mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-21 13:24:15 +08:00
a91263d520
As we need to add further flags to the bpf_prog structure, lets migrate both bools to a bitfield representation. The size of the base structure (excluding insns) remains unchanged at 40 bytes. Add also tags for the kmemchecker, so that it doesn't throw false positives. Even in case gcc would generate suboptimal code, it's not being accessed in performance critical paths. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
829 lines
21 KiB
C
829 lines
21 KiB
C
#include <linux/moduleloader.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/if_vlan.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/ptrace.h>
|
|
|
|
#include "bpf_jit.h"
|
|
|
|
int bpf_jit_enable __read_mostly;
|
|
|
|
static inline bool is_simm13(unsigned int value)
|
|
{
|
|
return value + 0x1000 < 0x2000;
|
|
}
|
|
|
|
static void bpf_flush_icache(void *start_, void *end_)
|
|
{
|
|
#ifdef CONFIG_SPARC64
|
|
/* Cheetah's I-cache is fully coherent. */
|
|
if (tlb_type == spitfire) {
|
|
unsigned long start = (unsigned long) start_;
|
|
unsigned long end = (unsigned long) end_;
|
|
|
|
start &= ~7UL;
|
|
end = (end + 7UL) & ~7UL;
|
|
while (start < end) {
|
|
flushi(start);
|
|
start += 32;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#define SEEN_DATAREF 1 /* might call external helpers */
|
|
#define SEEN_XREG 2 /* ebx is used */
|
|
#define SEEN_MEM 4 /* use mem[] for temporary storage */
|
|
|
|
#define S13(X) ((X) & 0x1fff)
|
|
#define IMMED 0x00002000
|
|
#define RD(X) ((X) << 25)
|
|
#define RS1(X) ((X) << 14)
|
|
#define RS2(X) ((X))
|
|
#define OP(X) ((X) << 30)
|
|
#define OP2(X) ((X) << 22)
|
|
#define OP3(X) ((X) << 19)
|
|
#define COND(X) ((X) << 25)
|
|
#define F1(X) OP(X)
|
|
#define F2(X, Y) (OP(X) | OP2(Y))
|
|
#define F3(X, Y) (OP(X) | OP3(Y))
|
|
|
|
#define CONDN COND(0x0)
|
|
#define CONDE COND(0x1)
|
|
#define CONDLE COND(0x2)
|
|
#define CONDL COND(0x3)
|
|
#define CONDLEU COND(0x4)
|
|
#define CONDCS COND(0x5)
|
|
#define CONDNEG COND(0x6)
|
|
#define CONDVC COND(0x7)
|
|
#define CONDA COND(0x8)
|
|
#define CONDNE COND(0x9)
|
|
#define CONDG COND(0xa)
|
|
#define CONDGE COND(0xb)
|
|
#define CONDGU COND(0xc)
|
|
#define CONDCC COND(0xd)
|
|
#define CONDPOS COND(0xe)
|
|
#define CONDVS COND(0xf)
|
|
|
|
#define CONDGEU CONDCC
|
|
#define CONDLU CONDCS
|
|
|
|
#define WDISP22(X) (((X) >> 2) & 0x3fffff)
|
|
|
|
#define BA (F2(0, 2) | CONDA)
|
|
#define BGU (F2(0, 2) | CONDGU)
|
|
#define BLEU (F2(0, 2) | CONDLEU)
|
|
#define BGEU (F2(0, 2) | CONDGEU)
|
|
#define BLU (F2(0, 2) | CONDLU)
|
|
#define BE (F2(0, 2) | CONDE)
|
|
#define BNE (F2(0, 2) | CONDNE)
|
|
|
|
#ifdef CONFIG_SPARC64
|
|
#define BE_PTR (F2(0, 1) | CONDE | (2 << 20))
|
|
#else
|
|
#define BE_PTR BE
|
|
#endif
|
|
|
|
#define SETHI(K, REG) \
|
|
(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
|
|
#define OR_LO(K, REG) \
|
|
(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
|
|
|
|
#define ADD F3(2, 0x00)
|
|
#define AND F3(2, 0x01)
|
|
#define ANDCC F3(2, 0x11)
|
|
#define OR F3(2, 0x02)
|
|
#define XOR F3(2, 0x03)
|
|
#define SUB F3(2, 0x04)
|
|
#define SUBCC F3(2, 0x14)
|
|
#define MUL F3(2, 0x0a) /* umul */
|
|
#define DIV F3(2, 0x0e) /* udiv */
|
|
#define SLL F3(2, 0x25)
|
|
#define SRL F3(2, 0x26)
|
|
#define JMPL F3(2, 0x38)
|
|
#define CALL F1(1)
|
|
#define BR F2(0, 0x01)
|
|
#define RD_Y F3(2, 0x28)
|
|
#define WR_Y F3(2, 0x30)
|
|
|
|
#define LD32 F3(3, 0x00)
|
|
#define LD8 F3(3, 0x01)
|
|
#define LD16 F3(3, 0x02)
|
|
#define LD64 F3(3, 0x0b)
|
|
#define ST32 F3(3, 0x04)
|
|
|
|
#ifdef CONFIG_SPARC64
|
|
#define LDPTR LD64
|
|
#define BASE_STACKFRAME 176
|
|
#else
|
|
#define LDPTR LD32
|
|
#define BASE_STACKFRAME 96
|
|
#endif
|
|
|
|
#define LD32I (LD32 | IMMED)
|
|
#define LD8I (LD8 | IMMED)
|
|
#define LD16I (LD16 | IMMED)
|
|
#define LD64I (LD64 | IMMED)
|
|
#define LDPTRI (LDPTR | IMMED)
|
|
#define ST32I (ST32 | IMMED)
|
|
|
|
#define emit_nop() \
|
|
do { \
|
|
*prog++ = SETHI(0, G0); \
|
|
} while (0)
|
|
|
|
#define emit_neg() \
|
|
do { /* sub %g0, r_A, r_A */ \
|
|
*prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \
|
|
} while (0)
|
|
|
|
#define emit_reg_move(FROM, TO) \
|
|
do { /* or %g0, FROM, TO */ \
|
|
*prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \
|
|
} while (0)
|
|
|
|
#define emit_clear(REG) \
|
|
do { /* or %g0, %g0, REG */ \
|
|
*prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \
|
|
} while (0)
|
|
|
|
#define emit_set_const(K, REG) \
|
|
do { /* sethi %hi(K), REG */ \
|
|
*prog++ = SETHI(K, REG); \
|
|
/* or REG, %lo(K), REG */ \
|
|
*prog++ = OR_LO(K, REG); \
|
|
} while (0)
|
|
|
|
/* Emit
|
|
*
|
|
* OP r_A, r_X, r_A
|
|
*/
|
|
#define emit_alu_X(OPCODE) \
|
|
do { \
|
|
seen |= SEEN_XREG; \
|
|
*prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \
|
|
} while (0)
|
|
|
|
/* Emit either:
|
|
*
|
|
* OP r_A, K, r_A
|
|
*
|
|
* or
|
|
*
|
|
* sethi %hi(K), r_TMP
|
|
* or r_TMP, %lo(K), r_TMP
|
|
* OP r_A, r_TMP, r_A
|
|
*
|
|
* depending upon whether K fits in a signed 13-bit
|
|
* immediate instruction field. Emit nothing if K
|
|
* is zero.
|
|
*/
|
|
#define emit_alu_K(OPCODE, K) \
|
|
do { \
|
|
if (K || OPCODE == AND || OPCODE == MUL) { \
|
|
unsigned int _insn = OPCODE; \
|
|
_insn |= RS1(r_A) | RD(r_A); \
|
|
if (is_simm13(K)) { \
|
|
*prog++ = _insn | IMMED | S13(K); \
|
|
} else { \
|
|
emit_set_const(K, r_TMP); \
|
|
*prog++ = _insn | RS2(r_TMP); \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
|
|
#define emit_loadimm(K, DEST) \
|
|
do { \
|
|
if (is_simm13(K)) { \
|
|
/* or %g0, K, DEST */ \
|
|
*prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \
|
|
} else { \
|
|
emit_set_const(K, DEST); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define emit_loadptr(BASE, STRUCT, FIELD, DEST) \
|
|
do { unsigned int _off = offsetof(STRUCT, FIELD); \
|
|
BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *)); \
|
|
*prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \
|
|
} while (0)
|
|
|
|
#define emit_load32(BASE, STRUCT, FIELD, DEST) \
|
|
do { unsigned int _off = offsetof(STRUCT, FIELD); \
|
|
BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32)); \
|
|
*prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \
|
|
} while (0)
|
|
|
|
#define emit_load16(BASE, STRUCT, FIELD, DEST) \
|
|
do { unsigned int _off = offsetof(STRUCT, FIELD); \
|
|
BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16)); \
|
|
*prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \
|
|
} while (0)
|
|
|
|
#define __emit_load8(BASE, STRUCT, FIELD, DEST) \
|
|
do { unsigned int _off = offsetof(STRUCT, FIELD); \
|
|
*prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \
|
|
} while (0)
|
|
|
|
#define emit_load8(BASE, STRUCT, FIELD, DEST) \
|
|
do { BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8)); \
|
|
__emit_load8(BASE, STRUCT, FIELD, DEST); \
|
|
} while (0)
|
|
|
|
#ifdef CONFIG_SPARC64
|
|
#define BIAS (STACK_BIAS - 4)
|
|
#else
|
|
#define BIAS (-4)
|
|
#endif
|
|
|
|
#define emit_ldmem(OFF, DEST) \
|
|
do { *prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST); \
|
|
} while (0)
|
|
|
|
#define emit_stmem(OFF, SRC) \
|
|
do { *prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC); \
|
|
} while (0)
|
|
|
|
#ifdef CONFIG_SMP
|
|
#ifdef CONFIG_SPARC64
|
|
#define emit_load_cpu(REG) \
|
|
emit_load16(G6, struct thread_info, cpu, REG)
|
|
#else
|
|
#define emit_load_cpu(REG) \
|
|
emit_load32(G6, struct thread_info, cpu, REG)
|
|
#endif
|
|
#else
|
|
#define emit_load_cpu(REG) emit_clear(REG)
|
|
#endif
|
|
|
|
#define emit_skb_loadptr(FIELD, DEST) \
|
|
emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
|
|
#define emit_skb_load32(FIELD, DEST) \
|
|
emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
|
|
#define emit_skb_load16(FIELD, DEST) \
|
|
emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
|
|
#define __emit_skb_load8(FIELD, DEST) \
|
|
__emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
|
|
#define emit_skb_load8(FIELD, DEST) \
|
|
emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
|
|
|
|
#define emit_jmpl(BASE, IMM_OFF, LREG) \
|
|
*prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
|
|
|
|
#define emit_call(FUNC) \
|
|
do { void *_here = image + addrs[i] - 8; \
|
|
unsigned int _off = (void *)(FUNC) - _here; \
|
|
*prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \
|
|
emit_nop(); \
|
|
} while (0)
|
|
|
|
#define emit_branch(BR_OPC, DEST) \
|
|
do { unsigned int _here = addrs[i] - 8; \
|
|
*prog++ = BR_OPC | WDISP22((DEST) - _here); \
|
|
} while (0)
|
|
|
|
#define emit_branch_off(BR_OPC, OFF) \
|
|
do { *prog++ = BR_OPC | WDISP22(OFF); \
|
|
} while (0)
|
|
|
|
#define emit_jump(DEST) emit_branch(BA, DEST)
|
|
|
|
#define emit_read_y(REG) *prog++ = RD_Y | RD(REG)
|
|
#define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
|
|
|
|
#define emit_cmp(R1, R2) \
|
|
*prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
|
|
|
|
#define emit_cmpi(R1, IMM) \
|
|
*prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
|
|
|
|
#define emit_btst(R1, R2) \
|
|
*prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
|
|
|
|
#define emit_btsti(R1, IMM) \
|
|
*prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
|
|
|
|
#define emit_sub(R1, R2, R3) \
|
|
*prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
|
|
|
|
#define emit_subi(R1, IMM, R3) \
|
|
*prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
|
|
|
|
#define emit_add(R1, R2, R3) \
|
|
*prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
|
|
|
|
#define emit_addi(R1, IMM, R3) \
|
|
*prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
|
|
|
|
#define emit_and(R1, R2, R3) \
|
|
*prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
|
|
|
|
#define emit_andi(R1, IMM, R3) \
|
|
*prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
|
|
|
|
#define emit_alloc_stack(SZ) \
|
|
*prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
|
|
|
|
#define emit_release_stack(SZ) \
|
|
*prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
|
|
|
|
/* A note about branch offset calculations. The addrs[] array,
|
|
* indexed by BPF instruction, records the address after all the
|
|
* sparc instructions emitted for that BPF instruction.
|
|
*
|
|
* The most common case is to emit a branch at the end of such
|
|
* a code sequence. So this would be two instructions, the
|
|
* branch and it's delay slot.
|
|
*
|
|
* Therefore by default the branch emitters calculate the branch
|
|
* offset field as:
|
|
*
|
|
* destination - (addrs[i] - 8)
|
|
*
|
|
* This "addrs[i] - 8" is the address of the branch itself or
|
|
* what "." would be in assembler notation. The "8" part is
|
|
* how we take into consideration the branch and it's delay
|
|
* slot mentioned above.
|
|
*
|
|
* Sometimes we need to emit a branch earlier in the code
|
|
* sequence. And in these situations we adjust "destination"
|
|
* to accomodate this difference. For example, if we needed
|
|
* to emit a branch (and it's delay slot) right before the
|
|
* final instruction emitted for a BPF opcode, we'd use
|
|
* "destination + 4" instead of just plain "destination" above.
|
|
*
|
|
* This is why you see all of these funny emit_branch() and
|
|
* emit_jump() calls with adjusted offsets.
|
|
*/
|
|
|
|
void bpf_jit_compile(struct bpf_prog *fp)
|
|
{
|
|
unsigned int cleanup_addr, proglen, oldproglen = 0;
|
|
u32 temp[8], *prog, *func, seen = 0, pass;
|
|
const struct sock_filter *filter = fp->insns;
|
|
int i, flen = fp->len, pc_ret0 = -1;
|
|
unsigned int *addrs;
|
|
void *image;
|
|
|
|
if (!bpf_jit_enable)
|
|
return;
|
|
|
|
addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
|
|
if (addrs == NULL)
|
|
return;
|
|
|
|
/* Before first pass, make a rough estimation of addrs[]
|
|
* each bpf instruction is translated to less than 64 bytes
|
|
*/
|
|
for (proglen = 0, i = 0; i < flen; i++) {
|
|
proglen += 64;
|
|
addrs[i] = proglen;
|
|
}
|
|
cleanup_addr = proglen; /* epilogue address */
|
|
image = NULL;
|
|
for (pass = 0; pass < 10; pass++) {
|
|
u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
|
|
|
|
/* no prologue/epilogue for trivial filters (RET something) */
|
|
proglen = 0;
|
|
prog = temp;
|
|
|
|
/* Prologue */
|
|
if (seen_or_pass0) {
|
|
if (seen_or_pass0 & SEEN_MEM) {
|
|
unsigned int sz = BASE_STACKFRAME;
|
|
sz += BPF_MEMWORDS * sizeof(u32);
|
|
emit_alloc_stack(sz);
|
|
}
|
|
|
|
/* Make sure we dont leek kernel memory. */
|
|
if (seen_or_pass0 & SEEN_XREG)
|
|
emit_clear(r_X);
|
|
|
|
/* If this filter needs to access skb data,
|
|
* load %o4 and %o5 with:
|
|
* %o4 = skb->len - skb->data_len
|
|
* %o5 = skb->data
|
|
* And also back up %o7 into r_saved_O7 so we can
|
|
* invoke the stubs using 'call'.
|
|
*/
|
|
if (seen_or_pass0 & SEEN_DATAREF) {
|
|
emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
|
|
emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
|
|
emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
|
|
emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
|
|
}
|
|
}
|
|
emit_reg_move(O7, r_saved_O7);
|
|
|
|
switch (filter[0].code) {
|
|
case BPF_RET | BPF_K:
|
|
case BPF_LD | BPF_W | BPF_LEN:
|
|
case BPF_LD | BPF_W | BPF_ABS:
|
|
case BPF_LD | BPF_H | BPF_ABS:
|
|
case BPF_LD | BPF_B | BPF_ABS:
|
|
/* The first instruction sets the A register (or is
|
|
* a "RET 'constant'")
|
|
*/
|
|
break;
|
|
default:
|
|
/* Make sure we dont leak kernel information to the
|
|
* user.
|
|
*/
|
|
emit_clear(r_A); /* A = 0 */
|
|
}
|
|
|
|
for (i = 0; i < flen; i++) {
|
|
unsigned int K = filter[i].k;
|
|
unsigned int t_offset;
|
|
unsigned int f_offset;
|
|
u32 t_op, f_op;
|
|
u16 code = bpf_anc_helper(&filter[i]);
|
|
int ilen;
|
|
|
|
switch (code) {
|
|
case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
|
|
emit_alu_X(ADD);
|
|
break;
|
|
case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
|
|
emit_alu_K(ADD, K);
|
|
break;
|
|
case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
|
|
emit_alu_X(SUB);
|
|
break;
|
|
case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
|
|
emit_alu_K(SUB, K);
|
|
break;
|
|
case BPF_ALU | BPF_AND | BPF_X: /* A &= X */
|
|
emit_alu_X(AND);
|
|
break;
|
|
case BPF_ALU | BPF_AND | BPF_K: /* A &= K */
|
|
emit_alu_K(AND, K);
|
|
break;
|
|
case BPF_ALU | BPF_OR | BPF_X: /* A |= X */
|
|
emit_alu_X(OR);
|
|
break;
|
|
case BPF_ALU | BPF_OR | BPF_K: /* A |= K */
|
|
emit_alu_K(OR, K);
|
|
break;
|
|
case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
|
|
case BPF_ALU | BPF_XOR | BPF_X:
|
|
emit_alu_X(XOR);
|
|
break;
|
|
case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
|
|
emit_alu_K(XOR, K);
|
|
break;
|
|
case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X */
|
|
emit_alu_X(SLL);
|
|
break;
|
|
case BPF_ALU | BPF_LSH | BPF_K: /* A <<= K */
|
|
emit_alu_K(SLL, K);
|
|
break;
|
|
case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X */
|
|
emit_alu_X(SRL);
|
|
break;
|
|
case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K */
|
|
emit_alu_K(SRL, K);
|
|
break;
|
|
case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
|
|
emit_alu_X(MUL);
|
|
break;
|
|
case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
|
|
emit_alu_K(MUL, K);
|
|
break;
|
|
case BPF_ALU | BPF_DIV | BPF_K: /* A /= K with K != 0*/
|
|
if (K == 1)
|
|
break;
|
|
emit_write_y(G0);
|
|
#ifdef CONFIG_SPARC32
|
|
/* The Sparc v8 architecture requires
|
|
* three instructions between a %y
|
|
* register write and the first use.
|
|
*/
|
|
emit_nop();
|
|
emit_nop();
|
|
emit_nop();
|
|
#endif
|
|
emit_alu_K(DIV, K);
|
|
break;
|
|
case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
|
|
emit_cmpi(r_X, 0);
|
|
if (pc_ret0 > 0) {
|
|
t_offset = addrs[pc_ret0 - 1];
|
|
#ifdef CONFIG_SPARC32
|
|
emit_branch(BE, t_offset + 20);
|
|
#else
|
|
emit_branch(BE, t_offset + 8);
|
|
#endif
|
|
emit_nop(); /* delay slot */
|
|
} else {
|
|
emit_branch_off(BNE, 16);
|
|
emit_nop();
|
|
#ifdef CONFIG_SPARC32
|
|
emit_jump(cleanup_addr + 20);
|
|
#else
|
|
emit_jump(cleanup_addr + 8);
|
|
#endif
|
|
emit_clear(r_A);
|
|
}
|
|
emit_write_y(G0);
|
|
#ifdef CONFIG_SPARC32
|
|
/* The Sparc v8 architecture requires
|
|
* three instructions between a %y
|
|
* register write and the first use.
|
|
*/
|
|
emit_nop();
|
|
emit_nop();
|
|
emit_nop();
|
|
#endif
|
|
emit_alu_X(DIV);
|
|
break;
|
|
case BPF_ALU | BPF_NEG:
|
|
emit_neg();
|
|
break;
|
|
case BPF_RET | BPF_K:
|
|
if (!K) {
|
|
if (pc_ret0 == -1)
|
|
pc_ret0 = i;
|
|
emit_clear(r_A);
|
|
} else {
|
|
emit_loadimm(K, r_A);
|
|
}
|
|
/* Fallthrough */
|
|
case BPF_RET | BPF_A:
|
|
if (seen_or_pass0) {
|
|
if (i != flen - 1) {
|
|
emit_jump(cleanup_addr);
|
|
emit_nop();
|
|
break;
|
|
}
|
|
if (seen_or_pass0 & SEEN_MEM) {
|
|
unsigned int sz = BASE_STACKFRAME;
|
|
sz += BPF_MEMWORDS * sizeof(u32);
|
|
emit_release_stack(sz);
|
|
}
|
|
}
|
|
/* jmpl %r_saved_O7 + 8, %g0 */
|
|
emit_jmpl(r_saved_O7, 8, G0);
|
|
emit_reg_move(r_A, O0); /* delay slot */
|
|
break;
|
|
case BPF_MISC | BPF_TAX:
|
|
seen |= SEEN_XREG;
|
|
emit_reg_move(r_A, r_X);
|
|
break;
|
|
case BPF_MISC | BPF_TXA:
|
|
seen |= SEEN_XREG;
|
|
emit_reg_move(r_X, r_A);
|
|
break;
|
|
case BPF_ANC | SKF_AD_CPU:
|
|
emit_load_cpu(r_A);
|
|
break;
|
|
case BPF_ANC | SKF_AD_PROTOCOL:
|
|
emit_skb_load16(protocol, r_A);
|
|
break;
|
|
case BPF_ANC | SKF_AD_PKTTYPE:
|
|
__emit_skb_load8(__pkt_type_offset, r_A);
|
|
emit_andi(r_A, PKT_TYPE_MAX, r_A);
|
|
emit_alu_K(SRL, 5);
|
|
break;
|
|
case BPF_ANC | SKF_AD_IFINDEX:
|
|
emit_skb_loadptr(dev, r_A);
|
|
emit_cmpi(r_A, 0);
|
|
emit_branch(BE_PTR, cleanup_addr + 4);
|
|
emit_nop();
|
|
emit_load32(r_A, struct net_device, ifindex, r_A);
|
|
break;
|
|
case BPF_ANC | SKF_AD_MARK:
|
|
emit_skb_load32(mark, r_A);
|
|
break;
|
|
case BPF_ANC | SKF_AD_QUEUE:
|
|
emit_skb_load16(queue_mapping, r_A);
|
|
break;
|
|
case BPF_ANC | SKF_AD_HATYPE:
|
|
emit_skb_loadptr(dev, r_A);
|
|
emit_cmpi(r_A, 0);
|
|
emit_branch(BE_PTR, cleanup_addr + 4);
|
|
emit_nop();
|
|
emit_load16(r_A, struct net_device, type, r_A);
|
|
break;
|
|
case BPF_ANC | SKF_AD_RXHASH:
|
|
emit_skb_load32(hash, r_A);
|
|
break;
|
|
case BPF_ANC | SKF_AD_VLAN_TAG:
|
|
case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
|
|
emit_skb_load16(vlan_tci, r_A);
|
|
if (code != (BPF_ANC | SKF_AD_VLAN_TAG)) {
|
|
emit_alu_K(SRL, 12);
|
|
emit_andi(r_A, 1, r_A);
|
|
} else {
|
|
emit_loadimm(~VLAN_TAG_PRESENT, r_TMP);
|
|
emit_and(r_A, r_TMP, r_A);
|
|
}
|
|
break;
|
|
case BPF_LD | BPF_W | BPF_LEN:
|
|
emit_skb_load32(len, r_A);
|
|
break;
|
|
case BPF_LDX | BPF_W | BPF_LEN:
|
|
emit_skb_load32(len, r_X);
|
|
break;
|
|
case BPF_LD | BPF_IMM:
|
|
emit_loadimm(K, r_A);
|
|
break;
|
|
case BPF_LDX | BPF_IMM:
|
|
emit_loadimm(K, r_X);
|
|
break;
|
|
case BPF_LD | BPF_MEM:
|
|
seen |= SEEN_MEM;
|
|
emit_ldmem(K * 4, r_A);
|
|
break;
|
|
case BPF_LDX | BPF_MEM:
|
|
seen |= SEEN_MEM | SEEN_XREG;
|
|
emit_ldmem(K * 4, r_X);
|
|
break;
|
|
case BPF_ST:
|
|
seen |= SEEN_MEM;
|
|
emit_stmem(K * 4, r_A);
|
|
break;
|
|
case BPF_STX:
|
|
seen |= SEEN_MEM | SEEN_XREG;
|
|
emit_stmem(K * 4, r_X);
|
|
break;
|
|
|
|
#define CHOOSE_LOAD_FUNC(K, func) \
|
|
((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
|
|
|
|
case BPF_LD | BPF_W | BPF_ABS:
|
|
func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
|
|
common_load: seen |= SEEN_DATAREF;
|
|
emit_loadimm(K, r_OFF);
|
|
emit_call(func);
|
|
break;
|
|
case BPF_LD | BPF_H | BPF_ABS:
|
|
func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
|
|
goto common_load;
|
|
case BPF_LD | BPF_B | BPF_ABS:
|
|
func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
|
|
goto common_load;
|
|
case BPF_LDX | BPF_B | BPF_MSH:
|
|
func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
|
|
goto common_load;
|
|
case BPF_LD | BPF_W | BPF_IND:
|
|
func = bpf_jit_load_word;
|
|
common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
|
|
if (K) {
|
|
if (is_simm13(K)) {
|
|
emit_addi(r_X, K, r_OFF);
|
|
} else {
|
|
emit_loadimm(K, r_TMP);
|
|
emit_add(r_X, r_TMP, r_OFF);
|
|
}
|
|
} else {
|
|
emit_reg_move(r_X, r_OFF);
|
|
}
|
|
emit_call(func);
|
|
break;
|
|
case BPF_LD | BPF_H | BPF_IND:
|
|
func = bpf_jit_load_half;
|
|
goto common_load_ind;
|
|
case BPF_LD | BPF_B | BPF_IND:
|
|
func = bpf_jit_load_byte;
|
|
goto common_load_ind;
|
|
case BPF_JMP | BPF_JA:
|
|
emit_jump(addrs[i + K]);
|
|
emit_nop();
|
|
break;
|
|
|
|
#define COND_SEL(CODE, TOP, FOP) \
|
|
case CODE: \
|
|
t_op = TOP; \
|
|
f_op = FOP; \
|
|
goto cond_branch
|
|
|
|
COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
|
|
COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
|
|
COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
|
|
COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
|
|
COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
|
|
COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
|
|
COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
|
|
COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
|
|
|
|
cond_branch: f_offset = addrs[i + filter[i].jf];
|
|
t_offset = addrs[i + filter[i].jt];
|
|
|
|
/* same targets, can avoid doing the test :) */
|
|
if (filter[i].jt == filter[i].jf) {
|
|
emit_jump(t_offset);
|
|
emit_nop();
|
|
break;
|
|
}
|
|
|
|
switch (code) {
|
|
case BPF_JMP | BPF_JGT | BPF_X:
|
|
case BPF_JMP | BPF_JGE | BPF_X:
|
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
|
seen |= SEEN_XREG;
|
|
emit_cmp(r_A, r_X);
|
|
break;
|
|
case BPF_JMP | BPF_JSET | BPF_X:
|
|
seen |= SEEN_XREG;
|
|
emit_btst(r_A, r_X);
|
|
break;
|
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
|
case BPF_JMP | BPF_JGT | BPF_K:
|
|
case BPF_JMP | BPF_JGE | BPF_K:
|
|
if (is_simm13(K)) {
|
|
emit_cmpi(r_A, K);
|
|
} else {
|
|
emit_loadimm(K, r_TMP);
|
|
emit_cmp(r_A, r_TMP);
|
|
}
|
|
break;
|
|
case BPF_JMP | BPF_JSET | BPF_K:
|
|
if (is_simm13(K)) {
|
|
emit_btsti(r_A, K);
|
|
} else {
|
|
emit_loadimm(K, r_TMP);
|
|
emit_btst(r_A, r_TMP);
|
|
}
|
|
break;
|
|
}
|
|
if (filter[i].jt != 0) {
|
|
if (filter[i].jf)
|
|
t_offset += 8;
|
|
emit_branch(t_op, t_offset);
|
|
emit_nop(); /* delay slot */
|
|
if (filter[i].jf) {
|
|
emit_jump(f_offset);
|
|
emit_nop();
|
|
}
|
|
break;
|
|
}
|
|
emit_branch(f_op, f_offset);
|
|
emit_nop(); /* delay slot */
|
|
break;
|
|
|
|
default:
|
|
/* hmm, too complex filter, give up with jit compiler */
|
|
goto out;
|
|
}
|
|
ilen = (void *) prog - (void *) temp;
|
|
if (image) {
|
|
if (unlikely(proglen + ilen > oldproglen)) {
|
|
pr_err("bpb_jit_compile fatal error\n");
|
|
kfree(addrs);
|
|
module_memfree(image);
|
|
return;
|
|
}
|
|
memcpy(image + proglen, temp, ilen);
|
|
}
|
|
proglen += ilen;
|
|
addrs[i] = proglen;
|
|
prog = temp;
|
|
}
|
|
/* last bpf instruction is always a RET :
|
|
* use it to give the cleanup instruction(s) addr
|
|
*/
|
|
cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
|
|
if (seen_or_pass0 & SEEN_MEM)
|
|
cleanup_addr -= 4; /* add %sp, X, %sp; */
|
|
|
|
if (image) {
|
|
if (proglen != oldproglen)
|
|
pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
|
|
proglen, oldproglen);
|
|
break;
|
|
}
|
|
if (proglen == oldproglen) {
|
|
image = module_alloc(proglen);
|
|
if (!image)
|
|
goto out;
|
|
}
|
|
oldproglen = proglen;
|
|
}
|
|
|
|
if (bpf_jit_enable > 1)
|
|
bpf_jit_dump(flen, proglen, pass + 1, image);
|
|
|
|
if (image) {
|
|
bpf_flush_icache(image, image + proglen);
|
|
fp->bpf_func = (void *)image;
|
|
fp->jited = 1;
|
|
}
|
|
out:
|
|
kfree(addrs);
|
|
return;
|
|
}
|
|
|
|
void bpf_jit_free(struct bpf_prog *fp)
|
|
{
|
|
if (fp->jited)
|
|
module_memfree(fp->bpf_func);
|
|
|
|
bpf_prog_unlock_free(fp);
|
|
}
|