mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-20 09:34:44 +08:00
20ba462dfd
Convert all "runtime" assertions, i.e. assertions that can be triggered while running vCPUs, from WARN_ON() to WARN_ON_ONCE(). Every WARN in the MMU that is tied to running vCPUs, i.e. not contained to loading and initializing KVM, is likely to fire _a lot_ when it does trigger. E.g. if KVM ends up with a bug that causes a root to be invalidated before the page fault handler is invoked, pretty much _every_ page fault VM-Exit triggers the WARN. If a WARN is triggered frequently, the resulting spam usually causes a lot of damage of its own, e.g. consumes resources to log the WARN and pollutes the kernel log, often to the point where other useful information can be lost. In many case, the damage caused by the spam is actually worse than the bug itself, e.g. KVM can almost always recover from an unexpectedly invalid root. On the flip side, warning every time is rarely helpful for debug and triage, i.e. a single splat is usually sufficient to point a debugger in the right direction, and automated testing, e.g. syzkaller, typically runs with warn_on_panic=1, i.e. will never get past the first WARN anyways. Lastly, when an assertions fails multiple times, the stack traces in KVM are almost always identical, i.e. the full splat only needs to be captured once. And _if_ there is value in captruing information about the failed assert, a ratelimited printk() is sufficient and less likely to rack up a large amount of collateral damage. Link: https://lore.kernel.org/r/20230729004722.1056172-8-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
518 lines
16 KiB
C
518 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* Macros and functions to access KVM PTEs (also known as SPTEs)
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
* Copyright 2020 Red Hat, Inc. and/or its affiliates.
|
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include "mmu.h"
|
|
#include "mmu_internal.h"
|
|
#include "x86.h"
|
|
#include "spte.h"
|
|
|
|
#include <asm/e820/api.h>
|
|
#include <asm/memtype.h>
|
|
#include <asm/vmx.h>
|
|
|
|
bool __read_mostly enable_mmio_caching = true;
|
|
static bool __ro_after_init allow_mmio_caching;
|
|
module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
|
|
EXPORT_SYMBOL_GPL(enable_mmio_caching);
|
|
|
|
u64 __read_mostly shadow_host_writable_mask;
|
|
u64 __read_mostly shadow_mmu_writable_mask;
|
|
u64 __read_mostly shadow_nx_mask;
|
|
u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
|
|
u64 __read_mostly shadow_user_mask;
|
|
u64 __read_mostly shadow_accessed_mask;
|
|
u64 __read_mostly shadow_dirty_mask;
|
|
u64 __read_mostly shadow_mmio_value;
|
|
u64 __read_mostly shadow_mmio_mask;
|
|
u64 __read_mostly shadow_mmio_access_mask;
|
|
u64 __read_mostly shadow_present_mask;
|
|
u64 __read_mostly shadow_memtype_mask;
|
|
u64 __read_mostly shadow_me_value;
|
|
u64 __read_mostly shadow_me_mask;
|
|
u64 __read_mostly shadow_acc_track_mask;
|
|
|
|
u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
|
|
u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
|
|
|
|
u8 __read_mostly shadow_phys_bits;
|
|
|
|
void __init kvm_mmu_spte_module_init(void)
|
|
{
|
|
/*
|
|
* Snapshot userspace's desire to allow MMIO caching. Whether or not
|
|
* KVM can actually enable MMIO caching depends on vendor-specific
|
|
* hardware capabilities and other module params that can't be resolved
|
|
* until the vendor module is loaded, i.e. enable_mmio_caching can and
|
|
* will change when the vendor module is (re)loaded.
|
|
*/
|
|
allow_mmio_caching = enable_mmio_caching;
|
|
}
|
|
|
|
static u64 generation_mmio_spte_mask(u64 gen)
|
|
{
|
|
u64 mask;
|
|
|
|
WARN_ON_ONCE(gen & ~MMIO_SPTE_GEN_MASK);
|
|
|
|
mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
|
|
mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
|
|
return mask;
|
|
}
|
|
|
|
u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
|
|
{
|
|
u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
|
|
u64 spte = generation_mmio_spte_mask(gen);
|
|
u64 gpa = gfn << PAGE_SHIFT;
|
|
|
|
WARN_ON_ONCE(!shadow_mmio_value);
|
|
|
|
access &= shadow_mmio_access_mask;
|
|
spte |= shadow_mmio_value | access;
|
|
spte |= gpa | shadow_nonpresent_or_rsvd_mask;
|
|
spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
|
|
<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
|
|
|
|
return spte;
|
|
}
|
|
|
|
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
|
|
{
|
|
if (pfn_valid(pfn))
|
|
return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
|
|
/*
|
|
* Some reserved pages, such as those from NVDIMM
|
|
* DAX devices, are not for MMIO, and can be mapped
|
|
* with cached memory type for better performance.
|
|
* However, the above check misconceives those pages
|
|
* as MMIO, and results in KVM mapping them with UC
|
|
* memory type, which would hurt the performance.
|
|
* Therefore, we check the host memory type in addition
|
|
* and only treat UC/UC-/WC pages as MMIO.
|
|
*/
|
|
(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
|
|
|
|
return !e820__mapped_raw_any(pfn_to_hpa(pfn),
|
|
pfn_to_hpa(pfn + 1) - 1,
|
|
E820_TYPE_RAM);
|
|
}
|
|
|
|
/*
|
|
* Returns true if the SPTE has bits that may be set without holding mmu_lock.
|
|
* The caller is responsible for checking if the SPTE is shadow-present, and
|
|
* for determining whether or not the caller cares about non-leaf SPTEs.
|
|
*/
|
|
bool spte_has_volatile_bits(u64 spte)
|
|
{
|
|
/*
|
|
* Always atomically update spte if it can be updated
|
|
* out of mmu-lock, it can ensure dirty bit is not lost,
|
|
* also, it can help us to get a stable is_writable_pte()
|
|
* to ensure tlb flush is not missed.
|
|
*/
|
|
if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
|
|
return true;
|
|
|
|
if (is_access_track_spte(spte))
|
|
return true;
|
|
|
|
if (spte_ad_enabled(spte)) {
|
|
if (!(spte & shadow_accessed_mask) ||
|
|
(is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
|
|
const struct kvm_memory_slot *slot,
|
|
unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
|
|
u64 old_spte, bool prefetch, bool can_unsync,
|
|
bool host_writable, u64 *new_spte)
|
|
{
|
|
int level = sp->role.level;
|
|
u64 spte = SPTE_MMU_PRESENT_MASK;
|
|
bool wrprot = false;
|
|
|
|
WARN_ON_ONCE(!pte_access && !shadow_present_mask);
|
|
|
|
if (sp->role.ad_disabled)
|
|
spte |= SPTE_TDP_AD_DISABLED;
|
|
else if (kvm_mmu_page_ad_need_write_protect(sp))
|
|
spte |= SPTE_TDP_AD_WRPROT_ONLY;
|
|
|
|
/*
|
|
* For the EPT case, shadow_present_mask is 0 if hardware
|
|
* supports exec-only page table entries. In that case,
|
|
* ACC_USER_MASK and shadow_user_mask are used to represent
|
|
* read access. See FNAME(gpte_access) in paging_tmpl.h.
|
|
*/
|
|
spte |= shadow_present_mask;
|
|
if (!prefetch)
|
|
spte |= spte_shadow_accessed_mask(spte);
|
|
|
|
/*
|
|
* For simplicity, enforce the NX huge page mitigation even if not
|
|
* strictly necessary. KVM could ignore the mitigation if paging is
|
|
* disabled in the guest, as the guest doesn't have any page tables to
|
|
* abuse. But to safely ignore the mitigation, KVM would have to
|
|
* ensure a new MMU is loaded (or all shadow pages zapped) when CR0.PG
|
|
* is toggled on, and that's a net negative for performance when TDP is
|
|
* enabled. When TDP is disabled, KVM will always switch to a new MMU
|
|
* when CR0.PG is toggled, but leveraging that to ignore the mitigation
|
|
* would tie make_spte() further to vCPU/MMU state, and add complexity
|
|
* just to optimize a mode that is anything but performance critical.
|
|
*/
|
|
if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
|
|
is_nx_huge_page_enabled(vcpu->kvm)) {
|
|
pte_access &= ~ACC_EXEC_MASK;
|
|
}
|
|
|
|
if (pte_access & ACC_EXEC_MASK)
|
|
spte |= shadow_x_mask;
|
|
else
|
|
spte |= shadow_nx_mask;
|
|
|
|
if (pte_access & ACC_USER_MASK)
|
|
spte |= shadow_user_mask;
|
|
|
|
if (level > PG_LEVEL_4K)
|
|
spte |= PT_PAGE_SIZE_MASK;
|
|
|
|
if (shadow_memtype_mask)
|
|
spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn,
|
|
kvm_is_mmio_pfn(pfn));
|
|
if (host_writable)
|
|
spte |= shadow_host_writable_mask;
|
|
else
|
|
pte_access &= ~ACC_WRITE_MASK;
|
|
|
|
if (shadow_me_value && !kvm_is_mmio_pfn(pfn))
|
|
spte |= shadow_me_value;
|
|
|
|
spte |= (u64)pfn << PAGE_SHIFT;
|
|
|
|
if (pte_access & ACC_WRITE_MASK) {
|
|
spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask;
|
|
|
|
/*
|
|
* Optimization: for pte sync, if spte was writable the hash
|
|
* lookup is unnecessary (and expensive). Write protection
|
|
* is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots.
|
|
* Same reasoning can be applied to dirty page accounting.
|
|
*/
|
|
if (is_writable_pte(old_spte))
|
|
goto out;
|
|
|
|
/*
|
|
* Unsync shadow pages that are reachable by the new, writable
|
|
* SPTE. Write-protect the SPTE if the page can't be unsync'd,
|
|
* e.g. it's write-tracked (upper-level SPs) or has one or more
|
|
* shadow pages and unsync'ing pages is not allowed.
|
|
*/
|
|
if (mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, can_unsync, prefetch)) {
|
|
wrprot = true;
|
|
pte_access &= ~ACC_WRITE_MASK;
|
|
spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
|
|
}
|
|
}
|
|
|
|
if (pte_access & ACC_WRITE_MASK)
|
|
spte |= spte_shadow_dirty_mask(spte);
|
|
|
|
out:
|
|
if (prefetch)
|
|
spte = mark_spte_for_access_track(spte);
|
|
|
|
WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
|
|
"spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
|
|
get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
|
|
|
|
if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) {
|
|
/* Enforced by kvm_mmu_hugepage_adjust. */
|
|
WARN_ON_ONCE(level > PG_LEVEL_4K);
|
|
mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
|
|
}
|
|
|
|
*new_spte = spte;
|
|
return wrprot;
|
|
}
|
|
|
|
static u64 make_spte_executable(u64 spte)
|
|
{
|
|
bool is_access_track = is_access_track_spte(spte);
|
|
|
|
if (is_access_track)
|
|
spte = restore_acc_track_spte(spte);
|
|
|
|
spte &= ~shadow_nx_mask;
|
|
spte |= shadow_x_mask;
|
|
|
|
if (is_access_track)
|
|
spte = mark_spte_for_access_track(spte);
|
|
|
|
return spte;
|
|
}
|
|
|
|
/*
|
|
* Construct an SPTE that maps a sub-page of the given huge page SPTE where
|
|
* `index` identifies which sub-page.
|
|
*
|
|
* This is used during huge page splitting to build the SPTEs that make up the
|
|
* new page table.
|
|
*/
|
|
u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, union kvm_mmu_page_role role,
|
|
int index)
|
|
{
|
|
u64 child_spte;
|
|
|
|
if (WARN_ON_ONCE(!is_shadow_present_pte(huge_spte)))
|
|
return 0;
|
|
|
|
if (WARN_ON_ONCE(!is_large_pte(huge_spte)))
|
|
return 0;
|
|
|
|
child_spte = huge_spte;
|
|
|
|
/*
|
|
* The child_spte already has the base address of the huge page being
|
|
* split. So we just have to OR in the offset to the page at the next
|
|
* lower level for the given index.
|
|
*/
|
|
child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT;
|
|
|
|
if (role.level == PG_LEVEL_4K) {
|
|
child_spte &= ~PT_PAGE_SIZE_MASK;
|
|
|
|
/*
|
|
* When splitting to a 4K page where execution is allowed, mark
|
|
* the page executable as the NX hugepage mitigation no longer
|
|
* applies.
|
|
*/
|
|
if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm))
|
|
child_spte = make_spte_executable(child_spte);
|
|
}
|
|
|
|
return child_spte;
|
|
}
|
|
|
|
|
|
u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
|
|
{
|
|
u64 spte = SPTE_MMU_PRESENT_MASK;
|
|
|
|
spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
|
|
shadow_user_mask | shadow_x_mask | shadow_me_value;
|
|
|
|
if (ad_disabled)
|
|
spte |= SPTE_TDP_AD_DISABLED;
|
|
else
|
|
spte |= shadow_accessed_mask;
|
|
|
|
return spte;
|
|
}
|
|
|
|
u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
|
|
{
|
|
u64 new_spte;
|
|
|
|
new_spte = old_spte & ~SPTE_BASE_ADDR_MASK;
|
|
new_spte |= (u64)new_pfn << PAGE_SHIFT;
|
|
|
|
new_spte &= ~PT_WRITABLE_MASK;
|
|
new_spte &= ~shadow_host_writable_mask;
|
|
new_spte &= ~shadow_mmu_writable_mask;
|
|
|
|
new_spte = mark_spte_for_access_track(new_spte);
|
|
|
|
return new_spte;
|
|
}
|
|
|
|
u64 mark_spte_for_access_track(u64 spte)
|
|
{
|
|
if (spte_ad_enabled(spte))
|
|
return spte & ~shadow_accessed_mask;
|
|
|
|
if (is_access_track_spte(spte))
|
|
return spte;
|
|
|
|
check_spte_writable_invariants(spte);
|
|
|
|
WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
|
|
SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
|
|
"Access Tracking saved bit locations are not zero\n");
|
|
|
|
spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
|
|
SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
|
|
spte &= ~shadow_acc_track_mask;
|
|
|
|
return spte;
|
|
}
|
|
|
|
void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
|
|
{
|
|
BUG_ON((u64)(unsigned)access_mask != access_mask);
|
|
WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
|
|
|
|
/*
|
|
* Reset to the original module param value to honor userspace's desire
|
|
* to (dis)allow MMIO caching. Update the param itself so that
|
|
* userspace can see whether or not KVM is actually using MMIO caching.
|
|
*/
|
|
enable_mmio_caching = allow_mmio_caching;
|
|
if (!enable_mmio_caching)
|
|
mmio_value = 0;
|
|
|
|
/*
|
|
* The mask must contain only bits that are carved out specifically for
|
|
* the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO
|
|
* generation.
|
|
*/
|
|
if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK))
|
|
mmio_value = 0;
|
|
|
|
/*
|
|
* Disable MMIO caching if the MMIO value collides with the bits that
|
|
* are used to hold the relocated GFN when the L1TF mitigation is
|
|
* enabled. This should never fire as there is no known hardware that
|
|
* can trigger this condition, e.g. SME/SEV CPUs that require a custom
|
|
* MMIO value are not susceptible to L1TF.
|
|
*/
|
|
if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
|
|
SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
|
|
mmio_value = 0;
|
|
|
|
/*
|
|
* The masked MMIO value must obviously match itself and a removed SPTE
|
|
* must not get a false positive. Removed SPTEs and MMIO SPTEs should
|
|
* never collide as MMIO must set some RWX bits, and removed SPTEs must
|
|
* not set any RWX bits.
|
|
*/
|
|
if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
|
|
WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value))
|
|
mmio_value = 0;
|
|
|
|
if (!mmio_value)
|
|
enable_mmio_caching = false;
|
|
|
|
shadow_mmio_value = mmio_value;
|
|
shadow_mmio_mask = mmio_mask;
|
|
shadow_mmio_access_mask = access_mask;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
|
|
|
|
void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask)
|
|
{
|
|
/* shadow_me_value must be a subset of shadow_me_mask */
|
|
if (WARN_ON(me_value & ~me_mask))
|
|
me_value = me_mask = 0;
|
|
|
|
shadow_me_value = me_value;
|
|
shadow_me_mask = me_mask;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask);
|
|
|
|
void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
|
|
{
|
|
shadow_user_mask = VMX_EPT_READABLE_MASK;
|
|
shadow_accessed_mask = has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull;
|
|
shadow_dirty_mask = has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull;
|
|
shadow_nx_mask = 0ull;
|
|
shadow_x_mask = VMX_EPT_EXECUTABLE_MASK;
|
|
shadow_present_mask = has_exec_only ? 0ull : VMX_EPT_READABLE_MASK;
|
|
/*
|
|
* EPT overrides the host MTRRs, and so KVM must program the desired
|
|
* memtype directly into the SPTEs. Note, this mask is just the mask
|
|
* of all bits that factor into the memtype, the actual memtype must be
|
|
* dynamically calculated, e.g. to ensure host MMIO is mapped UC.
|
|
*/
|
|
shadow_memtype_mask = VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT;
|
|
shadow_acc_track_mask = VMX_EPT_RWX_MASK;
|
|
shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
|
|
shadow_mmu_writable_mask = EPT_SPTE_MMU_WRITABLE;
|
|
|
|
/*
|
|
* EPT Misconfigurations are generated if the value of bits 2:0
|
|
* of an EPT paging-structure entry is 110b (write/execute).
|
|
*/
|
|
kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
|
|
VMX_EPT_RWX_MASK, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
|
|
|
|
void kvm_mmu_reset_all_pte_masks(void)
|
|
{
|
|
u8 low_phys_bits;
|
|
u64 mask;
|
|
|
|
shadow_phys_bits = kvm_get_shadow_phys_bits();
|
|
|
|
/*
|
|
* If the CPU has 46 or less physical address bits, then set an
|
|
* appropriate mask to guard against L1TF attacks. Otherwise, it is
|
|
* assumed that the CPU is not vulnerable to L1TF.
|
|
*
|
|
* Some Intel CPUs address the L1 cache using more PA bits than are
|
|
* reported by CPUID. Use the PA width of the L1 cache when possible
|
|
* to achieve more effective mitigation, e.g. if system RAM overlaps
|
|
* the most significant bits of legal physical address space.
|
|
*/
|
|
shadow_nonpresent_or_rsvd_mask = 0;
|
|
low_phys_bits = boot_cpu_data.x86_phys_bits;
|
|
if (boot_cpu_has_bug(X86_BUG_L1TF) &&
|
|
!WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
|
|
52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
|
|
low_phys_bits = boot_cpu_data.x86_cache_bits
|
|
- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
|
|
shadow_nonpresent_or_rsvd_mask =
|
|
rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
|
|
}
|
|
|
|
shadow_nonpresent_or_rsvd_lower_gfn_mask =
|
|
GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
|
|
|
|
shadow_user_mask = PT_USER_MASK;
|
|
shadow_accessed_mask = PT_ACCESSED_MASK;
|
|
shadow_dirty_mask = PT_DIRTY_MASK;
|
|
shadow_nx_mask = PT64_NX_MASK;
|
|
shadow_x_mask = 0;
|
|
shadow_present_mask = PT_PRESENT_MASK;
|
|
|
|
/*
|
|
* For shadow paging and NPT, KVM uses PAT entry '0' to encode WB
|
|
* memtype in the SPTEs, i.e. relies on host MTRRs to provide the
|
|
* correct memtype (WB is the "weakest" memtype).
|
|
*/
|
|
shadow_memtype_mask = 0;
|
|
shadow_acc_track_mask = 0;
|
|
shadow_me_mask = 0;
|
|
shadow_me_value = 0;
|
|
|
|
shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE;
|
|
shadow_mmu_writable_mask = DEFAULT_SPTE_MMU_WRITABLE;
|
|
|
|
/*
|
|
* Set a reserved PA bit in MMIO SPTEs to generate page faults with
|
|
* PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
|
|
* paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
|
|
* 52-bit physical addresses then there are no reserved PA bits in the
|
|
* PTEs and so the reserved PA approach must be disabled.
|
|
*/
|
|
if (shadow_phys_bits < 52)
|
|
mask = BIT_ULL(51) | PT_PRESENT_MASK;
|
|
else
|
|
mask = 0;
|
|
|
|
kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
|
|
}
|