access_pmovs, .reg = PMOVSSET_EL0 },
/*
* PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
* previously (and pointlessly) advertised in the past...
*/
{ PMU_SYS_REG(SYS_PMSWINC_EL0),
.get_user = get_raz_reg, .set_user = set_wi_reg,
.access = access_pmswinc, .reset = NULL },
{ PMU_SYS_REG(SYS_PMSELR_EL0),
.access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
{ PMU_SYS_REG(SYS_PMCEID0_EL0),
.access = access_pmceid, .reset = NULL },
{ PMU_SYS_REG(SYS_PMCEID1_EL0),
.access = access_pmceid, .reset = NULL },
{ PMU_SYS_REG(SYS_PMCCNTR_EL0),
.access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 },
{ PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
.access = access_pmu_evtyper, .reset = NULL },
{ PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
.access = access_pmu_evcntr, .reset = NULL },
/*
* PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
* in 32bit mode. Here we choose to reset it as zero for consistency.
*/
{ PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
.reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
{ PMU_SYS_REG(SYS_PMOVSSET_EL0),
.access = access_pmovs, .reg = PMOVSSET_EL0 },
{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
{ SYS_DESC(SYS_AMCR_EL0), undef_access },
{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
AMU_AMEVCNTR0_EL0(0),
AMU_AMEVCNTR0_EL0(1),
AMU_AMEVCNTR0_EL0(2),
AMU_AMEVCNTR0_EL0(3),
AMU_AMEVCNTR0_EL0(4),
AMU_AMEVCNTR0_EL0(5),
AMU_AMEVCNTR0_EL0(6),
AMU_AMEVCNTR0_EL0(7),
AMU_AMEVCNTR0_EL0(8),
AMU_AMEVCNTR0_EL0(9),
AMU_AMEVCNTR0_EL0(10),
AMU_AMEVCNTR0_EL0(11),
AMU_AMEVCNTR0_EL0(12),
AMU_AMEVCNTR0_EL0(13),
AMU_AMEVCNTR0_EL0(14),
AMU_AMEVCNTR0_EL0(15),
AMU_AMEVTYPER0_EL0(0),
AMU_AMEVTYPER0_EL0(1),
AMU_AMEVTYPER0_EL0(2),
AMU_AMEVTYPER0_EL0(3),
AMU_AMEVTYPER0_EL0(4),
AMU_AMEVTYPER0_EL0(5),
AMU_AMEVTYPER0_EL0(6),
AMU_AMEVTYPER0_EL0(7),
AMU_AMEVTYPER0_EL0(8),
AMU_AMEVTYPER0_EL0(9),
AMU_AMEVTYPER0_EL0(10),
AMU_AMEVTYPER0_EL0(11),
AMU_AMEVTYPER0_EL0(12),
AMU_AMEVTYPER0_EL0(13),
AMU_AMEVTYPER0_EL0(14),
AMU_AMEVTYPER0_EL0(15),
AMU_AMEVCNTR1_EL0(0),
AMU_AMEVCNTR1_EL0(1),
AMU_AMEVCNTR1_EL0(2),
AMU_AMEVCNTR1_EL0(3),
AMU_AMEVCNTR1_EL0(4),
AMU_AMEVCNTR1_EL0(5),
AMU_AMEVCNTR1_EL0(6),
AMU_AMEVCNTR1_EL0(7),
AMU_AMEVCNTR1_EL0(8),
AMU_AMEVCNTR1_EL0(9),
AMU_AMEVCNTR1_EL0(10),
AMU_AMEVCNTR1_EL0(11),
AMU_AMEVCNTR1_EL0(12),
AMU_AMEVCNTR1_EL0(13),
AMU_AMEVCNTR1_EL0(14),
AMU_AMEVCNTR1_EL0(15),
AMU_AMEVTYPER1_EL0(0),
AMU_AMEVTYPER1_EL0(1),
AMU_AMEVTYPER1_EL0(2),
AMU_AMEVTYPER1_EL0(3),
AMU_AMEVTYPER1_EL0(4),
AMU_AMEVTYPER1_EL0(5),
AMU_AMEVTYPER1_EL0(6),
AMU_AMEVTYPER1_EL0(7),
AMU_AMEVTYPER1_EL0(8),
AMU_AMEVTYPER1_EL0(9),
AMU_AMEVTYPER1_EL0(10),
AMU_AMEVTYPER1_EL0(11),
AMU_AMEVTYPER1_EL0(12),
AMU_AMEVTYPER1_EL0(13),
AMU_AMEVTYPER1_EL0(14),
AMU_AMEVTYPER1_EL0(15),
{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
/* PMEVCNTRn_EL0 */
PMU_PMEVCNTR_EL0(0),
PMU_PMEVCNTR_EL0(1),
PMU_PMEVCNTR_EL0(2),
PMU_PMEVCNTR_EL0(3),
PMU_PMEVCNTR_EL0(4),
PMU_PMEVCNTR_EL0(5),
PMU_PMEVCNTR_EL0(6),
PMU_PMEVCNTR_EL0(7),
PMU_PMEVCNTR_EL0(8),
PMU_PMEVCNTR_EL0(9),
PMU_PMEVCNTR_EL0(10),
PMU_PMEVCNTR_EL0(11),
PMU_PMEVCNTR_EL0(12),
PMU_PMEVCNTR_EL0(13),
PMU_PMEVCNTR_EL0(14),
PMU_PMEVCNTR_EL0(15),
PMU_PMEVCNTR_EL0(16),
PMU_PMEVCNTR_EL0(17),
PMU_PMEVCNTR_EL0(18),
PMU_PMEVCNTR_EL0(19),
PMU_PMEVCNTR_EL0(20),
PMU_PMEVCNTR_EL0(21),
PMU_PMEVCNTR_EL0(22),
PMU_PMEVCNTR_EL0(23),
PMU_PMEVCNTR_EL0(24),
PMU_PMEVCNTR_EL0(25),
PMU_PMEVCNTR_EL0(26),
PMU_PMEVCNTR_EL0(27),
PMU_PMEVCNTR_EL0(28),
PMU_PMEVCNTR_EL0(29),
PMU_PMEVCNTR_EL0(30),
/* PMEVTYPERn_EL0 */
PMU_PMEVTYPER_EL0(0),
PMU_PMEVTYPER_EL0(1),
PMU_PMEVTYPER_EL0(2),
PMU_PMEVTYPER_EL0(3),
PMU_PMEVTYPER_EL0(4),
PMU_PMEVTYPER_EL0(5),
PMU_PMEVTYPER_EL0(6),
PMU_PMEVTYPER_EL0(7),
PMU_PMEVTYPER_EL0(8),
PMU_PMEVTYPER_EL0(9),
PMU_PMEVTYPER_EL0(10),
PMU_PMEVTYPER_EL0(11),
PMU_PMEVTYPER_EL0(12),
PMU_PMEVTYPER_EL0(13),
PMU_PMEVTYPER_EL0(14),
PMU_PMEVTYPER_EL0(15),
PMU_PMEVTYPER_EL0(16),
PMU_PMEVTYPER_EL0(17),
PMU_PMEVTYPER_EL0(18),
PMU_PMEVTYPER_EL0(19),
PMU_PMEVTYPER_EL0(20),
PMU_PMEVTYPER_EL0(21),
PMU_PMEVTYPER_EL0(22),
PMU_PMEVTYPER_EL0(23),
PMU_PMEVTYPER_EL0(24),
PMU_PMEVTYPER_EL0(25),
PMU_PMEVTYPER_EL0(26),
PMU_PMEVTYPER_EL0(27),
PMU_PMEVTYPER_EL0(28),
PMU_PMEVTYPER_EL0(29),
PMU_PMEVTYPER_EL0(30),
/*
* PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
* in 32bit mode. Here we choose to reset it as zero for consistency.
*/
{ PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
.reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
};
static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
return ignore_write(vcpu, p);
} else {
u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
(((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
(((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
| (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
return true;
}
}
/*
* AArch32 debug register mappings
*
* AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
* AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
*
* None of the other registers share their location, so treat them as
* if they were 64bit.
*/
#define DBG_BCR_BVR_WCR_WVR(n) \
/* DBGBVRn */ \
{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
/* DBGBCRn */ \
{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
/* DBGWVRn */ \
{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
/* DBGWCRn */ \
{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
#define DBGBXVR(n) \
{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
/*
* Trapped cp14 registers. We generally ignore most of the external
* debug, on the principle that they don't really make sense to a
* guest. Revisit this one day, would this principle change.
*/
static const struct sys_reg_desc cp14_regs[] = {
/* DBGDIDR */
{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
/* DBGDTRRXext */
{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
DBG_BCR_BVR_WCR_WVR(0),
/* DBGDSCRint */
{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
DBG_BCR_BVR_WCR_WVR(1),
/* DBGDCCINT */
{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
/* DBGDSCRext */
{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
DBG_BCR_BVR_WCR_WVR(2),
/* DBGDTR[RT]Xint */
{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
/* DBGDTR[RT]Xext */
{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
DBG_BCR_BVR_WCR_WVR(3),
DBG_BCR_BVR_WCR_WVR(4),
DBG_BCR_BVR_WCR_WVR(5),
/* DBGWFAR */
{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
/* DBGOSECCR */
{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
DBG_BCR_BVR_WCR_WVR(6),
/* DBGVCR */
{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
DBG_BCR_BVR_WCR_WVR(7),
DBG_BCR_BVR_WCR_WVR(8),
DBG_BCR_BVR_WCR_WVR(9),
DBG_BCR_BVR_WCR_WVR(10),
DBG_BCR_BVR_WCR_WVR(11),
DBG_BCR_BVR_WCR_WVR(12),
DBG_BCR_BVR_WCR_WVR(13),
DBG_BCR_BVR_WCR_WVR(14),
DBG_BCR_BVR_WCR_WVR(15),
/* DBGDRAR (32bit) */
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
DBGBXVR(0),
/* DBGOSLAR */
{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
DBGBXVR(1),
/* DBGOSLSR */
{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
DBGBXVR(2),
DBGBXVR(3),
/* DBGOSDLR */
{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
DBGBXVR(4),
/* DBGPRCR */
{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
DBGBXVR(5),
DBGBXVR(6),
DBGBXVR(7),
DBGBXVR(8),
DBGBXVR(9),
DBGBXVR(10),
DBGBXVR(11),
DBGBXVR(12),
DBGBXVR(13),
DBGBXVR(14),
DBGBXVR(15),
/* DBGDSAR (32bit) */
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
/* DBGDEVID2 */
{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
/* DBGDEVID1 */
{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
/* DBGDEVID */
{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
/* DBGCLAIMSET */
{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
/* DBGCLAIMCLR */
{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
/* DBGAUTHSTATUS */
{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
};
/* Trapped cp14 64bit registers */
static const struct sys_reg_desc cp14_64_regs[] = {
/* DBGDRAR (64bit) */
{ Op1( 0), CRm( 1), .access = trap_raz_wi },
/* DBGDSAR (64bit) */
{ Op1( 0), CRm( 2), .access = trap_raz_wi },
};
/* Macro to expand the PMEVCNTRn register */
#define PMU_PMEVCNTR(n) \
/* PMEVCNTRn */ \
{ Op1(0), CRn(0b1110), \
CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
access_pmu_evcntr }
/* Macro to expand the PMEVTYPERn register */
#define PMU_PMEVTYPER(n) \
/* PMEVTYPERn */ \
{ Op1(0), CRn(0b1110), \
CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
access_pmu_evtyper }
/*
* Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
* depending on the way they are accessed (as a 32bit or a 64bit
* register).
*/
static const struct sys_reg_desc cp15_regs[] = {
{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
/* ACTLR */
{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
/* ACTLR2 */
{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
/* TTBCR */
{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
/* TTBCR2 */
{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
/* DFSR */
{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
/* ADFSR */
{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
/* AIFSR */
{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
/* DFAR */
{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
/* IFAR */
{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
/*
* DC{C,I,CI}SW operations:
*/
{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
/* PMU */
{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
{ AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
{ AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
{ AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 4), access_pmceid },
{ AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 5), access_pmceid },
/* PMMIR */
{ Op1( 0), CRn( 9), CRm(14), Op2( 6), trap_raz_wi },
/* PRRR/MAIR0 */
{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
/* NMRR/MAIR1 */
{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
/* AMAIR0 */
{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
/* AMAIR1 */
{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
/* ICC_SRE */
{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
/* Arch Tmers */
{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
/* PMEVCNTRn */
PMU_PMEVCNTR(0),
PMU_PMEVCNTR(1),
PMU_PMEVCNTR(2),
PMU_PMEVCNTR(3),
PMU_PMEVCNTR(4),
PMU_PMEVCNTR(5),
PMU_PMEVCNTR(6),
PMU_PMEVCNTR(7),
PMU_PMEVCNTR(8),
PMU_PMEVCNTR(9),
PMU_PMEVCNTR(10),
PMU_PMEVCNTR(11),
PMU_PMEVCNTR(12),
PMU_PMEVCNTR(13),
PMU_PMEVCNTR(14),
PMU_PMEVCNTR(15),
PMU_PMEVCNTR(16),
PMU_PMEVCNTR(17),
PMU_PMEVCNTR(18),
PMU_PMEVCNTR(19),
PMU_PMEVCNTR(20),
PMU_PMEVCNTR(21),
PMU_PMEVCNTR(22),
PMU_PMEVCNTR(23),
PMU_PMEVCNTR(24),
PMU_PMEVCNTR(25),
PMU_PMEVCNTR(26),
PMU_PMEVCNTR(27),
PMU_PMEVCNTR(28),
PMU_PMEVCNTR(29),
PMU_PMEVCNTR(30),
/* PMEVTYPERn */
PMU_PMEVTYPER(0),
PMU_PMEVTYPER(1),
PMU_PMEVTYPER(2),
PMU_PMEVTYPER(3),
PMU_PMEVTYPER(4),
PMU_PMEVTYPER(5),
PMU_PMEVTYPER(6),
PMU_PMEVTYPER(7),
PMU_PMEVTYPER(8),
PMU_PMEVTYPER(9),
PMU_PMEVTYPER(10),
PMU_PMEVTYPER(11),
PMU_PMEVTYPER(12),
PMU_PMEVTYPER(13),
PMU_PMEVTYPER(14),
PMU_PMEVTYPER(15),
PMU_PMEVTYPER(16),
PMU_PMEVTYPER(17),
PMU_PMEVTYPER(18),
PMU_PMEVTYPER(19),
PMU_PMEVTYPER(20),
PMU_PMEVTYPER(21),
PMU_PMEVTYPER(22),
PMU_PMEVTYPER(23),
PMU_PMEVTYPER(24),
PMU_PMEVTYPER(25),
PMU_PMEVTYPER(26),
PMU_PMEVTYPER(27),
PMU_PMEVTYPER(28),
PMU_PMEVTYPER(29),
PMU_PMEVTYPER(30),
/* PMCCFILTR */
{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
};
static const struct sys_reg_desc cp15_64_regs[] = {
{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
{ SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
};
static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
bool is_32)
{
unsigned int i;
for (i = 0; i < n; i++) {
if (!is_32 && table[i].reg && !table[i].reset) {
kvm_err("sys_reg table %p entry %d has lacks reset\n",
table, i);
return 1;
}
if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
return 1;
}
}
return 0;
}
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
{
kvm_inject_undefined(vcpu);
return 1;
}
static void perform_access(struct kvm_vcpu *vcpu,
struct sys_reg_params *params,
const struct sys_reg_desc *r)
{
trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
/* Check for regs disabled by runtime config */
if (sysreg_hidden(vcpu, r)) {
kvm_inject_undefined(vcpu);
return;
}
/*
* Not having an accessor means that we have configured a trap
* that we don't know how to handle. This certainly qualifies
* as a gross bug that should be fixed right away.
*/
BUG_ON(!r->access);
/* Skip instruction if instructed so */
if (likely(r->access(vcpu, params, r)))
kvm_incr_pc(vcpu);
}
/*
* emulate_cp -- tries to match a sys_reg access in a handling table, and
* call the corresponding trap handler.
*
* @params: pointer to the descriptor of the access
* @table: array of trap descriptors
* @num: size of the trap descriptor array
*
* Return 0 if the access has been handled, and -1 if not.
*/
static int emulate_cp(struct kvm_vcpu *vcpu,
struct sys_reg_params *params,
const struct sys_reg_desc *table,
size_t num)
{
const struct sys_reg_desc *r;
if (!table)
return -1; /* Not handled */
r = find_reg(params, table, num);
if (r) {
perform_access(vcpu, params, r);
return 0;
}
/* Not handled */
return -1;
}
static void unhandled_cp_access(struct kvm_vcpu *vcpu,
struct sys_reg_params *params)
{
u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
int cp = -1;
switch (esr_ec) {
case ESR_ELx_EC_CP15_32:
case ESR_ELx_EC_CP15_64:
cp = 15;
break;
case ESR_ELx_EC_CP14_MR:
case ESR_ELx_EC_CP14_64:
cp = 14;
break;
default:
WARN_ON(1);
}
print_sys_reg_msg(params,
"Unsupported guest CP%d access at: %08lx [%08lx]\n",
cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
kvm_inject_undefined(vcpu);
}
/**
* kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
* @vcpu: The VCPU pointer
* @run: The kvm_run struct
*/
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *global,
size_t nr_global)
{
struct sys_reg_params params;
u32 esr = kvm_vcpu_get_esr(vcpu);
int Rt = kvm_vcpu_sys_get_rt(vcpu);
int Rt2 = (esr >> 10) & 0x1f;
params.CRm = (esr >> 1) & 0xf;
params.is_write = ((esr & 1) == 0);
params.Op0 = 0;
params.Op1 = (esr >> 16) & 0xf;
params.Op2 = 0;
params.CRn = 0;
/*
* Make a 64-bit value out of Rt and Rt2. As we use the same trap
* backends between AArch32 and AArch64, we get away with it.
*/
if (params.is_write) {
params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
}
/*
* If the table contains a handler, handle the
* potential register operation in the case of a read and return
* with success.
*/
if (!emulate_cp(vcpu, &params, global, nr_global)) {
/* Split up the value between registers for the read side */
if (!params.is_write) {
vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
}
return 1;
}
unhandled_cp_access(vcpu, &params);
return 1;
}
/**
* kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
* @vcpu: The VCPU pointer
* @run: The kvm_run struct
*/
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *global,
size_t nr_global)
{
struct sys_reg_params params;
u32 esr = kvm_vcpu_get_esr(vcpu);
int Rt = kvm_vcpu_sys_get_rt(vcpu);
params.CRm = (esr >> 1) & 0xf;
params.regval = vcpu_get_reg(vcpu, Rt);
params.is_write = ((esr & 1) == 0);
params.CRn = (esr >> 10) & 0xf;
params.Op0 = 0;
params.Op1 = (esr >> 14) & 0x7;
params.Op2 = (esr >> 17) & 0x7;
if (!emulate_cp(vcpu, &params, global, nr_global)) {
if (!params.is_write)
vcpu_set_reg(vcpu, Rt, params.regval);
return 1;
}
unhandled_cp_access(vcpu, &params);
return 1;
}
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
{
return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
}
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
{
return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
}
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
{
return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
}
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
{
return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
}
static bool is_imp_def_sys_reg(struct sys_reg_params *params)
{
// See ARM DDI 0487E.a, section D12.3.2
return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
}
static int emulate_sys_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *params)
{
const struct sys_reg_desc *r;
r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
if (likely(r)) {
perform_access(vcpu, params, r);
} else if (is_imp_def_sys_reg(params)) {
kvm_inject_undefined(vcpu);
} else {
print_sys_reg_msg(params,
"Unsupported guest sys_reg access at: %lx [%08lx]\n",
*vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
kvm_inject_undefined(vcpu);
}
return 1;
}
/**
* kvm_reset_sys_regs - sets system registers to reset value
* @vcpu: The VCPU pointer
*
* This function finds the right table above and sets the registers on the
* virtual CPU struct to their architecturally defined reset values.
*/
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
{
unsigned long i;
for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
if (sys_reg_descs[i].reset)
sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
}
/**
* kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
* @vcpu: The VCPU pointer
*/
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
{
struct sys_reg_params params;
unsigned long esr = kvm_vcpu_get_esr(vcpu);
int Rt = kvm_vcpu_sys_get_rt(vcpu);
int ret;
trace_kvm_handle_sys_reg(esr);
params = esr_sys64_to_params(esr);
params.regval = vcpu_get_reg(vcpu, Rt);
ret = emulate_sys_reg(vcpu, &params);
if (!params.is_write)
vcpu_set_reg(vcpu, Rt, params.regval);
return ret;
}
/******************************************************************************
* Userspace API
*****************************************************************************/
static bool index_to_params(u64 id, struct sys_reg_params *params)
{
switch (id & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U64:
/* Any unused index bits means it's not valid. */
if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
| KVM_REG_ARM_COPROC_MASK
| KVM_REG_ARM64_SYSREG_OP0_MASK
| KVM_REG_ARM64_SYSREG_OP1_MASK
| KVM_REG_ARM64_SYSREG_CRN_MASK
| KVM_REG_ARM64_SYSREG_CRM_MASK
| KVM_REG_ARM64_SYSREG_OP2_MASK))
return false;
params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
>> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
>> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
>> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
>> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
>> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
return true;
default:
return false;
}
}
const struct sys_reg_desc *find_reg_by_id(u64 id,
struct sys_reg_params *params,
const struct sys_reg_desc table[],
unsigned int num)
{
if (!index_to_params(id, params))
return NULL;
return find_reg(params, table, num);
}
/* Decode an index value, and find the sys_reg_desc entry. */
static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
u64 id)
{
const struct sys_reg_desc *r;
struct sys_reg_params params;
/* We only do sys_reg for now. */
if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
return NULL;
if (!index_to_params(id, &params))
return NULL;
r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
/* Not saved in the sys_reg array and not otherwise accessible? */
if (r && !(r->reg || r->get_user))
r = NULL;
return r;
}
/*
* These are the invariant sys_reg registers: we let the guest see the
* host versions of these, so they're part of the guest state.
*
* A future CPU may provide a mechanism to present different values to
* the guest, or a future kvm may trap them.
*/
#define FUNCTION_INVARIANT(reg) \
static void get_##reg(struct kvm_vcpu *v, \
const struct sys_reg_desc *r) \
{ \
((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
}
FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(revidr_el1)
FUNCTION_INVARIANT(clidr_el1)
FUNCTION_INVARIANT(aidr_el1)
static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
{
((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
}
/* ->val is filled in by kvm_sys_reg_table_init() */
static struct sys_reg_desc invariant_sys_regs[] = {
{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
};
static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
{
if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
return -EFAULT;
return 0;
}
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
{
if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
return -EFAULT;
return 0;
}
static int get_invariant_sys_reg(u64 id, void __user *uaddr)
{
struct sys_reg_params params;
const struct sys_reg_desc *r;
r = find_reg_by_id(id, &params, invariant_sys_regs,
ARRAY_SIZE(invariant_sys_regs));
if (!r)
return -ENOENT;
return reg_to_user(uaddr, &r->val, id);
}
static int set_invariant_sys_reg(u64 id, void __user *uaddr)
{
struct sys_reg_params params;
const struct sys_reg_desc *r;
int err;
u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
r = find_reg_by_id(id, &params, invariant_sys_regs,
ARRAY_SIZE(invariant_sys_regs));
if (!r)
return -ENOENT;
err = reg_from_user(&val, uaddr, id);
if (err)
return err;
/* This is what we mean by invariant: you can't change it. */
if (r->val != val)
return -EINVAL;
return 0;
}
static bool is_valid_cache(u32 val)
{
u32 level, ctype;
if (val >= CSSELR_MAX)
return false;
/* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
level = (val >> 1);
ctype = (cache_levels >> (level * 3)) & 7;
switch (ctype) {
case 0: /* No cache */
return false;
case 1: /* Instruction cache only */
return (val & 1);
case 2: /* Data cache only */
case 4: /* Unified cache */
return !(val & 1);
case 3: /* Separate instruction and data caches */
return true;
default: /* Reserved: we can't know instruction or data. */
return false;
}
}
static int demux_c15_get(u64 id, void __user *uaddr)
{
u32 val;
u32 __user *uval = uaddr;
/* Fail if we have unknown bits set. */
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
return -ENOENT;
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
if (KVM_REG_SIZE(id) != 4)
return -ENOENT;
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
if (!is_valid_cache(val))
return -ENOENT;
return put_user(get_ccsidr(val), uval);
default:
return -ENOENT;
}
}
static int demux_c15_set(u64 id, void __user *uaddr)
{
u32 val, newval;
u32 __user *uval = uaddr;
/* Fail if we have unknown bits set. */
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
return -ENOENT;
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
if (KVM_REG_SIZE(id) != 4)
return -ENOENT;
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
if (!is_valid_cache(val))
return -ENOENT;
if (get_user(newval, uval))
return -EFAULT;
/* This is also invariant: you can't change it. */
if (newval != get_ccsidr(val))
return -EINVAL;
return 0;
default:
return -ENOENT;
}
}
int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
const struct sys_reg_desc *r;
void __user *uaddr = (void __user *)(unsigned long)reg->addr;
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
return demux_c15_get(reg->id, uaddr);
if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
return -ENOENT;
r = index_to_sys_reg_desc(vcpu, reg->id);
if (!r)
return get_invariant_sys_reg(reg->id, uaddr);
/* Check for regs disabled by runtime config */
if (sysreg_hidden(vcpu, r))
return -ENOENT;
if (r->get_user)
return (r->get_user)(vcpu, r, reg, uaddr);
return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
}
int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
const struct sys_reg_desc *r;
void __user *uaddr = (void __user *)(unsigned long)reg->addr;
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
return demux_c15_set(reg->id, uaddr);
if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
return -ENOENT;
r = index_to_sys_reg_desc(vcpu, reg->id);
if (!r)
return set_invariant_sys_reg(reg->id, uaddr);
/* Check for regs disabled by runtime config */
if (sysreg_hidden(vcpu, r))
return -ENOENT;
if (r->set_user)
return (r->set_user)(vcpu, r, reg, uaddr);
return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
}
static unsigned int num_demux_regs(void)
{
unsigned int i, count = 0;
for (i = 0; i < CSSELR_MAX; i++)
if (is_valid_cache(i))
count++;
return count;
}
static int write_demux_regids(u64 __user *uindices)
{
u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
unsigned int i;
val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
for (i = 0; i < CSSELR_MAX; i++) {
if (!is_valid_cache(i))
continue;
if (put_user(val | i, uindices))
return -EFAULT;
uindices++;
}
return 0;
}
static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
{
return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
KVM_REG_ARM64_SYSREG |
(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
}
static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
{
if (!*uind)
return true;
if (put_user(sys_reg_to_index(reg), *uind))
return false;
(*uind)++;
return true;
}
static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd,
u64 __user **uind,
unsigned int *total)
{
/*
* Ignore registers we trap but don't save,
* and for which no custom user accessor is provided.
*/
if (!(rd->reg || rd->get_user))
return 0;
if (sysreg_hidden(vcpu, rd))
return 0;
if (!copy_reg_to_user(rd, uind))
return -EFAULT;
(*total)++;
return 0;
}
/* Assumed ordered tables, see kvm_sys_reg_table_init. */
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
{
const struct sys_reg_desc *i2, *end2;
unsigned int total = 0;
int err;
i2 = sys_reg_descs;
end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
while (i2 != end2) {
err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
if (err)
return err;
}
return total;
}
unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
{
return ARRAY_SIZE(invariant_sys_regs)
+ num_demux_regs()
+ walk_sys_regs(vcpu, (u64 __user *)NULL);
}
int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
unsigned int i;
int err;
/* Then give them all the invariant registers' indices. */
for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
return -EFAULT;
uindices++;
}
err = walk_sys_regs(vcpu, uindices);
if (err < 0)
return err;
uindices += err;
return write_demux_regids(uindices);
}
void kvm_sys_reg_table_init(void)
{
unsigned int i;
struct sys_reg_desc clidr;
/* Make sure tables are unique and in order. */
BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
/* We abuse the reset function to overwrite the table itself. */
for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
/*
* CLIDR format is awkward, so clean it up. See ARM B4.1.20:
*
* If software reads the Cache Type fields from Ctype1
* upwards, once it has seen a value of 0b000, no caches
* exist at further-out levels of the hierarchy. So, for
* example, if Ctype3 is the first Cache Type field with a
* value of 0b000, the values of Ctype4 to Ctype7 must be
* ignored.
*/
get_clidr_el1(NULL, &clidr); /* Ugly... */
cache_levels = clidr.val;
for (i = 0; i < 7; i++)
if (((cache_levels >> (i*3)) & 7) == 0)
break;
/* Clear all higher bits. */
cache_levels &= (1 << (i*3))-1;
}