mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-16 19:04:41 +08:00
43113ff734
Add a new ice_gnss.c file for holding the basic GNSS module functions. If the device supports GNSS module, call the new ice_gnss_init and ice_gnss_release functions where appropriate. Implement basic functionality for reading the data from GNSS module using TTY device. Add I2C read AQ command. It is now required for controlling the external physical connectors via external I2C port expander on E810-T adapters. Future changes will introduce write functionality. Signed-off-by: Karol Kolacinski <karol.kolacinski@intel.com> Signed-off-by: Sudhansu Sekhar Mishra <sudhansu.mishra@intel.com> Tested-by: Sunitha Mekala <sunithax.d.mekala@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
5194 lines
146 KiB
C
5194 lines
146 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2018, Intel Corporation. */
|
|
|
|
#include "ice_common.h"
|
|
#include "ice_sched.h"
|
|
#include "ice_adminq_cmd.h"
|
|
#include "ice_flow.h"
|
|
|
|
#define ICE_PF_RESET_WAIT_COUNT 300
|
|
|
|
/**
|
|
* ice_set_mac_type - Sets MAC type
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This function sets the MAC type of the adapter based on the
|
|
* vendor ID and device ID stored in the HW structure.
|
|
*/
|
|
static int ice_set_mac_type(struct ice_hw *hw)
|
|
{
|
|
if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
|
|
return -ENODEV;
|
|
|
|
switch (hw->device_id) {
|
|
case ICE_DEV_ID_E810C_BACKPLANE:
|
|
case ICE_DEV_ID_E810C_QSFP:
|
|
case ICE_DEV_ID_E810C_SFP:
|
|
case ICE_DEV_ID_E810_XXV_BACKPLANE:
|
|
case ICE_DEV_ID_E810_XXV_QSFP:
|
|
case ICE_DEV_ID_E810_XXV_SFP:
|
|
hw->mac_type = ICE_MAC_E810;
|
|
break;
|
|
case ICE_DEV_ID_E823C_10G_BASE_T:
|
|
case ICE_DEV_ID_E823C_BACKPLANE:
|
|
case ICE_DEV_ID_E823C_QSFP:
|
|
case ICE_DEV_ID_E823C_SFP:
|
|
case ICE_DEV_ID_E823C_SGMII:
|
|
case ICE_DEV_ID_E822C_10G_BASE_T:
|
|
case ICE_DEV_ID_E822C_BACKPLANE:
|
|
case ICE_DEV_ID_E822C_QSFP:
|
|
case ICE_DEV_ID_E822C_SFP:
|
|
case ICE_DEV_ID_E822C_SGMII:
|
|
case ICE_DEV_ID_E822L_10G_BASE_T:
|
|
case ICE_DEV_ID_E822L_BACKPLANE:
|
|
case ICE_DEV_ID_E822L_SFP:
|
|
case ICE_DEV_ID_E822L_SGMII:
|
|
case ICE_DEV_ID_E823L_10G_BASE_T:
|
|
case ICE_DEV_ID_E823L_1GBE:
|
|
case ICE_DEV_ID_E823L_BACKPLANE:
|
|
case ICE_DEV_ID_E823L_QSFP:
|
|
case ICE_DEV_ID_E823L_SFP:
|
|
hw->mac_type = ICE_MAC_GENERIC;
|
|
break;
|
|
default:
|
|
hw->mac_type = ICE_MAC_UNKNOWN;
|
|
break;
|
|
}
|
|
|
|
ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_is_e810
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* returns true if the device is E810 based, false if not.
|
|
*/
|
|
bool ice_is_e810(struct ice_hw *hw)
|
|
{
|
|
return hw->mac_type == ICE_MAC_E810;
|
|
}
|
|
|
|
/**
|
|
* ice_is_e810t
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* returns true if the device is E810T based, false if not.
|
|
*/
|
|
bool ice_is_e810t(struct ice_hw *hw)
|
|
{
|
|
switch (hw->device_id) {
|
|
case ICE_DEV_ID_E810C_SFP:
|
|
if (hw->subsystem_device_id == ICE_SUBDEV_ID_E810T ||
|
|
hw->subsystem_device_id == ICE_SUBDEV_ID_E810T2)
|
|
return true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_clear_pf_cfg - Clear PF configuration
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
|
|
* configuration, flow director filters, etc.).
|
|
*/
|
|
int ice_clear_pf_cfg(struct ice_hw *hw)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_manage_mac_read - manage MAC address read command
|
|
* @hw: pointer to the HW struct
|
|
* @buf: a virtual buffer to hold the manage MAC read response
|
|
* @buf_size: Size of the virtual buffer
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* This function is used to return per PF station MAC address (0x0107).
|
|
* NOTE: Upon successful completion of this command, MAC address information
|
|
* is returned in user specified buffer. Please interpret user specified
|
|
* buffer as "manage_mac_read" response.
|
|
* Response such as various MAC addresses are stored in HW struct (port.mac)
|
|
* ice_discover_dev_caps is expected to be called before this function is
|
|
* called.
|
|
*/
|
|
static int
|
|
ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_manage_mac_read_resp *resp;
|
|
struct ice_aqc_manage_mac_read *cmd;
|
|
struct ice_aq_desc desc;
|
|
int status;
|
|
u16 flags;
|
|
u8 i;
|
|
|
|
cmd = &desc.params.mac_read;
|
|
|
|
if (buf_size < sizeof(*resp))
|
|
return -EINVAL;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
|
if (status)
|
|
return status;
|
|
|
|
resp = buf;
|
|
flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
|
|
|
|
if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
|
|
ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* A single port can report up to two (LAN and WoL) addresses */
|
|
for (i = 0; i < cmd->num_addr; i++)
|
|
if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
|
|
ether_addr_copy(hw->port_info->mac.lan_addr,
|
|
resp[i].mac_addr);
|
|
ether_addr_copy(hw->port_info->mac.perm_addr,
|
|
resp[i].mac_addr);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_phy_caps - returns PHY capabilities
|
|
* @pi: port information structure
|
|
* @qual_mods: report qualified modules
|
|
* @report_mode: report mode capabilities
|
|
* @pcaps: structure for PHY capabilities to be filled
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Returns the various PHY capabilities supported on the Port (0x0600)
|
|
*/
|
|
int
|
|
ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
|
|
struct ice_aqc_get_phy_caps_data *pcaps,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_get_phy_caps *cmd;
|
|
u16 pcaps_size = sizeof(*pcaps);
|
|
struct ice_aq_desc desc;
|
|
struct ice_hw *hw;
|
|
int status;
|
|
|
|
cmd = &desc.params.get_phy;
|
|
|
|
if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
|
|
return -EINVAL;
|
|
hw = pi->hw;
|
|
|
|
if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
|
|
!ice_fw_supports_report_dflt_cfg(hw))
|
|
return -EINVAL;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
|
|
|
|
if (qual_mods)
|
|
cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
|
|
|
|
cmd->param0 |= cpu_to_le16(report_mode);
|
|
status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
|
|
|
|
ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
|
|
report_mode);
|
|
ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
|
|
(unsigned long long)le64_to_cpu(pcaps->phy_type_low));
|
|
ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
|
|
(unsigned long long)le64_to_cpu(pcaps->phy_type_high));
|
|
ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", pcaps->caps);
|
|
ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
|
|
pcaps->low_power_ctrl_an);
|
|
ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", pcaps->eee_cap);
|
|
ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n",
|
|
pcaps->eeer_value);
|
|
ice_debug(hw, ICE_DBG_LINK, " link_fec_options = 0x%x\n",
|
|
pcaps->link_fec_options);
|
|
ice_debug(hw, ICE_DBG_LINK, " module_compliance_enforcement = 0x%x\n",
|
|
pcaps->module_compliance_enforcement);
|
|
ice_debug(hw, ICE_DBG_LINK, " extended_compliance_code = 0x%x\n",
|
|
pcaps->extended_compliance_code);
|
|
ice_debug(hw, ICE_DBG_LINK, " module_type[0] = 0x%x\n",
|
|
pcaps->module_type[0]);
|
|
ice_debug(hw, ICE_DBG_LINK, " module_type[1] = 0x%x\n",
|
|
pcaps->module_type[1]);
|
|
ice_debug(hw, ICE_DBG_LINK, " module_type[2] = 0x%x\n",
|
|
pcaps->module_type[2]);
|
|
|
|
if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
|
|
pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
|
|
pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
|
|
memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
|
|
sizeof(pi->phy.link_info.module_type));
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_link_topo_handle - get link topology node return status
|
|
* @pi: port information structure
|
|
* @node_type: requested node type
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Get link topology node return status for specified node type (0x06E0)
|
|
*
|
|
* Node type cage can be used to determine if cage is present. If AQC
|
|
* returns error (ENOENT), then no cage present. If no cage present, then
|
|
* connection type is backplane or BASE-T.
|
|
*/
|
|
static int
|
|
ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_get_link_topo *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.get_link_topo;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
|
|
|
|
cmd->addr.topo_params.node_type_ctx =
|
|
(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
|
|
ICE_AQC_LINK_TOPO_NODE_CTX_S);
|
|
|
|
/* set node type */
|
|
cmd->addr.topo_params.node_type_ctx |=
|
|
(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
|
|
|
|
return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_is_media_cage_present
|
|
* @pi: port information structure
|
|
*
|
|
* Returns true if media cage is present, else false. If no cage, then
|
|
* media type is backplane or BASE-T.
|
|
*/
|
|
static bool ice_is_media_cage_present(struct ice_port_info *pi)
|
|
{
|
|
/* Node type cage can be used to determine if cage is present. If AQC
|
|
* returns error (ENOENT), then no cage present. If no cage present then
|
|
* connection type is backplane or BASE-T.
|
|
*/
|
|
return !ice_aq_get_link_topo_handle(pi,
|
|
ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
|
|
NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_get_media_type - Gets media type
|
|
* @pi: port information structure
|
|
*/
|
|
static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
|
|
{
|
|
struct ice_link_status *hw_link_info;
|
|
|
|
if (!pi)
|
|
return ICE_MEDIA_UNKNOWN;
|
|
|
|
hw_link_info = &pi->phy.link_info;
|
|
if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
|
|
/* If more than one media type is selected, report unknown */
|
|
return ICE_MEDIA_UNKNOWN;
|
|
|
|
if (hw_link_info->phy_type_low) {
|
|
/* 1G SGMII is a special case where some DA cable PHYs
|
|
* may show this as an option when it really shouldn't
|
|
* be since SGMII is meant to be between a MAC and a PHY
|
|
* in a backplane. Try to detect this case and handle it
|
|
*/
|
|
if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
|
|
(hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
|
|
ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
|
|
hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
|
|
ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
|
|
return ICE_MEDIA_DA;
|
|
|
|
switch (hw_link_info->phy_type_low) {
|
|
case ICE_PHY_TYPE_LOW_1000BASE_SX:
|
|
case ICE_PHY_TYPE_LOW_1000BASE_LX:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_SR4:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_LR4:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_SR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_LR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_FR:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_SR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_LR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_SR2:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_DR:
|
|
case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
|
|
return ICE_MEDIA_FIBER;
|
|
case ICE_PHY_TYPE_LOW_100BASE_TX:
|
|
case ICE_PHY_TYPE_LOW_1000BASE_T:
|
|
case ICE_PHY_TYPE_LOW_2500BASE_T:
|
|
case ICE_PHY_TYPE_LOW_5GBASE_T:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_T:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_T:
|
|
return ICE_MEDIA_BASET;
|
|
case ICE_PHY_TYPE_LOW_10G_SFI_DA:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR1:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_CR4:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_CR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_CP:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CP2:
|
|
return ICE_MEDIA_DA;
|
|
case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
|
|
case ICE_PHY_TYPE_LOW_40G_XLAUI:
|
|
case ICE_PHY_TYPE_LOW_50G_LAUI2:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI2:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI1:
|
|
case ICE_PHY_TYPE_LOW_100G_AUI4:
|
|
case ICE_PHY_TYPE_LOW_100G_CAUI4:
|
|
if (ice_is_media_cage_present(pi))
|
|
return ICE_MEDIA_DA;
|
|
fallthrough;
|
|
case ICE_PHY_TYPE_LOW_1000BASE_KX:
|
|
case ICE_PHY_TYPE_LOW_2500BASE_KX:
|
|
case ICE_PHY_TYPE_LOW_2500BASE_X:
|
|
case ICE_PHY_TYPE_LOW_5GBASE_KR:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR1:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_KR4:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_KR2:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_KR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
|
|
return ICE_MEDIA_BACKPLANE;
|
|
}
|
|
} else {
|
|
switch (hw_link_info->phy_type_high) {
|
|
case ICE_PHY_TYPE_HIGH_100G_AUI2:
|
|
case ICE_PHY_TYPE_HIGH_100G_CAUI2:
|
|
if (ice_is_media_cage_present(pi))
|
|
return ICE_MEDIA_DA;
|
|
fallthrough;
|
|
case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
|
|
return ICE_MEDIA_BACKPLANE;
|
|
case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
|
|
return ICE_MEDIA_FIBER;
|
|
}
|
|
}
|
|
return ICE_MEDIA_UNKNOWN;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_link_info
|
|
* @pi: port information structure
|
|
* @ena_lse: enable/disable LinkStatusEvent reporting
|
|
* @link: pointer to link status structure - optional
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Get Link Status (0x607). Returns the link status of the adapter.
|
|
*/
|
|
int
|
|
ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
|
|
struct ice_link_status *link, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_get_link_status_data link_data = { 0 };
|
|
struct ice_aqc_get_link_status *resp;
|
|
struct ice_link_status *li_old, *li;
|
|
enum ice_media_type *hw_media_type;
|
|
struct ice_fc_info *hw_fc_info;
|
|
bool tx_pause, rx_pause;
|
|
struct ice_aq_desc desc;
|
|
struct ice_hw *hw;
|
|
u16 cmd_flags;
|
|
int status;
|
|
|
|
if (!pi)
|
|
return -EINVAL;
|
|
hw = pi->hw;
|
|
li_old = &pi->phy.link_info_old;
|
|
hw_media_type = &pi->phy.media_type;
|
|
li = &pi->phy.link_info;
|
|
hw_fc_info = &pi->fc;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
|
|
cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
|
|
resp = &desc.params.get_link_status;
|
|
resp->cmd_flags = cpu_to_le16(cmd_flags);
|
|
resp->lport_num = pi->lport;
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
|
|
|
|
if (status)
|
|
return status;
|
|
|
|
/* save off old link status information */
|
|
*li_old = *li;
|
|
|
|
/* update current link status information */
|
|
li->link_speed = le16_to_cpu(link_data.link_speed);
|
|
li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
|
|
li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
|
|
*hw_media_type = ice_get_media_type(pi);
|
|
li->link_info = link_data.link_info;
|
|
li->link_cfg_err = link_data.link_cfg_err;
|
|
li->an_info = link_data.an_info;
|
|
li->ext_info = link_data.ext_info;
|
|
li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
|
|
li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
|
|
li->topo_media_conflict = link_data.topo_media_conflict;
|
|
li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
|
|
ICE_AQ_CFG_PACING_TYPE_M);
|
|
|
|
/* update fc info */
|
|
tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
|
|
rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
|
|
if (tx_pause && rx_pause)
|
|
hw_fc_info->current_mode = ICE_FC_FULL;
|
|
else if (tx_pause)
|
|
hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
|
|
else if (rx_pause)
|
|
hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
|
|
else
|
|
hw_fc_info->current_mode = ICE_FC_NONE;
|
|
|
|
li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
|
|
|
|
ice_debug(hw, ICE_DBG_LINK, "get link info\n");
|
|
ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
|
|
ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
|
|
(unsigned long long)li->phy_type_low);
|
|
ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
|
|
(unsigned long long)li->phy_type_high);
|
|
ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
|
|
ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
|
|
ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err);
|
|
ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
|
|
ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
|
|
ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
|
|
ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
|
|
ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
|
|
li->max_frame_size);
|
|
ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
|
|
|
|
/* save link status information */
|
|
if (link)
|
|
*link = *li;
|
|
|
|
/* flag cleared so calling functions don't call AQ again */
|
|
pi->phy.get_link_info = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_fill_tx_timer_and_fc_thresh
|
|
* @hw: pointer to the HW struct
|
|
* @cmd: pointer to MAC cfg structure
|
|
*
|
|
* Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
|
|
* descriptor
|
|
*/
|
|
static void
|
|
ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
|
|
struct ice_aqc_set_mac_cfg *cmd)
|
|
{
|
|
u16 fc_thres_val, tx_timer_val;
|
|
u32 val;
|
|
|
|
/* We read back the transmit timer and FC threshold value of
|
|
* LFC. Thus, we will use index =
|
|
* PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
|
|
*
|
|
* Also, because we are operating on transmit timer and FC
|
|
* threshold of LFC, we don't turn on any bit in tx_tmr_priority
|
|
*/
|
|
#define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
|
|
|
|
/* Retrieve the transmit timer */
|
|
val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
|
|
tx_timer_val = val &
|
|
PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
|
|
cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
|
|
|
|
/* Retrieve the FC threshold */
|
|
val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
|
|
fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
|
|
|
|
cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_mac_cfg
|
|
* @hw: pointer to the HW struct
|
|
* @max_frame_size: Maximum Frame Size to be supported
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set MAC configuration (0x0603)
|
|
*/
|
|
int
|
|
ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_set_mac_cfg *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.set_mac_cfg;
|
|
|
|
if (max_frame_size == 0)
|
|
return -EINVAL;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
|
|
|
|
cmd->max_frame_size = cpu_to_le16(max_frame_size);
|
|
|
|
ice_fill_tx_timer_and_fc_thresh(hw, cmd);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_init_fltr_mgmt_struct - initializes filter management list and locks
|
|
* @hw: pointer to the HW struct
|
|
*/
|
|
static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
|
|
{
|
|
struct ice_switch_info *sw;
|
|
int status;
|
|
|
|
hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
|
|
sizeof(*hw->switch_info), GFP_KERNEL);
|
|
sw = hw->switch_info;
|
|
|
|
if (!sw)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&sw->vsi_list_map_head);
|
|
sw->prof_res_bm_init = 0;
|
|
|
|
status = ice_init_def_sw_recp(hw);
|
|
if (status) {
|
|
devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
|
|
return status;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
|
|
* @hw: pointer to the HW struct
|
|
*/
|
|
static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct ice_vsi_list_map_info *v_pos_map;
|
|
struct ice_vsi_list_map_info *v_tmp_map;
|
|
struct ice_sw_recipe *recps;
|
|
u8 i;
|
|
|
|
list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
|
|
list_entry) {
|
|
list_del(&v_pos_map->list_entry);
|
|
devm_kfree(ice_hw_to_dev(hw), v_pos_map);
|
|
}
|
|
recps = sw->recp_list;
|
|
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
|
|
struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
|
|
|
|
recps[i].root_rid = i;
|
|
list_for_each_entry_safe(rg_entry, tmprg_entry,
|
|
&recps[i].rg_list, l_entry) {
|
|
list_del(&rg_entry->l_entry);
|
|
devm_kfree(ice_hw_to_dev(hw), rg_entry);
|
|
}
|
|
|
|
if (recps[i].adv_rule) {
|
|
struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
|
|
struct ice_adv_fltr_mgmt_list_entry *lst_itr;
|
|
|
|
mutex_destroy(&recps[i].filt_rule_lock);
|
|
list_for_each_entry_safe(lst_itr, tmp_entry,
|
|
&recps[i].filt_rules,
|
|
list_entry) {
|
|
list_del(&lst_itr->list_entry);
|
|
devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
|
|
devm_kfree(ice_hw_to_dev(hw), lst_itr);
|
|
}
|
|
} else {
|
|
struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
|
|
|
|
mutex_destroy(&recps[i].filt_rule_lock);
|
|
list_for_each_entry_safe(lst_itr, tmp_entry,
|
|
&recps[i].filt_rules,
|
|
list_entry) {
|
|
list_del(&lst_itr->list_entry);
|
|
devm_kfree(ice_hw_to_dev(hw), lst_itr);
|
|
}
|
|
}
|
|
if (recps[i].root_buf)
|
|
devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
|
|
}
|
|
ice_rm_all_sw_replay_rule_info(hw);
|
|
devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
|
|
devm_kfree(ice_hw_to_dev(hw), sw);
|
|
}
|
|
|
|
/**
|
|
* ice_get_fw_log_cfg - get FW logging configuration
|
|
* @hw: pointer to the HW struct
|
|
*/
|
|
static int ice_get_fw_log_cfg(struct ice_hw *hw)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
__le16 *config;
|
|
int status;
|
|
u16 size;
|
|
|
|
size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
|
|
config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
|
|
if (!config)
|
|
return -ENOMEM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
|
|
if (!status) {
|
|
u16 i;
|
|
|
|
/* Save FW logging information into the HW structure */
|
|
for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
|
|
u16 v, m, flgs;
|
|
|
|
v = le16_to_cpu(config[i]);
|
|
m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
|
|
flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
|
|
|
|
if (m < ICE_AQC_FW_LOG_ID_MAX)
|
|
hw->fw_log.evnts[m].cur = flgs;
|
|
}
|
|
}
|
|
|
|
devm_kfree(ice_hw_to_dev(hw), config);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_fw_log - configure FW logging
|
|
* @hw: pointer to the HW struct
|
|
* @enable: enable certain FW logging events if true, disable all if false
|
|
*
|
|
* This function enables/disables the FW logging via Rx CQ events and a UART
|
|
* port based on predetermined configurations. FW logging via the Rx CQ can be
|
|
* enabled/disabled for individual PF's. However, FW logging via the UART can
|
|
* only be enabled/disabled for all PFs on the same device.
|
|
*
|
|
* To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
|
|
* hw->fw_log need to be set accordingly, e.g. based on user-provided input,
|
|
* before initializing the device.
|
|
*
|
|
* When re/configuring FW logging, callers need to update the "cfg" elements of
|
|
* the hw->fw_log.evnts array with the desired logging event configurations for
|
|
* modules of interest. When disabling FW logging completely, the callers can
|
|
* just pass false in the "enable" parameter. On completion, the function will
|
|
* update the "cur" element of the hw->fw_log.evnts array with the resulting
|
|
* logging event configurations of the modules that are being re/configured. FW
|
|
* logging modules that are not part of a reconfiguration operation retain their
|
|
* previous states.
|
|
*
|
|
* Before resetting the device, it is recommended that the driver disables FW
|
|
* logging before shutting down the control queue. When disabling FW logging
|
|
* ("enable" = false), the latest configurations of FW logging events stored in
|
|
* hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
|
|
* a device reset.
|
|
*
|
|
* When enabling FW logging to emit log messages via the Rx CQ during the
|
|
* device's initialization phase, a mechanism alternative to interrupt handlers
|
|
* needs to be used to extract FW log messages from the Rx CQ periodically and
|
|
* to prevent the Rx CQ from being full and stalling other types of control
|
|
* messages from FW to SW. Interrupts are typically disabled during the device's
|
|
* initialization phase.
|
|
*/
|
|
static int ice_cfg_fw_log(struct ice_hw *hw, bool enable)
|
|
{
|
|
struct ice_aqc_fw_logging *cmd;
|
|
u16 i, chgs = 0, len = 0;
|
|
struct ice_aq_desc desc;
|
|
__le16 *data = NULL;
|
|
u8 actv_evnts = 0;
|
|
void *buf = NULL;
|
|
int status = 0;
|
|
|
|
if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
|
|
return 0;
|
|
|
|
/* Disable FW logging only when the control queue is still responsive */
|
|
if (!enable &&
|
|
(!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
|
|
return 0;
|
|
|
|
/* Get current FW log settings */
|
|
status = ice_get_fw_log_cfg(hw);
|
|
if (status)
|
|
return status;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
|
|
cmd = &desc.params.fw_logging;
|
|
|
|
/* Indicate which controls are valid */
|
|
if (hw->fw_log.cq_en)
|
|
cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
|
|
|
|
if (hw->fw_log.uart_en)
|
|
cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
|
|
|
|
if (enable) {
|
|
/* Fill in an array of entries with FW logging modules and
|
|
* logging events being reconfigured.
|
|
*/
|
|
for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
|
|
u16 val;
|
|
|
|
/* Keep track of enabled event types */
|
|
actv_evnts |= hw->fw_log.evnts[i].cfg;
|
|
|
|
if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
|
|
continue;
|
|
|
|
if (!data) {
|
|
data = devm_kcalloc(ice_hw_to_dev(hw),
|
|
ICE_AQC_FW_LOG_ID_MAX,
|
|
sizeof(*data),
|
|
GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
val = i << ICE_AQC_FW_LOG_ID_S;
|
|
val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
|
|
data[chgs++] = cpu_to_le16(val);
|
|
}
|
|
|
|
/* Only enable FW logging if at least one module is specified.
|
|
* If FW logging is currently enabled but all modules are not
|
|
* enabled to emit log messages, disable FW logging altogether.
|
|
*/
|
|
if (actv_evnts) {
|
|
/* Leave if there is effectively no change */
|
|
if (!chgs)
|
|
goto out;
|
|
|
|
if (hw->fw_log.cq_en)
|
|
cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
|
|
|
|
if (hw->fw_log.uart_en)
|
|
cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
|
|
|
|
buf = data;
|
|
len = sizeof(*data) * chgs;
|
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
|
}
|
|
}
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
|
|
if (!status) {
|
|
/* Update the current configuration to reflect events enabled.
|
|
* hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
|
|
* logging mode is enabled for the device. They do not reflect
|
|
* actual modules being enabled to emit log messages. So, their
|
|
* values remain unchanged even when all modules are disabled.
|
|
*/
|
|
u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
|
|
|
|
hw->fw_log.actv_evnts = actv_evnts;
|
|
for (i = 0; i < cnt; i++) {
|
|
u16 v, m;
|
|
|
|
if (!enable) {
|
|
/* When disabling all FW logging events as part
|
|
* of device's de-initialization, the original
|
|
* configurations are retained, and can be used
|
|
* to reconfigure FW logging later if the device
|
|
* is re-initialized.
|
|
*/
|
|
hw->fw_log.evnts[i].cur = 0;
|
|
continue;
|
|
}
|
|
|
|
v = le16_to_cpu(data[i]);
|
|
m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
|
|
hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (data)
|
|
devm_kfree(ice_hw_to_dev(hw), data);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_output_fw_log
|
|
* @hw: pointer to the HW struct
|
|
* @desc: pointer to the AQ message descriptor
|
|
* @buf: pointer to the buffer accompanying the AQ message
|
|
*
|
|
* Formats a FW Log message and outputs it via the standard driver logs.
|
|
*/
|
|
void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
|
|
{
|
|
ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
|
|
ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
|
|
le16_to_cpu(desc->datalen));
|
|
ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
|
|
}
|
|
|
|
/**
|
|
* ice_get_itr_intrl_gran
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Determines the ITR/INTRL granularities based on the maximum aggregate
|
|
* bandwidth according to the device's configuration during power-on.
|
|
*/
|
|
static void ice_get_itr_intrl_gran(struct ice_hw *hw)
|
|
{
|
|
u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
|
|
GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
|
|
GL_PWR_MODE_CTL_CAR_MAX_BW_S;
|
|
|
|
switch (max_agg_bw) {
|
|
case ICE_MAX_AGG_BW_200G:
|
|
case ICE_MAX_AGG_BW_100G:
|
|
case ICE_MAX_AGG_BW_50G:
|
|
hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
|
|
hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
|
|
break;
|
|
case ICE_MAX_AGG_BW_25G:
|
|
hw->itr_gran = ICE_ITR_GRAN_MAX_25;
|
|
hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_init_hw - main hardware initialization routine
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
int ice_init_hw(struct ice_hw *hw)
|
|
{
|
|
struct ice_aqc_get_phy_caps_data *pcaps;
|
|
u16 mac_buf_len;
|
|
void *mac_buf;
|
|
int status;
|
|
|
|
/* Set MAC type based on DeviceID */
|
|
status = ice_set_mac_type(hw);
|
|
if (status)
|
|
return status;
|
|
|
|
hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
|
|
PF_FUNC_RID_FUNC_NUM_M) >>
|
|
PF_FUNC_RID_FUNC_NUM_S;
|
|
|
|
status = ice_reset(hw, ICE_RESET_PFR);
|
|
if (status)
|
|
return status;
|
|
|
|
ice_get_itr_intrl_gran(hw);
|
|
|
|
status = ice_create_all_ctrlq(hw);
|
|
if (status)
|
|
goto err_unroll_cqinit;
|
|
|
|
/* Enable FW logging. Not fatal if this fails. */
|
|
status = ice_cfg_fw_log(hw, true);
|
|
if (status)
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
|
|
|
|
status = ice_clear_pf_cfg(hw);
|
|
if (status)
|
|
goto err_unroll_cqinit;
|
|
|
|
/* Set bit to enable Flow Director filters */
|
|
wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
|
|
INIT_LIST_HEAD(&hw->fdir_list_head);
|
|
|
|
ice_clear_pxe_mode(hw);
|
|
|
|
status = ice_init_nvm(hw);
|
|
if (status)
|
|
goto err_unroll_cqinit;
|
|
|
|
status = ice_get_caps(hw);
|
|
if (status)
|
|
goto err_unroll_cqinit;
|
|
|
|
hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
|
|
sizeof(*hw->port_info), GFP_KERNEL);
|
|
if (!hw->port_info) {
|
|
status = -ENOMEM;
|
|
goto err_unroll_cqinit;
|
|
}
|
|
|
|
/* set the back pointer to HW */
|
|
hw->port_info->hw = hw;
|
|
|
|
/* Initialize port_info struct with switch configuration data */
|
|
status = ice_get_initial_sw_cfg(hw);
|
|
if (status)
|
|
goto err_unroll_alloc;
|
|
|
|
hw->evb_veb = true;
|
|
|
|
/* Query the allocated resources for Tx scheduler */
|
|
status = ice_sched_query_res_alloc(hw);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
|
|
goto err_unroll_alloc;
|
|
}
|
|
ice_sched_get_psm_clk_freq(hw);
|
|
|
|
/* Initialize port_info struct with scheduler data */
|
|
status = ice_sched_init_port(hw->port_info);
|
|
if (status)
|
|
goto err_unroll_sched;
|
|
|
|
pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
|
|
if (!pcaps) {
|
|
status = -ENOMEM;
|
|
goto err_unroll_sched;
|
|
}
|
|
|
|
/* Initialize port_info struct with PHY capabilities */
|
|
status = ice_aq_get_phy_caps(hw->port_info, false,
|
|
ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
|
|
NULL);
|
|
devm_kfree(ice_hw_to_dev(hw), pcaps);
|
|
if (status)
|
|
dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
|
|
status);
|
|
|
|
/* Initialize port_info struct with link information */
|
|
status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
|
|
if (status)
|
|
goto err_unroll_sched;
|
|
|
|
/* need a valid SW entry point to build a Tx tree */
|
|
if (!hw->sw_entry_point_layer) {
|
|
ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
|
|
status = -EIO;
|
|
goto err_unroll_sched;
|
|
}
|
|
INIT_LIST_HEAD(&hw->agg_list);
|
|
/* Initialize max burst size */
|
|
if (!hw->max_burst_size)
|
|
ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
|
|
|
|
status = ice_init_fltr_mgmt_struct(hw);
|
|
if (status)
|
|
goto err_unroll_sched;
|
|
|
|
/* Get MAC information */
|
|
/* A single port can report up to two (LAN and WoL) addresses */
|
|
mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
|
|
sizeof(struct ice_aqc_manage_mac_read_resp),
|
|
GFP_KERNEL);
|
|
mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
|
|
|
|
if (!mac_buf) {
|
|
status = -ENOMEM;
|
|
goto err_unroll_fltr_mgmt_struct;
|
|
}
|
|
|
|
status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
|
|
devm_kfree(ice_hw_to_dev(hw), mac_buf);
|
|
|
|
if (status)
|
|
goto err_unroll_fltr_mgmt_struct;
|
|
/* enable jumbo frame support at MAC level */
|
|
status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
|
|
if (status)
|
|
goto err_unroll_fltr_mgmt_struct;
|
|
/* Obtain counter base index which would be used by flow director */
|
|
status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
|
|
if (status)
|
|
goto err_unroll_fltr_mgmt_struct;
|
|
status = ice_init_hw_tbls(hw);
|
|
if (status)
|
|
goto err_unroll_fltr_mgmt_struct;
|
|
mutex_init(&hw->tnl_lock);
|
|
return 0;
|
|
|
|
err_unroll_fltr_mgmt_struct:
|
|
ice_cleanup_fltr_mgmt_struct(hw);
|
|
err_unroll_sched:
|
|
ice_sched_cleanup_all(hw);
|
|
err_unroll_alloc:
|
|
devm_kfree(ice_hw_to_dev(hw), hw->port_info);
|
|
err_unroll_cqinit:
|
|
ice_destroy_all_ctrlq(hw);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_deinit_hw - unroll initialization operations done by ice_init_hw
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* This should be called only during nominal operation, not as a result of
|
|
* ice_init_hw() failing since ice_init_hw() will take care of unrolling
|
|
* applicable initializations if it fails for any reason.
|
|
*/
|
|
void ice_deinit_hw(struct ice_hw *hw)
|
|
{
|
|
ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
|
|
ice_cleanup_fltr_mgmt_struct(hw);
|
|
|
|
ice_sched_cleanup_all(hw);
|
|
ice_sched_clear_agg(hw);
|
|
ice_free_seg(hw);
|
|
ice_free_hw_tbls(hw);
|
|
mutex_destroy(&hw->tnl_lock);
|
|
|
|
if (hw->port_info) {
|
|
devm_kfree(ice_hw_to_dev(hw), hw->port_info);
|
|
hw->port_info = NULL;
|
|
}
|
|
|
|
/* Attempt to disable FW logging before shutting down control queues */
|
|
ice_cfg_fw_log(hw, false);
|
|
ice_destroy_all_ctrlq(hw);
|
|
|
|
/* Clear VSI contexts if not already cleared */
|
|
ice_clear_all_vsi_ctx(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_check_reset - Check to see if a global reset is complete
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
int ice_check_reset(struct ice_hw *hw)
|
|
{
|
|
u32 cnt, reg = 0, grst_timeout, uld_mask;
|
|
|
|
/* Poll for Device Active state in case a recent CORER, GLOBR,
|
|
* or EMPR has occurred. The grst delay value is in 100ms units.
|
|
* Add 1sec for outstanding AQ commands that can take a long time.
|
|
*/
|
|
grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
|
|
GLGEN_RSTCTL_GRSTDEL_S) + 10;
|
|
|
|
for (cnt = 0; cnt < grst_timeout; cnt++) {
|
|
mdelay(100);
|
|
reg = rd32(hw, GLGEN_RSTAT);
|
|
if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
|
|
break;
|
|
}
|
|
|
|
if (cnt == grst_timeout) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
|
|
return -EIO;
|
|
}
|
|
|
|
#define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
|
|
GLNVM_ULD_PCIER_DONE_1_M |\
|
|
GLNVM_ULD_CORER_DONE_M |\
|
|
GLNVM_ULD_GLOBR_DONE_M |\
|
|
GLNVM_ULD_POR_DONE_M |\
|
|
GLNVM_ULD_POR_DONE_1_M |\
|
|
GLNVM_ULD_PCIER_DONE_2_M)
|
|
|
|
uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
|
|
GLNVM_ULD_PE_DONE_M : 0);
|
|
|
|
/* Device is Active; check Global Reset processes are done */
|
|
for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
|
|
reg = rd32(hw, GLNVM_ULD) & uld_mask;
|
|
if (reg == uld_mask) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
|
|
break;
|
|
}
|
|
mdelay(10);
|
|
}
|
|
|
|
if (cnt == ICE_PF_RESET_WAIT_COUNT) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
|
|
reg);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_pf_reset - Reset the PF
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* If a global reset has been triggered, this function checks
|
|
* for its completion and then issues the PF reset
|
|
*/
|
|
static int ice_pf_reset(struct ice_hw *hw)
|
|
{
|
|
u32 cnt, reg;
|
|
|
|
/* If at function entry a global reset was already in progress, i.e.
|
|
* state is not 'device active' or any of the reset done bits are not
|
|
* set in GLNVM_ULD, there is no need for a PF Reset; poll until the
|
|
* global reset is done.
|
|
*/
|
|
if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
|
|
(rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
|
|
/* poll on global reset currently in progress until done */
|
|
if (ice_check_reset(hw))
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Reset the PF */
|
|
reg = rd32(hw, PFGEN_CTRL);
|
|
|
|
wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
|
|
|
|
/* Wait for the PFR to complete. The wait time is the global config lock
|
|
* timeout plus the PFR timeout which will account for a possible reset
|
|
* that is occurring during a download package operation.
|
|
*/
|
|
for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
|
|
ICE_PF_RESET_WAIT_COUNT; cnt++) {
|
|
reg = rd32(hw, PFGEN_CTRL);
|
|
if (!(reg & PFGEN_CTRL_PFSWR_M))
|
|
break;
|
|
|
|
mdelay(1);
|
|
}
|
|
|
|
if (cnt == ICE_PF_RESET_WAIT_COUNT) {
|
|
ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_reset - Perform different types of reset
|
|
* @hw: pointer to the hardware structure
|
|
* @req: reset request
|
|
*
|
|
* This function triggers a reset as specified by the req parameter.
|
|
*
|
|
* Note:
|
|
* If anything other than a PF reset is triggered, PXE mode is restored.
|
|
* This has to be cleared using ice_clear_pxe_mode again, once the AQ
|
|
* interface has been restored in the rebuild flow.
|
|
*/
|
|
int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
|
|
{
|
|
u32 val = 0;
|
|
|
|
switch (req) {
|
|
case ICE_RESET_PFR:
|
|
return ice_pf_reset(hw);
|
|
case ICE_RESET_CORER:
|
|
ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
|
|
val = GLGEN_RTRIG_CORER_M;
|
|
break;
|
|
case ICE_RESET_GLOBR:
|
|
ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
|
|
val = GLGEN_RTRIG_GLOBR_M;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
val |= rd32(hw, GLGEN_RTRIG);
|
|
wr32(hw, GLGEN_RTRIG, val);
|
|
ice_flush(hw);
|
|
|
|
/* wait for the FW to be ready */
|
|
return ice_check_reset(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_copy_rxq_ctx_to_hw
|
|
* @hw: pointer to the hardware structure
|
|
* @ice_rxq_ctx: pointer to the rxq context
|
|
* @rxq_index: the index of the Rx queue
|
|
*
|
|
* Copies rxq context from dense structure to HW register space
|
|
*/
|
|
static int
|
|
ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
|
|
{
|
|
u8 i;
|
|
|
|
if (!ice_rxq_ctx)
|
|
return -EINVAL;
|
|
|
|
if (rxq_index > QRX_CTRL_MAX_INDEX)
|
|
return -EINVAL;
|
|
|
|
/* Copy each dword separately to HW */
|
|
for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
|
|
wr32(hw, QRX_CONTEXT(i, rxq_index),
|
|
*((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
|
|
|
|
ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
|
|
*((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* LAN Rx Queue Context */
|
|
static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
|
|
/* Field Width LSB */
|
|
ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
|
|
ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
|
|
ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
|
|
ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
|
|
ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
|
|
ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
|
|
ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
|
|
ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
|
|
ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
|
|
ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
|
|
ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
|
|
ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
|
|
ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
|
|
ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
|
|
ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
|
|
ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
|
|
ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
|
|
ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
|
|
ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
|
|
ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
|
|
{ 0 }
|
|
};
|
|
|
|
/**
|
|
* ice_write_rxq_ctx
|
|
* @hw: pointer to the hardware structure
|
|
* @rlan_ctx: pointer to the rxq context
|
|
* @rxq_index: the index of the Rx queue
|
|
*
|
|
* Converts rxq context from sparse to dense structure and then writes
|
|
* it to HW register space and enables the hardware to prefetch descriptors
|
|
* instead of only fetching them on demand
|
|
*/
|
|
int
|
|
ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
|
|
u32 rxq_index)
|
|
{
|
|
u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
|
|
|
|
if (!rlan_ctx)
|
|
return -EINVAL;
|
|
|
|
rlan_ctx->prefena = 1;
|
|
|
|
ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
|
|
return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
|
|
}
|
|
|
|
/* LAN Tx Queue Context */
|
|
const struct ice_ctx_ele ice_tlan_ctx_info[] = {
|
|
/* Field Width LSB */
|
|
ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
|
|
ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
|
|
ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
|
|
ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
|
|
ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
|
|
ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
|
|
ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
|
|
ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
|
|
ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
|
|
ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
|
|
ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
|
|
ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
|
|
ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
|
|
ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
|
|
ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
|
|
ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
|
|
ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
|
|
ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
|
|
ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
|
|
ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
|
|
ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
|
|
ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171),
|
|
{ 0 }
|
|
};
|
|
|
|
/* Sideband Queue command wrappers */
|
|
|
|
/**
|
|
* ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
|
|
* @hw: pointer to the HW struct
|
|
* @desc: descriptor describing the command
|
|
* @buf: buffer to use for indirect commands (NULL for direct commands)
|
|
* @buf_size: size of buffer for indirect commands (0 for direct commands)
|
|
* @cd: pointer to command details structure
|
|
*/
|
|
static int
|
|
ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
|
|
void *buf, u16 buf_size, struct ice_sq_cd *cd)
|
|
{
|
|
return ice_sq_send_cmd(hw, ice_get_sbq(hw),
|
|
(struct ice_aq_desc *)desc, buf, buf_size, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_sbq_rw_reg - Fill Sideband Queue command
|
|
* @hw: pointer to the HW struct
|
|
* @in: message info to be filled in descriptor
|
|
*/
|
|
int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
|
|
{
|
|
struct ice_sbq_cmd_desc desc = {0};
|
|
struct ice_sbq_msg_req msg = {0};
|
|
u16 msg_len;
|
|
int status;
|
|
|
|
msg_len = sizeof(msg);
|
|
|
|
msg.dest_dev = in->dest_dev;
|
|
msg.opcode = in->opcode;
|
|
msg.flags = ICE_SBQ_MSG_FLAGS;
|
|
msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
|
|
msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
|
|
msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
|
|
|
|
if (in->opcode)
|
|
msg.data = cpu_to_le32(in->data);
|
|
else
|
|
/* data read comes back in completion, so shorten the struct by
|
|
* sizeof(msg.data)
|
|
*/
|
|
msg_len -= sizeof(msg.data);
|
|
|
|
desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
|
|
desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
|
|
desc.param0.cmd_len = cpu_to_le16(msg_len);
|
|
status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
|
|
if (!status && !in->opcode)
|
|
in->data = le32_to_cpu
|
|
(((struct ice_sbq_msg_cmpl *)&msg)->data);
|
|
return status;
|
|
}
|
|
|
|
/* FW Admin Queue command wrappers */
|
|
|
|
/* Software lock/mutex that is meant to be held while the Global Config Lock
|
|
* in firmware is acquired by the software to prevent most (but not all) types
|
|
* of AQ commands from being sent to FW
|
|
*/
|
|
DEFINE_MUTEX(ice_global_cfg_lock_sw);
|
|
|
|
/**
|
|
* ice_should_retry_sq_send_cmd
|
|
* @opcode: AQ opcode
|
|
*
|
|
* Decide if we should retry the send command routine for the ATQ, depending
|
|
* on the opcode.
|
|
*/
|
|
static bool ice_should_retry_sq_send_cmd(u16 opcode)
|
|
{
|
|
switch (opcode) {
|
|
case ice_aqc_opc_get_link_topo:
|
|
case ice_aqc_opc_lldp_stop:
|
|
case ice_aqc_opc_lldp_start:
|
|
case ice_aqc_opc_lldp_filter_ctrl:
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
|
|
* @hw: pointer to the HW struct
|
|
* @cq: pointer to the specific Control queue
|
|
* @desc: prefilled descriptor describing the command
|
|
* @buf: buffer to use for indirect commands (or NULL for direct commands)
|
|
* @buf_size: size of buffer for indirect commands (or 0 for direct commands)
|
|
* @cd: pointer to command details structure
|
|
*
|
|
* Retry sending the FW Admin Queue command, multiple times, to the FW Admin
|
|
* Queue if the EBUSY AQ error is returned.
|
|
*/
|
|
static int
|
|
ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
|
|
struct ice_aq_desc *desc, void *buf, u16 buf_size,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aq_desc desc_cpy;
|
|
bool is_cmd_for_retry;
|
|
u8 *buf_cpy = NULL;
|
|
u8 idx = 0;
|
|
u16 opcode;
|
|
int status;
|
|
|
|
opcode = le16_to_cpu(desc->opcode);
|
|
is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
|
|
memset(&desc_cpy, 0, sizeof(desc_cpy));
|
|
|
|
if (is_cmd_for_retry) {
|
|
if (buf) {
|
|
buf_cpy = kzalloc(buf_size, GFP_KERNEL);
|
|
if (!buf_cpy)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(&desc_cpy, desc, sizeof(desc_cpy));
|
|
}
|
|
|
|
do {
|
|
status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
|
|
|
|
if (!is_cmd_for_retry || !status ||
|
|
hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
|
|
break;
|
|
|
|
if (buf_cpy)
|
|
memcpy(buf, buf_cpy, buf_size);
|
|
|
|
memcpy(desc, &desc_cpy, sizeof(desc_cpy));
|
|
|
|
mdelay(ICE_SQ_SEND_DELAY_TIME_MS);
|
|
|
|
} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
|
|
|
|
kfree(buf_cpy);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
|
|
* @hw: pointer to the HW struct
|
|
* @desc: descriptor describing the command
|
|
* @buf: buffer to use for indirect commands (NULL for direct commands)
|
|
* @buf_size: size of buffer for indirect commands (0 for direct commands)
|
|
* @cd: pointer to command details structure
|
|
*
|
|
* Helper function to send FW Admin Queue commands to the FW Admin Queue.
|
|
*/
|
|
int
|
|
ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
|
|
u16 buf_size, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_req_res *cmd = &desc->params.res_owner;
|
|
bool lock_acquired = false;
|
|
int status;
|
|
|
|
/* When a package download is in process (i.e. when the firmware's
|
|
* Global Configuration Lock resource is held), only the Download
|
|
* Package, Get Version, Get Package Info List, Upload Section,
|
|
* Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
|
|
* Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
|
|
* Recipes to Profile Association, and Release Resource (with resource
|
|
* ID set to Global Config Lock) AdminQ commands are allowed; all others
|
|
* must block until the package download completes and the Global Config
|
|
* Lock is released. See also ice_acquire_global_cfg_lock().
|
|
*/
|
|
switch (le16_to_cpu(desc->opcode)) {
|
|
case ice_aqc_opc_download_pkg:
|
|
case ice_aqc_opc_get_pkg_info_list:
|
|
case ice_aqc_opc_get_ver:
|
|
case ice_aqc_opc_upload_section:
|
|
case ice_aqc_opc_update_pkg:
|
|
case ice_aqc_opc_set_port_params:
|
|
case ice_aqc_opc_get_vlan_mode_parameters:
|
|
case ice_aqc_opc_set_vlan_mode_parameters:
|
|
case ice_aqc_opc_add_recipe:
|
|
case ice_aqc_opc_recipe_to_profile:
|
|
case ice_aqc_opc_get_recipe:
|
|
case ice_aqc_opc_get_recipe_to_profile:
|
|
break;
|
|
case ice_aqc_opc_release_res:
|
|
if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
|
|
break;
|
|
fallthrough;
|
|
default:
|
|
mutex_lock(&ice_global_cfg_lock_sw);
|
|
lock_acquired = true;
|
|
break;
|
|
}
|
|
|
|
status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
|
|
if (lock_acquired)
|
|
mutex_unlock(&ice_global_cfg_lock_sw);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_fw_ver
|
|
* @hw: pointer to the HW struct
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Get the firmware version (0x0001) from the admin queue commands
|
|
*/
|
|
int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_get_ver *resp;
|
|
struct ice_aq_desc desc;
|
|
int status;
|
|
|
|
resp = &desc.params.get_ver;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
|
|
if (!status) {
|
|
hw->fw_branch = resp->fw_branch;
|
|
hw->fw_maj_ver = resp->fw_major;
|
|
hw->fw_min_ver = resp->fw_minor;
|
|
hw->fw_patch = resp->fw_patch;
|
|
hw->fw_build = le32_to_cpu(resp->fw_build);
|
|
hw->api_branch = resp->api_branch;
|
|
hw->api_maj_ver = resp->api_major;
|
|
hw->api_min_ver = resp->api_minor;
|
|
hw->api_patch = resp->api_patch;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_send_driver_ver
|
|
* @hw: pointer to the HW struct
|
|
* @dv: driver's major, minor version
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Send the driver version (0x0002) to the firmware
|
|
*/
|
|
int
|
|
ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_driver_ver *cmd;
|
|
struct ice_aq_desc desc;
|
|
u16 len;
|
|
|
|
cmd = &desc.params.driver_ver;
|
|
|
|
if (!dv)
|
|
return -EINVAL;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
|
|
|
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
|
cmd->major_ver = dv->major_ver;
|
|
cmd->minor_ver = dv->minor_ver;
|
|
cmd->build_ver = dv->build_ver;
|
|
cmd->subbuild_ver = dv->subbuild_ver;
|
|
|
|
len = 0;
|
|
while (len < sizeof(dv->driver_string) &&
|
|
isascii(dv->driver_string[len]) && dv->driver_string[len])
|
|
len++;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_q_shutdown
|
|
* @hw: pointer to the HW struct
|
|
* @unloading: is the driver unloading itself
|
|
*
|
|
* Tell the Firmware that we're shutting down the AdminQ and whether
|
|
* or not the driver is unloading as well (0x0003).
|
|
*/
|
|
int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
|
|
{
|
|
struct ice_aqc_q_shutdown *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.q_shutdown;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
|
|
|
|
if (unloading)
|
|
cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_req_res
|
|
* @hw: pointer to the HW struct
|
|
* @res: resource ID
|
|
* @access: access type
|
|
* @sdp_number: resource number
|
|
* @timeout: the maximum time in ms that the driver may hold the resource
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Requests common resource using the admin queue commands (0x0008).
|
|
* When attempting to acquire the Global Config Lock, the driver can
|
|
* learn of three states:
|
|
* 1) 0 - acquired lock, and can perform download package
|
|
* 2) -EIO - did not get lock, driver should fail to load
|
|
* 3) -EALREADY - did not get lock, but another driver has
|
|
* successfully downloaded the package; the driver does
|
|
* not have to download the package and can continue
|
|
* loading
|
|
*
|
|
* Note that if the caller is in an acquire lock, perform action, release lock
|
|
* phase of operation, it is possible that the FW may detect a timeout and issue
|
|
* a CORER. In this case, the driver will receive a CORER interrupt and will
|
|
* have to determine its cause. The calling thread that is handling this flow
|
|
* will likely get an error propagated back to it indicating the Download
|
|
* Package, Update Package or the Release Resource AQ commands timed out.
|
|
*/
|
|
static int
|
|
ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
|
|
enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_req_res *cmd_resp;
|
|
struct ice_aq_desc desc;
|
|
int status;
|
|
|
|
cmd_resp = &desc.params.res_owner;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
|
|
|
|
cmd_resp->res_id = cpu_to_le16(res);
|
|
cmd_resp->access_type = cpu_to_le16(access);
|
|
cmd_resp->res_number = cpu_to_le32(sdp_number);
|
|
cmd_resp->timeout = cpu_to_le32(*timeout);
|
|
*timeout = 0;
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
|
|
/* The completion specifies the maximum time in ms that the driver
|
|
* may hold the resource in the Timeout field.
|
|
*/
|
|
|
|
/* Global config lock response utilizes an additional status field.
|
|
*
|
|
* If the Global config lock resource is held by some other driver, the
|
|
* command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
|
|
* and the timeout field indicates the maximum time the current owner
|
|
* of the resource has to free it.
|
|
*/
|
|
if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
|
|
if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
|
|
*timeout = le32_to_cpu(cmd_resp->timeout);
|
|
return 0;
|
|
} else if (le16_to_cpu(cmd_resp->status) ==
|
|
ICE_AQ_RES_GLBL_IN_PROG) {
|
|
*timeout = le32_to_cpu(cmd_resp->timeout);
|
|
return -EIO;
|
|
} else if (le16_to_cpu(cmd_resp->status) ==
|
|
ICE_AQ_RES_GLBL_DONE) {
|
|
return -EALREADY;
|
|
}
|
|
|
|
/* invalid FW response, force a timeout immediately */
|
|
*timeout = 0;
|
|
return -EIO;
|
|
}
|
|
|
|
/* If the resource is held by some other driver, the command completes
|
|
* with a busy return value and the timeout field indicates the maximum
|
|
* time the current owner of the resource has to free it.
|
|
*/
|
|
if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
|
|
*timeout = le32_to_cpu(cmd_resp->timeout);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_release_res
|
|
* @hw: pointer to the HW struct
|
|
* @res: resource ID
|
|
* @sdp_number: resource number
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* release common resource using the admin queue commands (0x0009)
|
|
*/
|
|
static int
|
|
ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_req_res *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.res_owner;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
|
|
|
|
cmd->res_id = cpu_to_le16(res);
|
|
cmd->res_number = cpu_to_le32(sdp_number);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_acquire_res
|
|
* @hw: pointer to the HW structure
|
|
* @res: resource ID
|
|
* @access: access type (read or write)
|
|
* @timeout: timeout in milliseconds
|
|
*
|
|
* This function will attempt to acquire the ownership of a resource.
|
|
*/
|
|
int
|
|
ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
|
|
enum ice_aq_res_access_type access, u32 timeout)
|
|
{
|
|
#define ICE_RES_POLLING_DELAY_MS 10
|
|
u32 delay = ICE_RES_POLLING_DELAY_MS;
|
|
u32 time_left = timeout;
|
|
int status;
|
|
|
|
status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
|
|
|
|
/* A return code of -EALREADY means that another driver has
|
|
* previously acquired the resource and performed any necessary updates;
|
|
* in this case the caller does not obtain the resource and has no
|
|
* further work to do.
|
|
*/
|
|
if (status == -EALREADY)
|
|
goto ice_acquire_res_exit;
|
|
|
|
if (status)
|
|
ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
|
|
|
|
/* If necessary, poll until the current lock owner timeouts */
|
|
timeout = time_left;
|
|
while (status && timeout && time_left) {
|
|
mdelay(delay);
|
|
timeout = (timeout > delay) ? timeout - delay : 0;
|
|
status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
|
|
|
|
if (status == -EALREADY)
|
|
/* lock free, but no work to do */
|
|
break;
|
|
|
|
if (!status)
|
|
/* lock acquired */
|
|
break;
|
|
}
|
|
if (status && status != -EALREADY)
|
|
ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
|
|
|
|
ice_acquire_res_exit:
|
|
if (status == -EALREADY) {
|
|
if (access == ICE_RES_WRITE)
|
|
ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
|
|
else
|
|
ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_release_res
|
|
* @hw: pointer to the HW structure
|
|
* @res: resource ID
|
|
*
|
|
* This function will release a resource using the proper Admin Command.
|
|
*/
|
|
void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
|
|
{
|
|
u32 total_delay = 0;
|
|
int status;
|
|
|
|
status = ice_aq_release_res(hw, res, 0, NULL);
|
|
|
|
/* there are some rare cases when trying to release the resource
|
|
* results in an admin queue timeout, so handle them correctly
|
|
*/
|
|
while ((status == -EIO) && (total_delay < hw->adminq.sq_cmd_timeout)) {
|
|
mdelay(1);
|
|
status = ice_aq_release_res(hw, res, 0, NULL);
|
|
total_delay++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_aq_alloc_free_res - command to allocate/free resources
|
|
* @hw: pointer to the HW struct
|
|
* @num_entries: number of resource entries in buffer
|
|
* @buf: Indirect buffer to hold data parameters and response
|
|
* @buf_size: size of buffer for indirect commands
|
|
* @opc: pass in the command opcode
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Helper function to allocate/free resources using the admin queue commands
|
|
*/
|
|
int
|
|
ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
|
|
struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
|
|
enum ice_adminq_opc opc, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_alloc_free_res_cmd *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.sw_res_ctrl;
|
|
|
|
if (!buf)
|
|
return -EINVAL;
|
|
|
|
if (buf_size < flex_array_size(buf, elem, num_entries))
|
|
return -EINVAL;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, opc);
|
|
|
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
|
|
|
cmd->num_entries = cpu_to_le16(num_entries);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_alloc_hw_res - allocate resource
|
|
* @hw: pointer to the HW struct
|
|
* @type: type of resource
|
|
* @num: number of resources to allocate
|
|
* @btm: allocate from bottom
|
|
* @res: pointer to array that will receive the resources
|
|
*/
|
|
int
|
|
ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
|
|
{
|
|
struct ice_aqc_alloc_free_res_elem *buf;
|
|
u16 buf_len;
|
|
int status;
|
|
|
|
buf_len = struct_size(buf, elem, num);
|
|
buf = kzalloc(buf_len, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
/* Prepare buffer to allocate resource. */
|
|
buf->num_elems = cpu_to_le16(num);
|
|
buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
|
|
ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
|
|
if (btm)
|
|
buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
|
|
|
|
status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
|
|
ice_aqc_opc_alloc_res, NULL);
|
|
if (status)
|
|
goto ice_alloc_res_exit;
|
|
|
|
memcpy(res, buf->elem, sizeof(*buf->elem) * num);
|
|
|
|
ice_alloc_res_exit:
|
|
kfree(buf);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_free_hw_res - free allocated HW resource
|
|
* @hw: pointer to the HW struct
|
|
* @type: type of resource to free
|
|
* @num: number of resources
|
|
* @res: pointer to array that contains the resources to free
|
|
*/
|
|
int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
|
|
{
|
|
struct ice_aqc_alloc_free_res_elem *buf;
|
|
u16 buf_len;
|
|
int status;
|
|
|
|
buf_len = struct_size(buf, elem, num);
|
|
buf = kzalloc(buf_len, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
/* Prepare buffer to free resource. */
|
|
buf->num_elems = cpu_to_le16(num);
|
|
buf->res_type = cpu_to_le16(type);
|
|
memcpy(buf->elem, res, sizeof(*buf->elem) * num);
|
|
|
|
status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
|
|
ice_aqc_opc_free_res, NULL);
|
|
if (status)
|
|
ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
|
|
|
|
kfree(buf);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_get_num_per_func - determine number of resources per PF
|
|
* @hw: pointer to the HW structure
|
|
* @max: value to be evenly split between each PF
|
|
*
|
|
* Determine the number of valid functions by going through the bitmap returned
|
|
* from parsing capabilities and use this to calculate the number of resources
|
|
* per PF based on the max value passed in.
|
|
*/
|
|
static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
|
|
{
|
|
u8 funcs;
|
|
|
|
#define ICE_CAPS_VALID_FUNCS_M 0xFF
|
|
funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
|
|
ICE_CAPS_VALID_FUNCS_M);
|
|
|
|
if (!funcs)
|
|
return 0;
|
|
|
|
return max / funcs;
|
|
}
|
|
|
|
/**
|
|
* ice_parse_common_caps - parse common device/function capabilities
|
|
* @hw: pointer to the HW struct
|
|
* @caps: pointer to common capabilities structure
|
|
* @elem: the capability element to parse
|
|
* @prefix: message prefix for tracing capabilities
|
|
*
|
|
* Given a capability element, extract relevant details into the common
|
|
* capability structure.
|
|
*
|
|
* Returns: true if the capability matches one of the common capability ids,
|
|
* false otherwise.
|
|
*/
|
|
static bool
|
|
ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
|
|
struct ice_aqc_list_caps_elem *elem, const char *prefix)
|
|
{
|
|
u32 logical_id = le32_to_cpu(elem->logical_id);
|
|
u32 phys_id = le32_to_cpu(elem->phys_id);
|
|
u32 number = le32_to_cpu(elem->number);
|
|
u16 cap = le16_to_cpu(elem->cap);
|
|
bool found = true;
|
|
|
|
switch (cap) {
|
|
case ICE_AQC_CAPS_VALID_FUNCTIONS:
|
|
caps->valid_functions = number;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
|
|
caps->valid_functions);
|
|
break;
|
|
case ICE_AQC_CAPS_SRIOV:
|
|
caps->sr_iov_1_1 = (number == 1);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
|
|
caps->sr_iov_1_1);
|
|
break;
|
|
case ICE_AQC_CAPS_DCB:
|
|
caps->dcb = (number == 1);
|
|
caps->active_tc_bitmap = logical_id;
|
|
caps->maxtc = phys_id;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
|
|
caps->active_tc_bitmap);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
|
|
break;
|
|
case ICE_AQC_CAPS_RSS:
|
|
caps->rss_table_size = number;
|
|
caps->rss_table_entry_width = logical_id;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
|
|
caps->rss_table_size);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
|
|
caps->rss_table_entry_width);
|
|
break;
|
|
case ICE_AQC_CAPS_RXQS:
|
|
caps->num_rxq = number;
|
|
caps->rxq_first_id = phys_id;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
|
|
caps->num_rxq);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
|
|
caps->rxq_first_id);
|
|
break;
|
|
case ICE_AQC_CAPS_TXQS:
|
|
caps->num_txq = number;
|
|
caps->txq_first_id = phys_id;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
|
|
caps->num_txq);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
|
|
caps->txq_first_id);
|
|
break;
|
|
case ICE_AQC_CAPS_MSIX:
|
|
caps->num_msix_vectors = number;
|
|
caps->msix_vector_first_id = phys_id;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
|
|
caps->num_msix_vectors);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
|
|
caps->msix_vector_first_id);
|
|
break;
|
|
case ICE_AQC_CAPS_PENDING_NVM_VER:
|
|
caps->nvm_update_pending_nvm = true;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
|
|
break;
|
|
case ICE_AQC_CAPS_PENDING_OROM_VER:
|
|
caps->nvm_update_pending_orom = true;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
|
|
break;
|
|
case ICE_AQC_CAPS_PENDING_NET_VER:
|
|
caps->nvm_update_pending_netlist = true;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
|
|
break;
|
|
case ICE_AQC_CAPS_NVM_MGMT:
|
|
caps->nvm_unified_update =
|
|
(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
|
|
true : false;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
|
|
caps->nvm_unified_update);
|
|
break;
|
|
case ICE_AQC_CAPS_RDMA:
|
|
caps->rdma = (number == 1);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
|
|
break;
|
|
case ICE_AQC_CAPS_MAX_MTU:
|
|
caps->max_mtu = number;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
|
|
prefix, caps->max_mtu);
|
|
break;
|
|
case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
|
|
caps->pcie_reset_avoidance = (number > 0);
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: pcie_reset_avoidance = %d\n", prefix,
|
|
caps->pcie_reset_avoidance);
|
|
break;
|
|
case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
|
|
caps->reset_restrict_support = (number == 1);
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: reset_restrict_support = %d\n", prefix,
|
|
caps->reset_restrict_support);
|
|
break;
|
|
default:
|
|
/* Not one of the recognized common capabilities */
|
|
found = false;
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
/**
|
|
* ice_recalc_port_limited_caps - Recalculate port limited capabilities
|
|
* @hw: pointer to the HW structure
|
|
* @caps: pointer to capabilities structure to fix
|
|
*
|
|
* Re-calculate the capabilities that are dependent on the number of physical
|
|
* ports; i.e. some features are not supported or function differently on
|
|
* devices with more than 4 ports.
|
|
*/
|
|
static void
|
|
ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
|
|
{
|
|
/* This assumes device capabilities are always scanned before function
|
|
* capabilities during the initialization flow.
|
|
*/
|
|
if (hw->dev_caps.num_funcs > 4) {
|
|
/* Max 4 TCs per port */
|
|
caps->maxtc = 4;
|
|
ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
|
|
caps->maxtc);
|
|
if (caps->rdma) {
|
|
ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
|
|
caps->rdma = 0;
|
|
}
|
|
|
|
/* print message only when processing device capabilities
|
|
* during initialization.
|
|
*/
|
|
if (caps == &hw->dev_caps.common_cap)
|
|
dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
|
|
* @hw: pointer to the HW struct
|
|
* @func_p: pointer to function capabilities structure
|
|
* @cap: pointer to the capability element to parse
|
|
*
|
|
* Extract function capabilities for ICE_AQC_CAPS_VF.
|
|
*/
|
|
static void
|
|
ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
|
|
struct ice_aqc_list_caps_elem *cap)
|
|
{
|
|
u32 logical_id = le32_to_cpu(cap->logical_id);
|
|
u32 number = le32_to_cpu(cap->number);
|
|
|
|
func_p->num_allocd_vfs = number;
|
|
func_p->vf_base_id = logical_id;
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
|
|
func_p->num_allocd_vfs);
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
|
|
func_p->vf_base_id);
|
|
}
|
|
|
|
/**
|
|
* ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
|
|
* @hw: pointer to the HW struct
|
|
* @func_p: pointer to function capabilities structure
|
|
* @cap: pointer to the capability element to parse
|
|
*
|
|
* Extract function capabilities for ICE_AQC_CAPS_VSI.
|
|
*/
|
|
static void
|
|
ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
|
|
struct ice_aqc_list_caps_elem *cap)
|
|
{
|
|
func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
|
|
le32_to_cpu(cap->number));
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
|
|
func_p->guar_num_vsi);
|
|
}
|
|
|
|
/**
|
|
* ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
|
|
* @hw: pointer to the HW struct
|
|
* @func_p: pointer to function capabilities structure
|
|
* @cap: pointer to the capability element to parse
|
|
*
|
|
* Extract function capabilities for ICE_AQC_CAPS_1588.
|
|
*/
|
|
static void
|
|
ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
|
|
struct ice_aqc_list_caps_elem *cap)
|
|
{
|
|
struct ice_ts_func_info *info = &func_p->ts_func_info;
|
|
u32 number = le32_to_cpu(cap->number);
|
|
|
|
info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
|
|
func_p->common_cap.ieee_1588 = info->ena;
|
|
|
|
info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
|
|
info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
|
|
info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
|
|
info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
|
|
|
|
info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
|
|
info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
|
|
|
|
if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
|
|
info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
|
|
} else {
|
|
/* Unknown clock frequency, so assume a (probably incorrect)
|
|
* default to avoid out-of-bounds look ups of frequency
|
|
* related information.
|
|
*/
|
|
ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
|
|
info->clk_freq);
|
|
info->time_ref = ICE_TIME_REF_FREQ_25_000;
|
|
}
|
|
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
|
|
func_p->common_cap.ieee_1588);
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
|
|
info->src_tmr_owned);
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
|
|
info->tmr_ena);
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
|
|
info->tmr_index_owned);
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
|
|
info->tmr_index_assoc);
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
|
|
info->clk_freq);
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
|
|
info->clk_src);
|
|
}
|
|
|
|
/**
|
|
* ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
|
|
* @hw: pointer to the HW struct
|
|
* @func_p: pointer to function capabilities structure
|
|
*
|
|
* Extract function capabilities for ICE_AQC_CAPS_FD.
|
|
*/
|
|
static void
|
|
ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
|
|
{
|
|
u32 reg_val, val;
|
|
|
|
reg_val = rd32(hw, GLQF_FD_SIZE);
|
|
val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
|
|
GLQF_FD_SIZE_FD_GSIZE_S;
|
|
func_p->fd_fltr_guar =
|
|
ice_get_num_per_func(hw, val);
|
|
val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
|
|
GLQF_FD_SIZE_FD_BSIZE_S;
|
|
func_p->fd_fltr_best_effort = val;
|
|
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
|
|
func_p->fd_fltr_guar);
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
|
|
func_p->fd_fltr_best_effort);
|
|
}
|
|
|
|
/**
|
|
* ice_parse_func_caps - Parse function capabilities
|
|
* @hw: pointer to the HW struct
|
|
* @func_p: pointer to function capabilities structure
|
|
* @buf: buffer containing the function capability records
|
|
* @cap_count: the number of capabilities
|
|
*
|
|
* Helper function to parse function (0x000A) capabilities list. For
|
|
* capabilities shared between device and function, this relies on
|
|
* ice_parse_common_caps.
|
|
*
|
|
* Loop through the list of provided capabilities and extract the relevant
|
|
* data into the function capabilities structured.
|
|
*/
|
|
static void
|
|
ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
|
|
void *buf, u32 cap_count)
|
|
{
|
|
struct ice_aqc_list_caps_elem *cap_resp;
|
|
u32 i;
|
|
|
|
cap_resp = buf;
|
|
|
|
memset(func_p, 0, sizeof(*func_p));
|
|
|
|
for (i = 0; i < cap_count; i++) {
|
|
u16 cap = le16_to_cpu(cap_resp[i].cap);
|
|
bool found;
|
|
|
|
found = ice_parse_common_caps(hw, &func_p->common_cap,
|
|
&cap_resp[i], "func caps");
|
|
|
|
switch (cap) {
|
|
case ICE_AQC_CAPS_VF:
|
|
ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
|
|
break;
|
|
case ICE_AQC_CAPS_VSI:
|
|
ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
|
|
break;
|
|
case ICE_AQC_CAPS_1588:
|
|
ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
|
|
break;
|
|
case ICE_AQC_CAPS_FD:
|
|
ice_parse_fdir_func_caps(hw, func_p);
|
|
break;
|
|
default:
|
|
/* Don't list common capabilities as unknown */
|
|
if (!found)
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
|
|
i, cap);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ice_recalc_port_limited_caps(hw, &func_p->common_cap);
|
|
}
|
|
|
|
/**
|
|
* ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
|
|
* @hw: pointer to the HW struct
|
|
* @dev_p: pointer to device capabilities structure
|
|
* @cap: capability element to parse
|
|
*
|
|
* Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
|
|
*/
|
|
static void
|
|
ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
|
|
struct ice_aqc_list_caps_elem *cap)
|
|
{
|
|
u32 number = le32_to_cpu(cap->number);
|
|
|
|
dev_p->num_funcs = hweight32(number);
|
|
ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
|
|
dev_p->num_funcs);
|
|
}
|
|
|
|
/**
|
|
* ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
|
|
* @hw: pointer to the HW struct
|
|
* @dev_p: pointer to device capabilities structure
|
|
* @cap: capability element to parse
|
|
*
|
|
* Parse ICE_AQC_CAPS_VF for device capabilities.
|
|
*/
|
|
static void
|
|
ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
|
|
struct ice_aqc_list_caps_elem *cap)
|
|
{
|
|
u32 number = le32_to_cpu(cap->number);
|
|
|
|
dev_p->num_vfs_exposed = number;
|
|
ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
|
|
dev_p->num_vfs_exposed);
|
|
}
|
|
|
|
/**
|
|
* ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
|
|
* @hw: pointer to the HW struct
|
|
* @dev_p: pointer to device capabilities structure
|
|
* @cap: capability element to parse
|
|
*
|
|
* Parse ICE_AQC_CAPS_VSI for device capabilities.
|
|
*/
|
|
static void
|
|
ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
|
|
struct ice_aqc_list_caps_elem *cap)
|
|
{
|
|
u32 number = le32_to_cpu(cap->number);
|
|
|
|
dev_p->num_vsi_allocd_to_host = number;
|
|
ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
|
|
dev_p->num_vsi_allocd_to_host);
|
|
}
|
|
|
|
/**
|
|
* ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
|
|
* @hw: pointer to the HW struct
|
|
* @dev_p: pointer to device capabilities structure
|
|
* @cap: capability element to parse
|
|
*
|
|
* Parse ICE_AQC_CAPS_1588 for device capabilities.
|
|
*/
|
|
static void
|
|
ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
|
|
struct ice_aqc_list_caps_elem *cap)
|
|
{
|
|
struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
|
|
u32 logical_id = le32_to_cpu(cap->logical_id);
|
|
u32 phys_id = le32_to_cpu(cap->phys_id);
|
|
u32 number = le32_to_cpu(cap->number);
|
|
|
|
info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
|
|
dev_p->common_cap.ieee_1588 = info->ena;
|
|
|
|
info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
|
|
info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
|
|
info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
|
|
|
|
info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
|
|
info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
|
|
info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
|
|
|
|
info->ena_ports = logical_id;
|
|
info->tmr_own_map = phys_id;
|
|
|
|
ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
|
|
dev_p->common_cap.ieee_1588);
|
|
ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
|
|
info->tmr0_owner);
|
|
ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
|
|
info->tmr0_owned);
|
|
ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
|
|
info->tmr0_ena);
|
|
ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
|
|
info->tmr1_owner);
|
|
ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
|
|
info->tmr1_owned);
|
|
ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
|
|
info->tmr1_ena);
|
|
ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
|
|
info->ena_ports);
|
|
ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
|
|
info->tmr_own_map);
|
|
}
|
|
|
|
/**
|
|
* ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
|
|
* @hw: pointer to the HW struct
|
|
* @dev_p: pointer to device capabilities structure
|
|
* @cap: capability element to parse
|
|
*
|
|
* Parse ICE_AQC_CAPS_FD for device capabilities.
|
|
*/
|
|
static void
|
|
ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
|
|
struct ice_aqc_list_caps_elem *cap)
|
|
{
|
|
u32 number = le32_to_cpu(cap->number);
|
|
|
|
dev_p->num_flow_director_fltr = number;
|
|
ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
|
|
dev_p->num_flow_director_fltr);
|
|
}
|
|
|
|
/**
|
|
* ice_parse_dev_caps - Parse device capabilities
|
|
* @hw: pointer to the HW struct
|
|
* @dev_p: pointer to device capabilities structure
|
|
* @buf: buffer containing the device capability records
|
|
* @cap_count: the number of capabilities
|
|
*
|
|
* Helper device to parse device (0x000B) capabilities list. For
|
|
* capabilities shared between device and function, this relies on
|
|
* ice_parse_common_caps.
|
|
*
|
|
* Loop through the list of provided capabilities and extract the relevant
|
|
* data into the device capabilities structured.
|
|
*/
|
|
static void
|
|
ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
|
|
void *buf, u32 cap_count)
|
|
{
|
|
struct ice_aqc_list_caps_elem *cap_resp;
|
|
u32 i;
|
|
|
|
cap_resp = buf;
|
|
|
|
memset(dev_p, 0, sizeof(*dev_p));
|
|
|
|
for (i = 0; i < cap_count; i++) {
|
|
u16 cap = le16_to_cpu(cap_resp[i].cap);
|
|
bool found;
|
|
|
|
found = ice_parse_common_caps(hw, &dev_p->common_cap,
|
|
&cap_resp[i], "dev caps");
|
|
|
|
switch (cap) {
|
|
case ICE_AQC_CAPS_VALID_FUNCTIONS:
|
|
ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
|
|
break;
|
|
case ICE_AQC_CAPS_VF:
|
|
ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
|
|
break;
|
|
case ICE_AQC_CAPS_VSI:
|
|
ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
|
|
break;
|
|
case ICE_AQC_CAPS_1588:
|
|
ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
|
|
break;
|
|
case ICE_AQC_CAPS_FD:
|
|
ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
|
|
break;
|
|
default:
|
|
/* Don't list common capabilities as unknown */
|
|
if (!found)
|
|
ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
|
|
i, cap);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_list_caps - query function/device capabilities
|
|
* @hw: pointer to the HW struct
|
|
* @buf: a buffer to hold the capabilities
|
|
* @buf_size: size of the buffer
|
|
* @cap_count: if not NULL, set to the number of capabilities reported
|
|
* @opc: capabilities type to discover, device or function
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Get the function (0x000A) or device (0x000B) capabilities description from
|
|
* firmware and store it in the buffer.
|
|
*
|
|
* If the cap_count pointer is not NULL, then it is set to the number of
|
|
* capabilities firmware will report. Note that if the buffer size is too
|
|
* small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
|
|
* cap_count will still be updated in this case. It is recommended that the
|
|
* buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
|
|
* firmware could return) to avoid this.
|
|
*/
|
|
int
|
|
ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
|
|
enum ice_adminq_opc opc, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_list_caps *cmd;
|
|
struct ice_aq_desc desc;
|
|
int status;
|
|
|
|
cmd = &desc.params.get_cap;
|
|
|
|
if (opc != ice_aqc_opc_list_func_caps &&
|
|
opc != ice_aqc_opc_list_dev_caps)
|
|
return -EINVAL;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, opc);
|
|
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
|
|
|
if (cap_count)
|
|
*cap_count = le32_to_cpu(cmd->count);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_discover_dev_caps - Read and extract device capabilities
|
|
* @hw: pointer to the hardware structure
|
|
* @dev_caps: pointer to device capabilities structure
|
|
*
|
|
* Read the device capabilities and extract them into the dev_caps structure
|
|
* for later use.
|
|
*/
|
|
int
|
|
ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
|
|
{
|
|
u32 cap_count = 0;
|
|
void *cbuf;
|
|
int status;
|
|
|
|
cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
|
|
if (!cbuf)
|
|
return -ENOMEM;
|
|
|
|
/* Although the driver doesn't know the number of capabilities the
|
|
* device will return, we can simply send a 4KB buffer, the maximum
|
|
* possible size that firmware can return.
|
|
*/
|
|
cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
|
|
|
|
status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
|
|
ice_aqc_opc_list_dev_caps, NULL);
|
|
if (!status)
|
|
ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
|
|
kfree(cbuf);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_discover_func_caps - Read and extract function capabilities
|
|
* @hw: pointer to the hardware structure
|
|
* @func_caps: pointer to function capabilities structure
|
|
*
|
|
* Read the function capabilities and extract them into the func_caps structure
|
|
* for later use.
|
|
*/
|
|
static int
|
|
ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
|
|
{
|
|
u32 cap_count = 0;
|
|
void *cbuf;
|
|
int status;
|
|
|
|
cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
|
|
if (!cbuf)
|
|
return -ENOMEM;
|
|
|
|
/* Although the driver doesn't know the number of capabilities the
|
|
* device will return, we can simply send a 4KB buffer, the maximum
|
|
* possible size that firmware can return.
|
|
*/
|
|
cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
|
|
|
|
status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
|
|
ice_aqc_opc_list_func_caps, NULL);
|
|
if (!status)
|
|
ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
|
|
kfree(cbuf);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
void ice_set_safe_mode_caps(struct ice_hw *hw)
|
|
{
|
|
struct ice_hw_func_caps *func_caps = &hw->func_caps;
|
|
struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
|
|
struct ice_hw_common_caps cached_caps;
|
|
u32 num_funcs;
|
|
|
|
/* cache some func_caps values that should be restored after memset */
|
|
cached_caps = func_caps->common_cap;
|
|
|
|
/* unset func capabilities */
|
|
memset(func_caps, 0, sizeof(*func_caps));
|
|
|
|
#define ICE_RESTORE_FUNC_CAP(name) \
|
|
func_caps->common_cap.name = cached_caps.name
|
|
|
|
/* restore cached values */
|
|
ICE_RESTORE_FUNC_CAP(valid_functions);
|
|
ICE_RESTORE_FUNC_CAP(txq_first_id);
|
|
ICE_RESTORE_FUNC_CAP(rxq_first_id);
|
|
ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
|
|
ICE_RESTORE_FUNC_CAP(max_mtu);
|
|
ICE_RESTORE_FUNC_CAP(nvm_unified_update);
|
|
ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
|
|
ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
|
|
ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
|
|
|
|
/* one Tx and one Rx queue in safe mode */
|
|
func_caps->common_cap.num_rxq = 1;
|
|
func_caps->common_cap.num_txq = 1;
|
|
|
|
/* two MSIX vectors, one for traffic and one for misc causes */
|
|
func_caps->common_cap.num_msix_vectors = 2;
|
|
func_caps->guar_num_vsi = 1;
|
|
|
|
/* cache some dev_caps values that should be restored after memset */
|
|
cached_caps = dev_caps->common_cap;
|
|
num_funcs = dev_caps->num_funcs;
|
|
|
|
/* unset dev capabilities */
|
|
memset(dev_caps, 0, sizeof(*dev_caps));
|
|
|
|
#define ICE_RESTORE_DEV_CAP(name) \
|
|
dev_caps->common_cap.name = cached_caps.name
|
|
|
|
/* restore cached values */
|
|
ICE_RESTORE_DEV_CAP(valid_functions);
|
|
ICE_RESTORE_DEV_CAP(txq_first_id);
|
|
ICE_RESTORE_DEV_CAP(rxq_first_id);
|
|
ICE_RESTORE_DEV_CAP(msix_vector_first_id);
|
|
ICE_RESTORE_DEV_CAP(max_mtu);
|
|
ICE_RESTORE_DEV_CAP(nvm_unified_update);
|
|
ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
|
|
ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
|
|
ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
|
|
dev_caps->num_funcs = num_funcs;
|
|
|
|
/* one Tx and one Rx queue per function in safe mode */
|
|
dev_caps->common_cap.num_rxq = num_funcs;
|
|
dev_caps->common_cap.num_txq = num_funcs;
|
|
|
|
/* two MSIX vectors per function */
|
|
dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
|
|
}
|
|
|
|
/**
|
|
* ice_get_caps - get info about the HW
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
int ice_get_caps(struct ice_hw *hw)
|
|
{
|
|
int status;
|
|
|
|
status = ice_discover_dev_caps(hw, &hw->dev_caps);
|
|
if (status)
|
|
return status;
|
|
|
|
return ice_discover_func_caps(hw, &hw->func_caps);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_manage_mac_write - manage MAC address write command
|
|
* @hw: pointer to the HW struct
|
|
* @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
|
|
* @flags: flags to control write behavior
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* This function is used to write MAC address to the NVM (0x0108).
|
|
*/
|
|
int
|
|
ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_manage_mac_write *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.mac_write;
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
|
|
|
|
cmd->flags = flags;
|
|
ether_addr_copy(cmd->mac_addr, mac_addr);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_clear_pxe_mode
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Tell the firmware that the driver is taking over from PXE (0x0110).
|
|
*/
|
|
static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
|
|
desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_clear_pxe_mode - clear pxe operations mode
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Make sure all PXE mode settings are cleared, including things
|
|
* like descriptor fetch/write-back mode.
|
|
*/
|
|
void ice_clear_pxe_mode(struct ice_hw *hw)
|
|
{
|
|
if (ice_check_sq_alive(hw, &hw->adminq))
|
|
ice_aq_clear_pxe_mode(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_port_params - set physical port parameters.
|
|
* @pi: pointer to the port info struct
|
|
* @double_vlan: if set double VLAN is enabled
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set Physical port parameters (0x0203)
|
|
*/
|
|
int
|
|
ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
|
|
struct ice_sq_cd *cd)
|
|
|
|
{
|
|
struct ice_aqc_set_port_params *cmd;
|
|
struct ice_hw *hw = pi->hw;
|
|
struct ice_aq_desc desc;
|
|
u16 cmd_flags = 0;
|
|
|
|
cmd = &desc.params.set_port_params;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
|
|
if (double_vlan)
|
|
cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
|
|
cmd->cmd_flags = cpu_to_le16(cmd_flags);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_get_link_speed_based_on_phy_type - returns link speed
|
|
* @phy_type_low: lower part of phy_type
|
|
* @phy_type_high: higher part of phy_type
|
|
*
|
|
* This helper function will convert an entry in PHY type structure
|
|
* [phy_type_low, phy_type_high] to its corresponding link speed.
|
|
* Note: In the structure of [phy_type_low, phy_type_high], there should
|
|
* be one bit set, as this function will convert one PHY type to its
|
|
* speed.
|
|
* If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
|
|
* If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
|
|
*/
|
|
static u16
|
|
ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
|
|
{
|
|
u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
|
|
switch (phy_type_low) {
|
|
case ICE_PHY_TYPE_LOW_100BASE_TX:
|
|
case ICE_PHY_TYPE_LOW_100M_SGMII:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_1000BASE_T:
|
|
case ICE_PHY_TYPE_LOW_1000BASE_SX:
|
|
case ICE_PHY_TYPE_LOW_1000BASE_LX:
|
|
case ICE_PHY_TYPE_LOW_1000BASE_KX:
|
|
case ICE_PHY_TYPE_LOW_1G_SGMII:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_2500BASE_T:
|
|
case ICE_PHY_TYPE_LOW_2500BASE_X:
|
|
case ICE_PHY_TYPE_LOW_2500BASE_KX:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_5GBASE_T:
|
|
case ICE_PHY_TYPE_LOW_5GBASE_KR:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_10GBASE_T:
|
|
case ICE_PHY_TYPE_LOW_10G_SFI_DA:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
|
|
case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_25GBASE_T:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR1:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR1:
|
|
case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_40GBASE_CR4:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_SR4:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_LR4:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_KR4:
|
|
case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_40G_XLAUI:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_50GBASE_CR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_SR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_LR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_KR2:
|
|
case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_50G_LAUI2:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_CP:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_FR:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI1:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_SR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_LR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_KR4:
|
|
case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_100G_CAUI4:
|
|
case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_100G_AUI4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CP2:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_SR2:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_DR:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
|
|
break;
|
|
default:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
break;
|
|
}
|
|
|
|
switch (phy_type_high) {
|
|
case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
|
|
case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_HIGH_100G_CAUI2:
|
|
case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_HIGH_100G_AUI2:
|
|
speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
|
|
break;
|
|
default:
|
|
speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
break;
|
|
}
|
|
|
|
if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
|
|
speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
|
|
return ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
|
|
speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
|
|
return ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
|
|
speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
|
|
return speed_phy_type_low;
|
|
else
|
|
return speed_phy_type_high;
|
|
}
|
|
|
|
/**
|
|
* ice_update_phy_type
|
|
* @phy_type_low: pointer to the lower part of phy_type
|
|
* @phy_type_high: pointer to the higher part of phy_type
|
|
* @link_speeds_bitmap: targeted link speeds bitmap
|
|
*
|
|
* Note: For the link_speeds_bitmap structure, you can check it at
|
|
* [ice_aqc_get_link_status->link_speed]. Caller can pass in
|
|
* link_speeds_bitmap include multiple speeds.
|
|
*
|
|
* Each entry in this [phy_type_low, phy_type_high] structure will
|
|
* present a certain link speed. This helper function will turn on bits
|
|
* in [phy_type_low, phy_type_high] structure based on the value of
|
|
* link_speeds_bitmap input parameter.
|
|
*/
|
|
void
|
|
ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
|
|
u16 link_speeds_bitmap)
|
|
{
|
|
u64 pt_high;
|
|
u64 pt_low;
|
|
int index;
|
|
u16 speed;
|
|
|
|
/* We first check with low part of phy_type */
|
|
for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
|
|
pt_low = BIT_ULL(index);
|
|
speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
|
|
|
|
if (link_speeds_bitmap & speed)
|
|
*phy_type_low |= BIT_ULL(index);
|
|
}
|
|
|
|
/* We then check with high part of phy_type */
|
|
for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
|
|
pt_high = BIT_ULL(index);
|
|
speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
|
|
|
|
if (link_speeds_bitmap & speed)
|
|
*phy_type_high |= BIT_ULL(index);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_phy_cfg
|
|
* @hw: pointer to the HW struct
|
|
* @pi: port info structure of the interested logical port
|
|
* @cfg: structure with PHY configuration data to be set
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set the various PHY configuration parameters supported on the Port.
|
|
* One or more of the Set PHY config parameters may be ignored in an MFP
|
|
* mode as the PF may not have the privilege to set some of the PHY Config
|
|
* parameters. This status will be indicated by the command response (0x0601).
|
|
*/
|
|
int
|
|
ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
|
|
struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
int status;
|
|
|
|
if (!cfg)
|
|
return -EINVAL;
|
|
|
|
/* Ensure that only valid bits of cfg->caps can be turned on. */
|
|
if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
|
|
ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
|
|
cfg->caps);
|
|
|
|
cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
|
|
}
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
|
|
desc.params.set_phy.lport_num = pi->lport;
|
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
|
|
|
ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
|
|
ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
|
|
(unsigned long long)le64_to_cpu(cfg->phy_type_low));
|
|
ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
|
|
(unsigned long long)le64_to_cpu(cfg->phy_type_high));
|
|
ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
|
|
ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
|
|
cfg->low_power_ctrl_an);
|
|
ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
|
|
ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
|
|
ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
|
|
cfg->link_fec_opt);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
|
|
if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
|
|
status = 0;
|
|
|
|
if (!status)
|
|
pi->phy.curr_user_phy_cfg = *cfg;
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_update_link_info - update status of the HW network link
|
|
* @pi: port info structure of the interested logical port
|
|
*/
|
|
int ice_update_link_info(struct ice_port_info *pi)
|
|
{
|
|
struct ice_link_status *li;
|
|
int status;
|
|
|
|
if (!pi)
|
|
return -EINVAL;
|
|
|
|
li = &pi->phy.link_info;
|
|
|
|
status = ice_aq_get_link_info(pi, true, NULL, NULL);
|
|
if (status)
|
|
return status;
|
|
|
|
if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
|
|
struct ice_aqc_get_phy_caps_data *pcaps;
|
|
struct ice_hw *hw;
|
|
|
|
hw = pi->hw;
|
|
pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
|
|
GFP_KERNEL);
|
|
if (!pcaps)
|
|
return -ENOMEM;
|
|
|
|
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
|
|
pcaps, NULL);
|
|
|
|
devm_kfree(ice_hw_to_dev(hw), pcaps);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_cache_phy_user_req
|
|
* @pi: port information structure
|
|
* @cache_data: PHY logging data
|
|
* @cache_mode: PHY logging mode
|
|
*
|
|
* Log the user request on (FC, FEC, SPEED) for later use.
|
|
*/
|
|
static void
|
|
ice_cache_phy_user_req(struct ice_port_info *pi,
|
|
struct ice_phy_cache_mode_data cache_data,
|
|
enum ice_phy_cache_mode cache_mode)
|
|
{
|
|
if (!pi)
|
|
return;
|
|
|
|
switch (cache_mode) {
|
|
case ICE_FC_MODE:
|
|
pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
|
|
break;
|
|
case ICE_SPEED_MODE:
|
|
pi->phy.curr_user_speed_req =
|
|
cache_data.data.curr_user_speed_req;
|
|
break;
|
|
case ICE_FEC_MODE:
|
|
pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_caps_to_fc_mode
|
|
* @caps: PHY capabilities
|
|
*
|
|
* Convert PHY FC capabilities to ice FC mode
|
|
*/
|
|
enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
|
|
{
|
|
if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
|
|
caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
|
|
return ICE_FC_FULL;
|
|
|
|
if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
|
|
return ICE_FC_TX_PAUSE;
|
|
|
|
if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
|
|
return ICE_FC_RX_PAUSE;
|
|
|
|
return ICE_FC_NONE;
|
|
}
|
|
|
|
/**
|
|
* ice_caps_to_fec_mode
|
|
* @caps: PHY capabilities
|
|
* @fec_options: Link FEC options
|
|
*
|
|
* Convert PHY FEC capabilities to ice FEC mode
|
|
*/
|
|
enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
|
|
{
|
|
if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
|
|
return ICE_FEC_AUTO;
|
|
|
|
if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
|
|
ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
|
|
ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
|
|
ICE_AQC_PHY_FEC_25G_KR_REQ))
|
|
return ICE_FEC_BASER;
|
|
|
|
if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
|
|
ICE_AQC_PHY_FEC_25G_RS_544_REQ |
|
|
ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
|
|
return ICE_FEC_RS;
|
|
|
|
return ICE_FEC_NONE;
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_phy_fc - Configure PHY FC data based on FC mode
|
|
* @pi: port information structure
|
|
* @cfg: PHY configuration data to set FC mode
|
|
* @req_mode: FC mode to configure
|
|
*/
|
|
int
|
|
ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
|
|
enum ice_fc_mode req_mode)
|
|
{
|
|
struct ice_phy_cache_mode_data cache_data;
|
|
u8 pause_mask = 0x0;
|
|
|
|
if (!pi || !cfg)
|
|
return -EINVAL;
|
|
|
|
switch (req_mode) {
|
|
case ICE_FC_FULL:
|
|
pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
|
|
pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
|
|
break;
|
|
case ICE_FC_RX_PAUSE:
|
|
pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
|
|
break;
|
|
case ICE_FC_TX_PAUSE:
|
|
pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* clear the old pause settings */
|
|
cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
|
|
ICE_AQC_PHY_EN_RX_LINK_PAUSE);
|
|
|
|
/* set the new capabilities */
|
|
cfg->caps |= pause_mask;
|
|
|
|
/* Cache user FC request */
|
|
cache_data.data.curr_user_fc_req = req_mode;
|
|
ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_set_fc
|
|
* @pi: port information structure
|
|
* @aq_failures: pointer to status code, specific to ice_set_fc routine
|
|
* @ena_auto_link_update: enable automatic link update
|
|
*
|
|
* Set the requested flow control mode.
|
|
*/
|
|
int
|
|
ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
|
|
{
|
|
struct ice_aqc_set_phy_cfg_data cfg = { 0 };
|
|
struct ice_aqc_get_phy_caps_data *pcaps;
|
|
struct ice_hw *hw;
|
|
int status;
|
|
|
|
if (!pi || !aq_failures)
|
|
return -EINVAL;
|
|
|
|
*aq_failures = 0;
|
|
hw = pi->hw;
|
|
|
|
pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
|
|
if (!pcaps)
|
|
return -ENOMEM;
|
|
|
|
/* Get the current PHY config */
|
|
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
|
|
pcaps, NULL);
|
|
if (status) {
|
|
*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
|
|
goto out;
|
|
}
|
|
|
|
ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
|
|
|
|
/* Configure the set PHY data */
|
|
status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
|
|
if (status)
|
|
goto out;
|
|
|
|
/* If the capabilities have changed, then set the new config */
|
|
if (cfg.caps != pcaps->caps) {
|
|
int retry_count, retry_max = 10;
|
|
|
|
/* Auto restart link so settings take effect */
|
|
if (ena_auto_link_update)
|
|
cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
|
|
|
|
status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
|
|
if (status) {
|
|
*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
|
|
goto out;
|
|
}
|
|
|
|
/* Update the link info
|
|
* It sometimes takes a really long time for link to
|
|
* come back from the atomic reset. Thus, we wait a
|
|
* little bit.
|
|
*/
|
|
for (retry_count = 0; retry_count < retry_max; retry_count++) {
|
|
status = ice_update_link_info(pi);
|
|
|
|
if (!status)
|
|
break;
|
|
|
|
mdelay(100);
|
|
}
|
|
|
|
if (status)
|
|
*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
|
|
}
|
|
|
|
out:
|
|
devm_kfree(ice_hw_to_dev(hw), pcaps);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_phy_caps_equals_cfg
|
|
* @phy_caps: PHY capabilities
|
|
* @phy_cfg: PHY configuration
|
|
*
|
|
* Helper function to determine if PHY capabilities matches PHY
|
|
* configuration
|
|
*/
|
|
bool
|
|
ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
|
|
struct ice_aqc_set_phy_cfg_data *phy_cfg)
|
|
{
|
|
u8 caps_mask, cfg_mask;
|
|
|
|
if (!phy_caps || !phy_cfg)
|
|
return false;
|
|
|
|
/* These bits are not common between capabilities and configuration.
|
|
* Do not use them to determine equality.
|
|
*/
|
|
caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
|
|
ICE_AQC_GET_PHY_EN_MOD_QUAL);
|
|
cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
|
|
|
|
if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
|
|
phy_caps->phy_type_high != phy_cfg->phy_type_high ||
|
|
((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
|
|
phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
|
|
phy_caps->eee_cap != phy_cfg->eee_cap ||
|
|
phy_caps->eeer_value != phy_cfg->eeer_value ||
|
|
phy_caps->link_fec_options != phy_cfg->link_fec_opt)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
|
|
* @pi: port information structure
|
|
* @caps: PHY ability structure to copy date from
|
|
* @cfg: PHY configuration structure to copy data to
|
|
*
|
|
* Helper function to copy AQC PHY get ability data to PHY set configuration
|
|
* data structure
|
|
*/
|
|
void
|
|
ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
|
|
struct ice_aqc_get_phy_caps_data *caps,
|
|
struct ice_aqc_set_phy_cfg_data *cfg)
|
|
{
|
|
if (!pi || !caps || !cfg)
|
|
return;
|
|
|
|
memset(cfg, 0, sizeof(*cfg));
|
|
cfg->phy_type_low = caps->phy_type_low;
|
|
cfg->phy_type_high = caps->phy_type_high;
|
|
cfg->caps = caps->caps;
|
|
cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
|
|
cfg->eee_cap = caps->eee_cap;
|
|
cfg->eeer_value = caps->eeer_value;
|
|
cfg->link_fec_opt = caps->link_fec_options;
|
|
cfg->module_compliance_enforcement =
|
|
caps->module_compliance_enforcement;
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
|
|
* @pi: port information structure
|
|
* @cfg: PHY configuration data to set FEC mode
|
|
* @fec: FEC mode to configure
|
|
*/
|
|
int
|
|
ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
|
|
enum ice_fec_mode fec)
|
|
{
|
|
struct ice_aqc_get_phy_caps_data *pcaps;
|
|
struct ice_hw *hw;
|
|
int status;
|
|
|
|
if (!pi || !cfg)
|
|
return -EINVAL;
|
|
|
|
hw = pi->hw;
|
|
|
|
pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
|
|
if (!pcaps)
|
|
return -ENOMEM;
|
|
|
|
status = ice_aq_get_phy_caps(pi, false,
|
|
(ice_fw_supports_report_dflt_cfg(hw) ?
|
|
ICE_AQC_REPORT_DFLT_CFG :
|
|
ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
|
|
if (status)
|
|
goto out;
|
|
|
|
cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
|
|
cfg->link_fec_opt = pcaps->link_fec_options;
|
|
|
|
switch (fec) {
|
|
case ICE_FEC_BASER:
|
|
/* Clear RS bits, and AND BASE-R ability
|
|
* bits and OR request bits.
|
|
*/
|
|
cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
|
|
ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
|
|
cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
|
|
ICE_AQC_PHY_FEC_25G_KR_REQ;
|
|
break;
|
|
case ICE_FEC_RS:
|
|
/* Clear BASE-R bits, and AND RS ability
|
|
* bits and OR request bits.
|
|
*/
|
|
cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
|
|
cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
|
|
ICE_AQC_PHY_FEC_25G_RS_544_REQ;
|
|
break;
|
|
case ICE_FEC_NONE:
|
|
/* Clear all FEC option bits. */
|
|
cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
|
|
break;
|
|
case ICE_FEC_AUTO:
|
|
/* AND auto FEC bit, and all caps bits. */
|
|
cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
|
|
cfg->link_fec_opt |= pcaps->link_fec_options;
|
|
break;
|
|
default:
|
|
status = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
|
|
!ice_fw_supports_report_dflt_cfg(hw)) {
|
|
struct ice_link_default_override_tlv tlv = { 0 };
|
|
|
|
status = ice_get_link_default_override(&tlv, pi);
|
|
if (status)
|
|
goto out;
|
|
|
|
if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
|
|
(tlv.options & ICE_LINK_OVERRIDE_EN))
|
|
cfg->link_fec_opt = tlv.fec_options;
|
|
}
|
|
|
|
out:
|
|
kfree(pcaps);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_get_link_status - get status of the HW network link
|
|
* @pi: port information structure
|
|
* @link_up: pointer to bool (true/false = linkup/linkdown)
|
|
*
|
|
* Variable link_up is true if link is up, false if link is down.
|
|
* The variable link_up is invalid if status is non zero. As a
|
|
* result of this call, link status reporting becomes enabled
|
|
*/
|
|
int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
|
|
{
|
|
struct ice_phy_info *phy_info;
|
|
int status = 0;
|
|
|
|
if (!pi || !link_up)
|
|
return -EINVAL;
|
|
|
|
phy_info = &pi->phy;
|
|
|
|
if (phy_info->get_link_info) {
|
|
status = ice_update_link_info(pi);
|
|
|
|
if (status)
|
|
ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
|
|
status);
|
|
}
|
|
|
|
*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_link_restart_an
|
|
* @pi: pointer to the port information structure
|
|
* @ena_link: if true: enable link, if false: disable link
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Sets up the link and restarts the Auto-Negotiation over the link.
|
|
*/
|
|
int
|
|
ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_restart_an *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.restart_an;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
|
|
|
|
cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
|
|
cmd->lport_num = pi->lport;
|
|
if (ena_link)
|
|
cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
|
|
else
|
|
cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
|
|
|
|
return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_event_mask
|
|
* @hw: pointer to the HW struct
|
|
* @port_num: port number of the physical function
|
|
* @mask: event mask to be set
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set event mask (0x0613)
|
|
*/
|
|
int
|
|
ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_set_event_mask *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.set_event_mask;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
|
|
|
|
cmd->lport_num = port_num;
|
|
|
|
cmd->event_mask = cpu_to_le16(mask);
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_mac_loopback
|
|
* @hw: pointer to the HW struct
|
|
* @ena_lpbk: Enable or Disable loopback
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Enable/disable loopback on a given port
|
|
*/
|
|
int
|
|
ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_set_mac_lb *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.set_mac_lb;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
|
|
if (ena_lpbk)
|
|
cmd->lb_mode = ICE_AQ_MAC_LB_EN;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_port_id_led
|
|
* @pi: pointer to the port information
|
|
* @is_orig_mode: is this LED set to original mode (by the net-list)
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set LED value for the given port (0x06e9)
|
|
*/
|
|
int
|
|
ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_set_port_id_led *cmd;
|
|
struct ice_hw *hw = pi->hw;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.set_port_id_led;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
|
|
|
|
if (is_orig_mode)
|
|
cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
|
|
else
|
|
cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_sff_eeprom
|
|
* @hw: pointer to the HW struct
|
|
* @lport: bits [7:0] = logical port, bit [8] = logical port valid
|
|
* @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
|
|
* @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
|
|
* @page: QSFP page
|
|
* @set_page: set or ignore the page
|
|
* @data: pointer to data buffer to be read/written to the I2C device.
|
|
* @length: 1-16 for read, 1 for write.
|
|
* @write: 0 read, 1 for write.
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Read/Write SFF EEPROM (0x06EE)
|
|
*/
|
|
int
|
|
ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
|
|
u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
|
|
bool write, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_sff_eeprom *cmd;
|
|
struct ice_aq_desc desc;
|
|
int status;
|
|
|
|
if (!data || (mem_addr & 0xff00))
|
|
return -EINVAL;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
|
|
cmd = &desc.params.read_write_sff_param;
|
|
desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
|
|
cmd->lport_num = (u8)(lport & 0xff);
|
|
cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
|
|
cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
|
|
ICE_AQC_SFF_I2CBUS_7BIT_M) |
|
|
((set_page <<
|
|
ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
|
|
ICE_AQC_SFF_SET_EEPROM_PAGE_M));
|
|
cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
|
|
cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
|
|
if (write)
|
|
cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, data, length, cd);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* __ice_aq_get_set_rss_lut
|
|
* @hw: pointer to the hardware structure
|
|
* @params: RSS LUT parameters
|
|
* @set: set true to set the table, false to get the table
|
|
*
|
|
* Internal function to get (0x0B05) or set (0x0B03) RSS look up table
|
|
*/
|
|
static int
|
|
__ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
|
|
{
|
|
u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
|
|
struct ice_aqc_get_set_rss_lut *cmd_resp;
|
|
struct ice_aq_desc desc;
|
|
int status;
|
|
u8 *lut;
|
|
|
|
if (!params)
|
|
return -EINVAL;
|
|
|
|
vsi_handle = params->vsi_handle;
|
|
lut = params->lut;
|
|
|
|
if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
|
|
return -EINVAL;
|
|
|
|
lut_size = params->lut_size;
|
|
lut_type = params->lut_type;
|
|
glob_lut_idx = params->global_lut_id;
|
|
vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
|
|
|
|
cmd_resp = &desc.params.get_set_rss_lut;
|
|
|
|
if (set) {
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
|
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
|
} else {
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
|
|
}
|
|
|
|
cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
|
|
ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
|
|
ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
|
|
ICE_AQC_GSET_RSS_LUT_VSI_VALID);
|
|
|
|
switch (lut_type) {
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
|
|
flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
|
|
break;
|
|
default:
|
|
status = -EINVAL;
|
|
goto ice_aq_get_set_rss_lut_exit;
|
|
}
|
|
|
|
if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
|
|
flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
|
|
ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
|
|
|
|
if (!set)
|
|
goto ice_aq_get_set_rss_lut_send;
|
|
} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
|
|
if (!set)
|
|
goto ice_aq_get_set_rss_lut_send;
|
|
} else {
|
|
goto ice_aq_get_set_rss_lut_send;
|
|
}
|
|
|
|
/* LUT size is only valid for Global and PF table types */
|
|
switch (lut_size) {
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
|
|
break;
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
|
|
flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
|
|
break;
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
|
|
if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
|
|
flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
|
|
break;
|
|
}
|
|
fallthrough;
|
|
default:
|
|
status = -EINVAL;
|
|
goto ice_aq_get_set_rss_lut_exit;
|
|
}
|
|
|
|
ice_aq_get_set_rss_lut_send:
|
|
cmd_resp->flags = cpu_to_le16(flags);
|
|
status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
|
|
|
|
ice_aq_get_set_rss_lut_exit:
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_rss_lut
|
|
* @hw: pointer to the hardware structure
|
|
* @get_params: RSS LUT parameters used to specify which RSS LUT to get
|
|
*
|
|
* get the RSS lookup table, PF or VSI type
|
|
*/
|
|
int
|
|
ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
|
|
{
|
|
return __ice_aq_get_set_rss_lut(hw, get_params, false);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_rss_lut
|
|
* @hw: pointer to the hardware structure
|
|
* @set_params: RSS LUT parameters used to specify how to set the RSS LUT
|
|
*
|
|
* set the RSS lookup table, PF or VSI type
|
|
*/
|
|
int
|
|
ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
|
|
{
|
|
return __ice_aq_get_set_rss_lut(hw, set_params, true);
|
|
}
|
|
|
|
/**
|
|
* __ice_aq_get_set_rss_key
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_id: VSI FW index
|
|
* @key: pointer to key info struct
|
|
* @set: set true to set the key, false to get the key
|
|
*
|
|
* get (0x0B04) or set (0x0B02) the RSS key per VSI
|
|
*/
|
|
static int
|
|
__ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
|
|
struct ice_aqc_get_set_rss_keys *key, bool set)
|
|
{
|
|
struct ice_aqc_get_set_rss_key *cmd_resp;
|
|
u16 key_size = sizeof(*key);
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd_resp = &desc.params.get_set_rss_key;
|
|
|
|
if (set) {
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
|
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
|
} else {
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
|
|
}
|
|
|
|
cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
|
|
ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
|
|
ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
|
|
ICE_AQC_GSET_RSS_KEY_VSI_VALID);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_rss_key
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: software VSI handle
|
|
* @key: pointer to key info struct
|
|
*
|
|
* get the RSS key per VSI
|
|
*/
|
|
int
|
|
ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
|
|
struct ice_aqc_get_set_rss_keys *key)
|
|
{
|
|
if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
|
|
return -EINVAL;
|
|
|
|
return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
|
|
key, false);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_rss_key
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: software VSI handle
|
|
* @keys: pointer to key info struct
|
|
*
|
|
* set the RSS key per VSI
|
|
*/
|
|
int
|
|
ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
|
|
struct ice_aqc_get_set_rss_keys *keys)
|
|
{
|
|
if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
|
|
return -EINVAL;
|
|
|
|
return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
|
|
keys, true);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_add_lan_txq
|
|
* @hw: pointer to the hardware structure
|
|
* @num_qgrps: Number of added queue groups
|
|
* @qg_list: list of queue groups to be added
|
|
* @buf_size: size of buffer for indirect command
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Add Tx LAN queue (0x0C30)
|
|
*
|
|
* NOTE:
|
|
* Prior to calling add Tx LAN queue:
|
|
* Initialize the following as part of the Tx queue context:
|
|
* Completion queue ID if the queue uses Completion queue, Quanta profile,
|
|
* Cache profile and Packet shaper profile.
|
|
*
|
|
* After add Tx LAN queue AQ command is completed:
|
|
* Interrupts should be associated with specific queues,
|
|
* Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
|
|
* flow.
|
|
*/
|
|
static int
|
|
ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
|
|
struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_add_tx_qgrp *list;
|
|
struct ice_aqc_add_txqs *cmd;
|
|
struct ice_aq_desc desc;
|
|
u16 i, sum_size = 0;
|
|
|
|
cmd = &desc.params.add_txqs;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
|
|
|
|
if (!qg_list)
|
|
return -EINVAL;
|
|
|
|
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
|
|
return -EINVAL;
|
|
|
|
for (i = 0, list = qg_list; i < num_qgrps; i++) {
|
|
sum_size += struct_size(list, txqs, list->num_txqs);
|
|
list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
|
|
list->num_txqs);
|
|
}
|
|
|
|
if (buf_size != sum_size)
|
|
return -EINVAL;
|
|
|
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
|
|
|
cmd->num_qgrps = num_qgrps;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_dis_lan_txq
|
|
* @hw: pointer to the hardware structure
|
|
* @num_qgrps: number of groups in the list
|
|
* @qg_list: the list of groups to disable
|
|
* @buf_size: the total size of the qg_list buffer in bytes
|
|
* @rst_src: if called due to reset, specifies the reset source
|
|
* @vmvf_num: the relative VM or VF number that is undergoing the reset
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Disable LAN Tx queue (0x0C31)
|
|
*/
|
|
static int
|
|
ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
|
|
struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
|
|
enum ice_disq_rst_src rst_src, u16 vmvf_num,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_dis_txq_item *item;
|
|
struct ice_aqc_dis_txqs *cmd;
|
|
struct ice_aq_desc desc;
|
|
u16 i, sz = 0;
|
|
int status;
|
|
|
|
cmd = &desc.params.dis_txqs;
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
|
|
|
|
/* qg_list can be NULL only in VM/VF reset flow */
|
|
if (!qg_list && !rst_src)
|
|
return -EINVAL;
|
|
|
|
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
|
|
return -EINVAL;
|
|
|
|
cmd->num_entries = num_qgrps;
|
|
|
|
cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
|
|
ICE_AQC_Q_DIS_TIMEOUT_M);
|
|
|
|
switch (rst_src) {
|
|
case ICE_VM_RESET:
|
|
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
|
|
cmd->vmvf_and_timeout |=
|
|
cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
|
|
break;
|
|
case ICE_VF_RESET:
|
|
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
|
|
/* In this case, FW expects vmvf_num to be absolute VF ID */
|
|
cmd->vmvf_and_timeout |=
|
|
cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
|
|
ICE_AQC_Q_DIS_VMVF_NUM_M);
|
|
break;
|
|
case ICE_NO_RESET:
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* flush pipe on time out */
|
|
cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
|
|
/* If no queue group info, we are in a reset flow. Issue the AQ */
|
|
if (!qg_list)
|
|
goto do_aq;
|
|
|
|
/* set RD bit to indicate that command buffer is provided by the driver
|
|
* and it needs to be read by the firmware
|
|
*/
|
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
|
|
|
for (i = 0, item = qg_list; i < num_qgrps; i++) {
|
|
u16 item_size = struct_size(item, q_id, item->num_qs);
|
|
|
|
/* If the num of queues is even, add 2 bytes of padding */
|
|
if ((item->num_qs % 2) == 0)
|
|
item_size += 2;
|
|
|
|
sz += item_size;
|
|
|
|
item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
|
|
}
|
|
|
|
if (buf_size != sz)
|
|
return -EINVAL;
|
|
|
|
do_aq:
|
|
status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
|
|
if (status) {
|
|
if (!qg_list)
|
|
ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
|
|
vmvf_num, hw->adminq.sq_last_status);
|
|
else
|
|
ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
|
|
le16_to_cpu(qg_list[0].q_id[0]),
|
|
hw->adminq.sq_last_status);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_add_rdma_qsets
|
|
* @hw: pointer to the hardware structure
|
|
* @num_qset_grps: Number of RDMA Qset groups
|
|
* @qset_list: list of Qset groups to be added
|
|
* @buf_size: size of buffer for indirect command
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Add Tx RDMA Qsets (0x0C33)
|
|
*/
|
|
static int
|
|
ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
|
|
struct ice_aqc_add_rdma_qset_data *qset_list,
|
|
u16 buf_size, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_add_rdma_qset_data *list;
|
|
struct ice_aqc_add_rdma_qset *cmd;
|
|
struct ice_aq_desc desc;
|
|
u16 i, sum_size = 0;
|
|
|
|
cmd = &desc.params.add_rdma_qset;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
|
|
|
|
if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
|
|
return -EINVAL;
|
|
|
|
for (i = 0, list = qset_list; i < num_qset_grps; i++) {
|
|
u16 num_qsets = le16_to_cpu(list->num_qsets);
|
|
|
|
sum_size += struct_size(list, rdma_qsets, num_qsets);
|
|
list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
|
|
num_qsets);
|
|
}
|
|
|
|
if (buf_size != sum_size)
|
|
return -EINVAL;
|
|
|
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
|
|
|
cmd->num_qset_grps = num_qset_grps;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
|
|
}
|
|
|
|
/* End of FW Admin Queue command wrappers */
|
|
|
|
/**
|
|
* ice_write_byte - write a byte to a packed context structure
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
|
|
{
|
|
u8 src_byte, dest_byte, mask;
|
|
u8 *from, *dest;
|
|
u16 shift_width;
|
|
|
|
/* copy from the next struct field */
|
|
from = src_ctx + ce_info->offset;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
mask = (u8)(BIT(ce_info->width) - 1);
|
|
|
|
src_byte = *from;
|
|
src_byte &= mask;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
src_byte <<= shift_width;
|
|
|
|
/* get the current bits from the target bit string */
|
|
dest = dest_ctx + (ce_info->lsb / 8);
|
|
|
|
memcpy(&dest_byte, dest, sizeof(dest_byte));
|
|
|
|
dest_byte &= ~mask; /* get the bits not changing */
|
|
dest_byte |= src_byte; /* add in the new bits */
|
|
|
|
/* put it all back */
|
|
memcpy(dest, &dest_byte, sizeof(dest_byte));
|
|
}
|
|
|
|
/**
|
|
* ice_write_word - write a word to a packed context structure
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
|
|
{
|
|
u16 src_word, mask;
|
|
__le16 dest_word;
|
|
u8 *from, *dest;
|
|
u16 shift_width;
|
|
|
|
/* copy from the next struct field */
|
|
from = src_ctx + ce_info->offset;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
mask = BIT(ce_info->width) - 1;
|
|
|
|
/* don't swizzle the bits until after the mask because the mask bits
|
|
* will be in a different bit position on big endian machines
|
|
*/
|
|
src_word = *(u16 *)from;
|
|
src_word &= mask;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
src_word <<= shift_width;
|
|
|
|
/* get the current bits from the target bit string */
|
|
dest = dest_ctx + (ce_info->lsb / 8);
|
|
|
|
memcpy(&dest_word, dest, sizeof(dest_word));
|
|
|
|
dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */
|
|
dest_word |= cpu_to_le16(src_word); /* add in the new bits */
|
|
|
|
/* put it all back */
|
|
memcpy(dest, &dest_word, sizeof(dest_word));
|
|
}
|
|
|
|
/**
|
|
* ice_write_dword - write a dword to a packed context structure
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
|
|
{
|
|
u32 src_dword, mask;
|
|
__le32 dest_dword;
|
|
u8 *from, *dest;
|
|
u16 shift_width;
|
|
|
|
/* copy from the next struct field */
|
|
from = src_ctx + ce_info->offset;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
|
|
/* if the field width is exactly 32 on an x86 machine, then the shift
|
|
* operation will not work because the SHL instructions count is masked
|
|
* to 5 bits so the shift will do nothing
|
|
*/
|
|
if (ce_info->width < 32)
|
|
mask = BIT(ce_info->width) - 1;
|
|
else
|
|
mask = (u32)~0;
|
|
|
|
/* don't swizzle the bits until after the mask because the mask bits
|
|
* will be in a different bit position on big endian machines
|
|
*/
|
|
src_dword = *(u32 *)from;
|
|
src_dword &= mask;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
src_dword <<= shift_width;
|
|
|
|
/* get the current bits from the target bit string */
|
|
dest = dest_ctx + (ce_info->lsb / 8);
|
|
|
|
memcpy(&dest_dword, dest, sizeof(dest_dword));
|
|
|
|
dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */
|
|
dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */
|
|
|
|
/* put it all back */
|
|
memcpy(dest, &dest_dword, sizeof(dest_dword));
|
|
}
|
|
|
|
/**
|
|
* ice_write_qword - write a qword to a packed context structure
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
|
|
{
|
|
u64 src_qword, mask;
|
|
__le64 dest_qword;
|
|
u8 *from, *dest;
|
|
u16 shift_width;
|
|
|
|
/* copy from the next struct field */
|
|
from = src_ctx + ce_info->offset;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
|
|
/* if the field width is exactly 64 on an x86 machine, then the shift
|
|
* operation will not work because the SHL instructions count is masked
|
|
* to 6 bits so the shift will do nothing
|
|
*/
|
|
if (ce_info->width < 64)
|
|
mask = BIT_ULL(ce_info->width) - 1;
|
|
else
|
|
mask = (u64)~0;
|
|
|
|
/* don't swizzle the bits until after the mask because the mask bits
|
|
* will be in a different bit position on big endian machines
|
|
*/
|
|
src_qword = *(u64 *)from;
|
|
src_qword &= mask;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
src_qword <<= shift_width;
|
|
|
|
/* get the current bits from the target bit string */
|
|
dest = dest_ctx + (ce_info->lsb / 8);
|
|
|
|
memcpy(&dest_qword, dest, sizeof(dest_qword));
|
|
|
|
dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */
|
|
dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */
|
|
|
|
/* put it all back */
|
|
memcpy(dest, &dest_qword, sizeof(dest_qword));
|
|
}
|
|
|
|
/**
|
|
* ice_set_ctx - set context bits in packed structure
|
|
* @hw: pointer to the hardware structure
|
|
* @src_ctx: pointer to a generic non-packed context structure
|
|
* @dest_ctx: pointer to memory for the packed structure
|
|
* @ce_info: a description of the structure to be transformed
|
|
*/
|
|
int
|
|
ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
|
|
const struct ice_ctx_ele *ce_info)
|
|
{
|
|
int f;
|
|
|
|
for (f = 0; ce_info[f].width; f++) {
|
|
/* We have to deal with each element of the FW response
|
|
* using the correct size so that we are correct regardless
|
|
* of the endianness of the machine.
|
|
*/
|
|
if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
|
|
ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
|
|
f, ce_info[f].width, ce_info[f].size_of);
|
|
continue;
|
|
}
|
|
switch (ce_info[f].size_of) {
|
|
case sizeof(u8):
|
|
ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
case sizeof(u16):
|
|
ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
case sizeof(u32):
|
|
ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
case sizeof(u64):
|
|
ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: software VSI handle
|
|
* @tc: TC number
|
|
* @q_handle: software queue handle
|
|
*/
|
|
struct ice_q_ctx *
|
|
ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
|
|
{
|
|
struct ice_vsi_ctx *vsi;
|
|
struct ice_q_ctx *q_ctx;
|
|
|
|
vsi = ice_get_vsi_ctx(hw, vsi_handle);
|
|
if (!vsi)
|
|
return NULL;
|
|
if (q_handle >= vsi->num_lan_q_entries[tc])
|
|
return NULL;
|
|
if (!vsi->lan_q_ctx[tc])
|
|
return NULL;
|
|
q_ctx = vsi->lan_q_ctx[tc];
|
|
return &q_ctx[q_handle];
|
|
}
|
|
|
|
/**
|
|
* ice_ena_vsi_txq
|
|
* @pi: port information structure
|
|
* @vsi_handle: software VSI handle
|
|
* @tc: TC number
|
|
* @q_handle: software queue handle
|
|
* @num_qgrps: Number of added queue groups
|
|
* @buf: list of queue groups to be added
|
|
* @buf_size: size of buffer for indirect command
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* This function adds one LAN queue
|
|
*/
|
|
int
|
|
ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
|
|
u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_txsched_elem_data node = { 0 };
|
|
struct ice_sched_node *parent;
|
|
struct ice_q_ctx *q_ctx;
|
|
struct ice_hw *hw;
|
|
int status;
|
|
|
|
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
|
|
return -EIO;
|
|
|
|
if (num_qgrps > 1 || buf->num_txqs > 1)
|
|
return -ENOSPC;
|
|
|
|
hw = pi->hw;
|
|
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&pi->sched_lock);
|
|
|
|
q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
|
|
if (!q_ctx) {
|
|
ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
|
|
q_handle);
|
|
status = -EINVAL;
|
|
goto ena_txq_exit;
|
|
}
|
|
|
|
/* find a parent node */
|
|
parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
|
|
ICE_SCHED_NODE_OWNER_LAN);
|
|
if (!parent) {
|
|
status = -EINVAL;
|
|
goto ena_txq_exit;
|
|
}
|
|
|
|
buf->parent_teid = parent->info.node_teid;
|
|
node.parent_teid = parent->info.node_teid;
|
|
/* Mark that the values in the "generic" section as valid. The default
|
|
* value in the "generic" section is zero. This means that :
|
|
* - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
|
|
* - 0 priority among siblings, indicated by Bit 1-3.
|
|
* - WFQ, indicated by Bit 4.
|
|
* - 0 Adjustment value is used in PSM credit update flow, indicated by
|
|
* Bit 5-6.
|
|
* - Bit 7 is reserved.
|
|
* Without setting the generic section as valid in valid_sections, the
|
|
* Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
|
|
*/
|
|
buf->txqs[0].info.valid_sections =
|
|
ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
|
|
ICE_AQC_ELEM_VALID_EIR;
|
|
buf->txqs[0].info.generic = 0;
|
|
buf->txqs[0].info.cir_bw.bw_profile_idx =
|
|
cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
|
|
buf->txqs[0].info.cir_bw.bw_alloc =
|
|
cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
|
|
buf->txqs[0].info.eir_bw.bw_profile_idx =
|
|
cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
|
|
buf->txqs[0].info.eir_bw.bw_alloc =
|
|
cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
|
|
|
|
/* add the LAN queue */
|
|
status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
|
|
le16_to_cpu(buf->txqs[0].txq_id),
|
|
hw->adminq.sq_last_status);
|
|
goto ena_txq_exit;
|
|
}
|
|
|
|
node.node_teid = buf->txqs[0].q_teid;
|
|
node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
|
|
q_ctx->q_handle = q_handle;
|
|
q_ctx->q_teid = le32_to_cpu(node.node_teid);
|
|
|
|
/* add a leaf node into scheduler tree queue layer */
|
|
status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
|
|
if (!status)
|
|
status = ice_sched_replay_q_bw(pi, q_ctx);
|
|
|
|
ena_txq_exit:
|
|
mutex_unlock(&pi->sched_lock);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_dis_vsi_txq
|
|
* @pi: port information structure
|
|
* @vsi_handle: software VSI handle
|
|
* @tc: TC number
|
|
* @num_queues: number of queues
|
|
* @q_handles: pointer to software queue handle array
|
|
* @q_ids: pointer to the q_id array
|
|
* @q_teids: pointer to queue node teids
|
|
* @rst_src: if called due to reset, specifies the reset source
|
|
* @vmvf_num: the relative VM or VF number that is undergoing the reset
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* This function removes queues and their corresponding nodes in SW DB
|
|
*/
|
|
int
|
|
ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
|
|
u16 *q_handles, u16 *q_ids, u32 *q_teids,
|
|
enum ice_disq_rst_src rst_src, u16 vmvf_num,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_dis_txq_item *qg_list;
|
|
struct ice_q_ctx *q_ctx;
|
|
int status = -ENOENT;
|
|
struct ice_hw *hw;
|
|
u16 i, buf_size;
|
|
|
|
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
|
|
return -EIO;
|
|
|
|
hw = pi->hw;
|
|
|
|
if (!num_queues) {
|
|
/* if queue is disabled already yet the disable queue command
|
|
* has to be sent to complete the VF reset, then call
|
|
* ice_aq_dis_lan_txq without any queue information
|
|
*/
|
|
if (rst_src)
|
|
return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
|
|
vmvf_num, NULL);
|
|
return -EIO;
|
|
}
|
|
|
|
buf_size = struct_size(qg_list, q_id, 1);
|
|
qg_list = kzalloc(buf_size, GFP_KERNEL);
|
|
if (!qg_list)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&pi->sched_lock);
|
|
|
|
for (i = 0; i < num_queues; i++) {
|
|
struct ice_sched_node *node;
|
|
|
|
node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
|
|
if (!node)
|
|
continue;
|
|
q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
|
|
if (!q_ctx) {
|
|
ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
|
|
q_handles[i]);
|
|
continue;
|
|
}
|
|
if (q_ctx->q_handle != q_handles[i]) {
|
|
ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
|
|
q_ctx->q_handle, q_handles[i]);
|
|
continue;
|
|
}
|
|
qg_list->parent_teid = node->info.parent_teid;
|
|
qg_list->num_qs = 1;
|
|
qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
|
|
status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
|
|
vmvf_num, cd);
|
|
|
|
if (status)
|
|
break;
|
|
ice_free_sched_node(pi, node);
|
|
q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
|
|
}
|
|
mutex_unlock(&pi->sched_lock);
|
|
kfree(qg_list);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_vsi_qs - configure the new/existing VSI queues
|
|
* @pi: port information structure
|
|
* @vsi_handle: software VSI handle
|
|
* @tc_bitmap: TC bitmap
|
|
* @maxqs: max queues array per TC
|
|
* @owner: LAN or RDMA
|
|
*
|
|
* This function adds/updates the VSI queues per TC.
|
|
*/
|
|
static int
|
|
ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
|
|
u16 *maxqs, u8 owner)
|
|
{
|
|
int status = 0;
|
|
u8 i;
|
|
|
|
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
|
|
return -EIO;
|
|
|
|
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&pi->sched_lock);
|
|
|
|
ice_for_each_traffic_class(i) {
|
|
/* configuration is possible only if TC node is present */
|
|
if (!ice_sched_get_tc_node(pi, i))
|
|
continue;
|
|
|
|
status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
|
|
ice_is_tc_ena(tc_bitmap, i));
|
|
if (status)
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&pi->sched_lock);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_vsi_lan - configure VSI LAN queues
|
|
* @pi: port information structure
|
|
* @vsi_handle: software VSI handle
|
|
* @tc_bitmap: TC bitmap
|
|
* @max_lanqs: max LAN queues array per TC
|
|
*
|
|
* This function adds/updates the VSI LAN queues per TC.
|
|
*/
|
|
int
|
|
ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
|
|
u16 *max_lanqs)
|
|
{
|
|
return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
|
|
ICE_SCHED_NODE_OWNER_LAN);
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_vsi_rdma - configure the VSI RDMA queues
|
|
* @pi: port information structure
|
|
* @vsi_handle: software VSI handle
|
|
* @tc_bitmap: TC bitmap
|
|
* @max_rdmaqs: max RDMA queues array per TC
|
|
*
|
|
* This function adds/updates the VSI RDMA queues per TC.
|
|
*/
|
|
int
|
|
ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
|
|
u16 *max_rdmaqs)
|
|
{
|
|
return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
|
|
ICE_SCHED_NODE_OWNER_RDMA);
|
|
}
|
|
|
|
/**
|
|
* ice_ena_vsi_rdma_qset
|
|
* @pi: port information structure
|
|
* @vsi_handle: software VSI handle
|
|
* @tc: TC number
|
|
* @rdma_qset: pointer to RDMA Qset
|
|
* @num_qsets: number of RDMA Qsets
|
|
* @qset_teid: pointer to Qset node TEIDs
|
|
*
|
|
* This function adds RDMA Qset
|
|
*/
|
|
int
|
|
ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
|
|
u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
|
|
{
|
|
struct ice_aqc_txsched_elem_data node = { 0 };
|
|
struct ice_aqc_add_rdma_qset_data *buf;
|
|
struct ice_sched_node *parent;
|
|
struct ice_hw *hw;
|
|
u16 i, buf_size;
|
|
int ret;
|
|
|
|
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
|
|
return -EIO;
|
|
hw = pi->hw;
|
|
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return -EINVAL;
|
|
|
|
buf_size = struct_size(buf, rdma_qsets, num_qsets);
|
|
buf = kzalloc(buf_size, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
mutex_lock(&pi->sched_lock);
|
|
|
|
parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
|
|
ICE_SCHED_NODE_OWNER_RDMA);
|
|
if (!parent) {
|
|
ret = -EINVAL;
|
|
goto rdma_error_exit;
|
|
}
|
|
buf->parent_teid = parent->info.node_teid;
|
|
node.parent_teid = parent->info.node_teid;
|
|
|
|
buf->num_qsets = cpu_to_le16(num_qsets);
|
|
for (i = 0; i < num_qsets; i++) {
|
|
buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
|
|
buf->rdma_qsets[i].info.valid_sections =
|
|
ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
|
|
ICE_AQC_ELEM_VALID_EIR;
|
|
buf->rdma_qsets[i].info.generic = 0;
|
|
buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
|
|
cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
|
|
buf->rdma_qsets[i].info.cir_bw.bw_alloc =
|
|
cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
|
|
buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
|
|
cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
|
|
buf->rdma_qsets[i].info.eir_bw.bw_alloc =
|
|
cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
|
|
}
|
|
ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
|
|
if (ret) {
|
|
ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
|
|
goto rdma_error_exit;
|
|
}
|
|
node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
|
|
for (i = 0; i < num_qsets; i++) {
|
|
node.node_teid = buf->rdma_qsets[i].qset_teid;
|
|
ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
|
|
&node);
|
|
if (ret)
|
|
break;
|
|
qset_teid[i] = le32_to_cpu(node.node_teid);
|
|
}
|
|
rdma_error_exit:
|
|
mutex_unlock(&pi->sched_lock);
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_dis_vsi_rdma_qset - free RDMA resources
|
|
* @pi: port_info struct
|
|
* @count: number of RDMA Qsets to free
|
|
* @qset_teid: TEID of Qset node
|
|
* @q_id: list of queue IDs being disabled
|
|
*/
|
|
int
|
|
ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
|
|
u16 *q_id)
|
|
{
|
|
struct ice_aqc_dis_txq_item *qg_list;
|
|
struct ice_hw *hw;
|
|
int status = 0;
|
|
u16 qg_size;
|
|
int i;
|
|
|
|
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
|
|
return -EIO;
|
|
|
|
hw = pi->hw;
|
|
|
|
qg_size = struct_size(qg_list, q_id, 1);
|
|
qg_list = kzalloc(qg_size, GFP_KERNEL);
|
|
if (!qg_list)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&pi->sched_lock);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
struct ice_sched_node *node;
|
|
|
|
node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
|
|
if (!node)
|
|
continue;
|
|
|
|
qg_list->parent_teid = node->info.parent_teid;
|
|
qg_list->num_qs = 1;
|
|
qg_list->q_id[0] =
|
|
cpu_to_le16(q_id[i] |
|
|
ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
|
|
|
|
status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
|
|
ICE_NO_RESET, 0, NULL);
|
|
if (status)
|
|
break;
|
|
|
|
ice_free_sched_node(pi, node);
|
|
}
|
|
|
|
mutex_unlock(&pi->sched_lock);
|
|
kfree(qg_list);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_replay_pre_init - replay pre initialization
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Initializes required config data for VSI, FD, ACL, and RSS before replay.
|
|
*/
|
|
static int ice_replay_pre_init(struct ice_hw *hw)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
u8 i;
|
|
|
|
/* Delete old entries from replay filter list head if there is any */
|
|
ice_rm_all_sw_replay_rule_info(hw);
|
|
/* In start of replay, move entries into replay_rules list, it
|
|
* will allow adding rules entries back to filt_rules list,
|
|
* which is operational list.
|
|
*/
|
|
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
|
|
list_replace_init(&sw->recp_list[i].filt_rules,
|
|
&sw->recp_list[i].filt_replay_rules);
|
|
ice_sched_replay_agg_vsi_preinit(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_replay_vsi - replay VSI configuration
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: driver VSI handle
|
|
*
|
|
* Restore all VSI configuration after reset. It is required to call this
|
|
* function with main VSI first.
|
|
*/
|
|
int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
|
|
{
|
|
int status;
|
|
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return -EINVAL;
|
|
|
|
/* Replay pre-initialization if there is any */
|
|
if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
|
|
status = ice_replay_pre_init(hw);
|
|
if (status)
|
|
return status;
|
|
}
|
|
/* Replay per VSI all RSS configurations */
|
|
status = ice_replay_rss_cfg(hw, vsi_handle);
|
|
if (status)
|
|
return status;
|
|
/* Replay per VSI all filters */
|
|
status = ice_replay_vsi_all_fltr(hw, vsi_handle);
|
|
if (!status)
|
|
status = ice_replay_vsi_agg(hw, vsi_handle);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_replay_post - post replay configuration cleanup
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Post replay cleanup.
|
|
*/
|
|
void ice_replay_post(struct ice_hw *hw)
|
|
{
|
|
/* Delete old entries from replay filter list head */
|
|
ice_rm_all_sw_replay_rule_info(hw);
|
|
ice_sched_replay_agg(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_stat_update40 - read 40 bit stat from the chip and update stat values
|
|
* @hw: ptr to the hardware info
|
|
* @reg: offset of 64 bit HW register to read from
|
|
* @prev_stat_loaded: bool to specify if previous stats are loaded
|
|
* @prev_stat: ptr to previous loaded stat value
|
|
* @cur_stat: ptr to current stat value
|
|
*/
|
|
void
|
|
ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
|
|
u64 *prev_stat, u64 *cur_stat)
|
|
{
|
|
u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
|
|
|
|
/* device stats are not reset at PFR, they likely will not be zeroed
|
|
* when the driver starts. Thus, save the value from the first read
|
|
* without adding to the statistic value so that we report stats which
|
|
* count up from zero.
|
|
*/
|
|
if (!prev_stat_loaded) {
|
|
*prev_stat = new_data;
|
|
return;
|
|
}
|
|
|
|
/* Calculate the difference between the new and old values, and then
|
|
* add it to the software stat value.
|
|
*/
|
|
if (new_data >= *prev_stat)
|
|
*cur_stat += new_data - *prev_stat;
|
|
else
|
|
/* to manage the potential roll-over */
|
|
*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
|
|
|
|
/* Update the previously stored value to prepare for next read */
|
|
*prev_stat = new_data;
|
|
}
|
|
|
|
/**
|
|
* ice_stat_update32 - read 32 bit stat from the chip and update stat values
|
|
* @hw: ptr to the hardware info
|
|
* @reg: offset of HW register to read from
|
|
* @prev_stat_loaded: bool to specify if previous stats are loaded
|
|
* @prev_stat: ptr to previous loaded stat value
|
|
* @cur_stat: ptr to current stat value
|
|
*/
|
|
void
|
|
ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
|
|
u64 *prev_stat, u64 *cur_stat)
|
|
{
|
|
u32 new_data;
|
|
|
|
new_data = rd32(hw, reg);
|
|
|
|
/* device stats are not reset at PFR, they likely will not be zeroed
|
|
* when the driver starts. Thus, save the value from the first read
|
|
* without adding to the statistic value so that we report stats which
|
|
* count up from zero.
|
|
*/
|
|
if (!prev_stat_loaded) {
|
|
*prev_stat = new_data;
|
|
return;
|
|
}
|
|
|
|
/* Calculate the difference between the new and old values, and then
|
|
* add it to the software stat value.
|
|
*/
|
|
if (new_data >= *prev_stat)
|
|
*cur_stat += new_data - *prev_stat;
|
|
else
|
|
/* to manage the potential roll-over */
|
|
*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
|
|
|
|
/* Update the previously stored value to prepare for next read */
|
|
*prev_stat = new_data;
|
|
}
|
|
|
|
/**
|
|
* ice_sched_query_elem - query element information from HW
|
|
* @hw: pointer to the HW struct
|
|
* @node_teid: node TEID to be queried
|
|
* @buf: buffer to element information
|
|
*
|
|
* This function queries HW element information
|
|
*/
|
|
int
|
|
ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
|
|
struct ice_aqc_txsched_elem_data *buf)
|
|
{
|
|
u16 buf_size, num_elem_ret = 0;
|
|
int status;
|
|
|
|
buf_size = sizeof(*buf);
|
|
memset(buf, 0, buf_size);
|
|
buf->node_teid = cpu_to_le32(node_teid);
|
|
status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
|
|
NULL);
|
|
if (status || num_elem_ret != 1)
|
|
ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_read_i2c
|
|
* @hw: pointer to the hw struct
|
|
* @topo_addr: topology address for a device to communicate with
|
|
* @bus_addr: 7-bit I2C bus address
|
|
* @addr: I2C memory address (I2C offset) with up to 16 bits
|
|
* @params: I2C parameters: bit [7] - Repeated start,
|
|
* bits [6:5] data offset size,
|
|
* bit [4] - I2C address type,
|
|
* bits [3:0] - data size to read (0-16 bytes)
|
|
* @data: pointer to data (0 to 16 bytes) to be read from the I2C device
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Read I2C (0x06E2)
|
|
*/
|
|
int
|
|
ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
|
|
u16 bus_addr, __le16 addr, u8 params, u8 *data,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aq_desc desc = { 0 };
|
|
struct ice_aqc_i2c *cmd;
|
|
u8 data_size;
|
|
int status;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
|
|
cmd = &desc.params.read_i2c;
|
|
|
|
if (!data)
|
|
return -EINVAL;
|
|
|
|
data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
|
|
|
|
cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
|
|
cmd->topo_addr = topo_addr;
|
|
cmd->i2c_params = params;
|
|
cmd->i2c_addr = addr;
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
if (!status) {
|
|
struct ice_aqc_read_i2c_resp *resp;
|
|
u8 i;
|
|
|
|
resp = &desc.params.read_i2c_resp;
|
|
for (i = 0; i < data_size; i++) {
|
|
*data = resp->i2c_data[i];
|
|
data++;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_driver_param - Set driver parameter to share via firmware
|
|
* @hw: pointer to the HW struct
|
|
* @idx: parameter index to set
|
|
* @value: the value to set the parameter to
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set the value of one of the software defined parameters. All PFs connected
|
|
* to this device can read the value using ice_aq_get_driver_param.
|
|
*
|
|
* Note that firmware provides no synchronization or locking, and will not
|
|
* save the parameter value during a device reset. It is expected that
|
|
* a single PF will write the parameter value, while all other PFs will only
|
|
* read it.
|
|
*/
|
|
int
|
|
ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
|
|
u32 value, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_driver_shared_params *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
|
|
return -EIO;
|
|
|
|
cmd = &desc.params.drv_shared_params;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
|
|
|
|
cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET;
|
|
cmd->param_indx = idx;
|
|
cmd->param_val = cpu_to_le32(value);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_driver_param - Get driver parameter shared via firmware
|
|
* @hw: pointer to the HW struct
|
|
* @idx: parameter index to set
|
|
* @value: storage to return the shared parameter
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Get the value of one of the software defined parameters.
|
|
*
|
|
* Note that firmware provides no synchronization or locking. It is expected
|
|
* that only a single PF will write a given parameter.
|
|
*/
|
|
int
|
|
ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
|
|
u32 *value, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_driver_shared_params *cmd;
|
|
struct ice_aq_desc desc;
|
|
int status;
|
|
|
|
if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
|
|
return -EIO;
|
|
|
|
cmd = &desc.params.drv_shared_params;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
|
|
|
|
cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET;
|
|
cmd->param_indx = idx;
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
if (status)
|
|
return status;
|
|
|
|
*value = le32_to_cpu(cmd->param_val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_gpio
|
|
* @hw: pointer to the hw struct
|
|
* @gpio_ctrl_handle: GPIO controller node handle
|
|
* @pin_idx: IO Number of the GPIO that needs to be set
|
|
* @value: SW provide IO value to set in the LSB
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
|
|
*/
|
|
int
|
|
ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_gpio *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
|
|
cmd = &desc.params.read_write_gpio;
|
|
cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
|
|
cmd->gpio_num = pin_idx;
|
|
cmd->gpio_val = value ? 1 : 0;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_gpio
|
|
* @hw: pointer to the hw struct
|
|
* @gpio_ctrl_handle: GPIO controller node handle
|
|
* @pin_idx: IO Number of the GPIO that needs to be set
|
|
* @value: IO value read
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
|
|
* the topology
|
|
*/
|
|
int
|
|
ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
|
|
bool *value, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_gpio *cmd;
|
|
struct ice_aq_desc desc;
|
|
int status;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
|
|
cmd = &desc.params.read_write_gpio;
|
|
cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
|
|
cmd->gpio_num = pin_idx;
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
if (status)
|
|
return status;
|
|
|
|
*value = !!cmd->gpio_val;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_fw_supports_link_override
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* Checks if the firmware supports link override
|
|
*/
|
|
bool ice_fw_supports_link_override(struct ice_hw *hw)
|
|
{
|
|
if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
|
|
if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
|
|
return true;
|
|
if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
|
|
hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
|
|
return true;
|
|
} else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_get_link_default_override
|
|
* @ldo: pointer to the link default override struct
|
|
* @pi: pointer to the port info struct
|
|
*
|
|
* Gets the link default override for a port
|
|
*/
|
|
int
|
|
ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
|
|
struct ice_port_info *pi)
|
|
{
|
|
u16 i, tlv, tlv_len, tlv_start, buf, offset;
|
|
struct ice_hw *hw = pi->hw;
|
|
int status;
|
|
|
|
status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
|
|
ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
|
|
return status;
|
|
}
|
|
|
|
/* Each port has its own config; calculate for our port */
|
|
tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
|
|
ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
|
|
|
|
/* link options first */
|
|
status = ice_read_sr_word(hw, tlv_start, &buf);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
|
|
return status;
|
|
}
|
|
ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
|
|
ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
|
|
ICE_LINK_OVERRIDE_PHY_CFG_S;
|
|
|
|
/* link PHY config */
|
|
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
|
|
status = ice_read_sr_word(hw, offset, &buf);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
|
|
return status;
|
|
}
|
|
ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
|
|
|
|
/* PHY types low */
|
|
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
|
|
for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
|
|
status = ice_read_sr_word(hw, (offset + i), &buf);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
|
|
return status;
|
|
}
|
|
/* shift 16 bits at a time to fill 64 bits */
|
|
ldo->phy_type_low |= ((u64)buf << (i * 16));
|
|
}
|
|
|
|
/* PHY types high */
|
|
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
|
|
ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
|
|
for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
|
|
status = ice_read_sr_word(hw, (offset + i), &buf);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
|
|
return status;
|
|
}
|
|
/* shift 16 bits at a time to fill 64 bits */
|
|
ldo->phy_type_high |= ((u64)buf << (i * 16));
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
|
|
* @caps: get PHY capability data
|
|
*/
|
|
bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
|
|
{
|
|
if (caps->caps & ICE_AQC_PHY_AN_MODE ||
|
|
caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
|
|
ICE_AQC_PHY_AN_EN_CLAUSE73 |
|
|
ICE_AQC_PHY_AN_EN_CLAUSE37))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_lldp_mib - Set the LLDP MIB
|
|
* @hw: pointer to the HW struct
|
|
* @mib_type: Local, Remote or both Local and Remote MIBs
|
|
* @buf: pointer to the caller-supplied buffer to store the MIB block
|
|
* @buf_size: size of the buffer (in bytes)
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set the LLDP MIB. (0x0A08)
|
|
*/
|
|
int
|
|
ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_lldp_set_local_mib *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.lldp_set_mib;
|
|
|
|
if (buf_size == 0 || !buf)
|
|
return -EINVAL;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
|
|
|
|
desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
|
|
desc.datalen = cpu_to_le16(buf_size);
|
|
|
|
cmd->type = mib_type;
|
|
cmd->length = cpu_to_le16(buf_size);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
|
|
* @hw: pointer to HW struct
|
|
*/
|
|
bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
|
|
{
|
|
if (hw->mac_type != ICE_MAC_E810)
|
|
return false;
|
|
|
|
if (hw->api_maj_ver == ICE_FW_API_LLDP_FLTR_MAJ) {
|
|
if (hw->api_min_ver > ICE_FW_API_LLDP_FLTR_MIN)
|
|
return true;
|
|
if (hw->api_min_ver == ICE_FW_API_LLDP_FLTR_MIN &&
|
|
hw->api_patch >= ICE_FW_API_LLDP_FLTR_PATCH)
|
|
return true;
|
|
} else if (hw->api_maj_ver > ICE_FW_API_LLDP_FLTR_MAJ) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
|
|
* @hw: pointer to HW struct
|
|
* @vsi_num: absolute HW index for VSI
|
|
* @add: boolean for if adding or removing a filter
|
|
*/
|
|
int
|
|
ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
|
|
{
|
|
struct ice_aqc_lldp_filter_ctrl *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.lldp_filter_ctrl;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
|
|
|
|
if (add)
|
|
cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
|
|
else
|
|
cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
|
|
|
|
cmd->vsi_num = cpu_to_le16(vsi_num);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_fw_supports_report_dflt_cfg
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* Checks if the firmware supports report default configuration
|
|
*/
|
|
bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
|
|
{
|
|
if (hw->api_maj_ver == ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
|
|
if (hw->api_min_ver > ICE_FW_API_REPORT_DFLT_CFG_MIN)
|
|
return true;
|
|
if (hw->api_min_ver == ICE_FW_API_REPORT_DFLT_CFG_MIN &&
|
|
hw->api_patch >= ICE_FW_API_REPORT_DFLT_CFG_PATCH)
|
|
return true;
|
|
} else if (hw->api_maj_ver > ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|