mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-11 21:38:32 +08:00
1378 lines
35 KiB
C
1378 lines
35 KiB
C
/*
|
|
* Copyright (c) International Business Machines Corp., 2006
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
|
|
* the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Author: Artem Bityutskiy (Битюцкий Артём)
|
|
*/
|
|
|
|
/*
|
|
* UBI scanning unit.
|
|
*
|
|
* This unit is responsible for scanning the flash media, checking UBI
|
|
* headers and providing complete information about the UBI flash image.
|
|
*
|
|
* The scanning information is represented by a &struct ubi_scan_info' object.
|
|
* Information about found volumes is represented by &struct ubi_scan_volume
|
|
* objects which are kept in volume RB-tree with root at the @volumes field.
|
|
* The RB-tree is indexed by the volume ID.
|
|
*
|
|
* Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
|
|
* These objects are kept in per-volume RB-trees with the root at the
|
|
* corresponding &struct ubi_scan_volume object. To put it differently, we keep
|
|
* an RB-tree of per-volume objects and each of these objects is the root of
|
|
* RB-tree of per-eraseblock objects.
|
|
*
|
|
* Corrupted physical eraseblocks are put to the @corr list, free physical
|
|
* eraseblocks are put to the @free list and the physical eraseblock to be
|
|
* erased are put to the @erase list.
|
|
*/
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/crc32.h>
|
|
#include "ubi.h"
|
|
|
|
#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
|
|
static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
|
|
#else
|
|
#define paranoid_check_si(ubi, si) 0
|
|
#endif
|
|
|
|
/* Temporary variables used during scanning */
|
|
static struct ubi_ec_hdr *ech;
|
|
static struct ubi_vid_hdr *vidh;
|
|
|
|
/**
|
|
* add_to_list - add physical eraseblock to a list.
|
|
* @si: scanning information
|
|
* @pnum: physical eraseblock number to add
|
|
* @ec: erase counter of the physical eraseblock
|
|
* @list: the list to add to
|
|
*
|
|
* This function adds physical eraseblock @pnum to free, erase, corrupted or
|
|
* alien lists. Returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
|
|
struct list_head *list)
|
|
{
|
|
struct ubi_scan_leb *seb;
|
|
|
|
if (list == &si->free)
|
|
dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
|
|
else if (list == &si->erase)
|
|
dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
|
|
else if (list == &si->corr)
|
|
dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
|
|
else if (list == &si->alien)
|
|
dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
|
|
else
|
|
BUG();
|
|
|
|
seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
|
|
if (!seb)
|
|
return -ENOMEM;
|
|
|
|
seb->pnum = pnum;
|
|
seb->ec = ec;
|
|
list_add_tail(&seb->u.list, list);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* commit_to_mean_value - commit intermediate results to the final mean erase
|
|
* counter value.
|
|
* @si: scanning information
|
|
*
|
|
* This is a helper function which calculates partial mean erase counter mean
|
|
* value and adds it to the resulting mean value. As we can work only in
|
|
* integer arithmetic and we want to calculate the mean value of erase counter
|
|
* accurately, we first sum erase counter values in @si->ec_sum variable and
|
|
* count these components in @si->ec_count. If this temporary @si->ec_sum is
|
|
* going to overflow, we calculate the partial mean value
|
|
* (@si->ec_sum/@si->ec_count) and add it to @si->mean_ec.
|
|
*/
|
|
static void commit_to_mean_value(struct ubi_scan_info *si)
|
|
{
|
|
si->ec_sum /= si->ec_count;
|
|
if (si->ec_sum % si->ec_count >= si->ec_count / 2)
|
|
si->mean_ec += 1;
|
|
si->mean_ec += si->ec_sum;
|
|
}
|
|
|
|
/**
|
|
* validate_vid_hdr - check that volume identifier header is correct and
|
|
* consistent.
|
|
* @vid_hdr: the volume identifier header to check
|
|
* @sv: information about the volume this logical eraseblock belongs to
|
|
* @pnum: physical eraseblock number the VID header came from
|
|
*
|
|
* This function checks that data stored in @vid_hdr is consistent. Returns
|
|
* non-zero if an inconsistency was found and zero if not.
|
|
*
|
|
* Note, UBI does sanity check of everything it reads from the flash media.
|
|
* Most of the checks are done in the I/O unit. Here we check that the
|
|
* information in the VID header is consistent to the information in other VID
|
|
* headers of the same volume.
|
|
*/
|
|
static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
|
|
const struct ubi_scan_volume *sv, int pnum)
|
|
{
|
|
int vol_type = vid_hdr->vol_type;
|
|
int vol_id = be32_to_cpu(vid_hdr->vol_id);
|
|
int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
|
|
int data_pad = be32_to_cpu(vid_hdr->data_pad);
|
|
|
|
if (sv->leb_count != 0) {
|
|
int sv_vol_type;
|
|
|
|
/*
|
|
* This is not the first logical eraseblock belonging to this
|
|
* volume. Ensure that the data in its VID header is consistent
|
|
* to the data in previous logical eraseblock headers.
|
|
*/
|
|
|
|
if (vol_id != sv->vol_id) {
|
|
dbg_err("inconsistent vol_id");
|
|
goto bad;
|
|
}
|
|
|
|
if (sv->vol_type == UBI_STATIC_VOLUME)
|
|
sv_vol_type = UBI_VID_STATIC;
|
|
else
|
|
sv_vol_type = UBI_VID_DYNAMIC;
|
|
|
|
if (vol_type != sv_vol_type) {
|
|
dbg_err("inconsistent vol_type");
|
|
goto bad;
|
|
}
|
|
|
|
if (used_ebs != sv->used_ebs) {
|
|
dbg_err("inconsistent used_ebs");
|
|
goto bad;
|
|
}
|
|
|
|
if (data_pad != sv->data_pad) {
|
|
dbg_err("inconsistent data_pad");
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
ubi_err("inconsistent VID header at PEB %d", pnum);
|
|
ubi_dbg_dump_vid_hdr(vid_hdr);
|
|
ubi_dbg_dump_sv(sv);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* add_volume - add volume to the scanning information.
|
|
* @si: scanning information
|
|
* @vol_id: ID of the volume to add
|
|
* @pnum: physical eraseblock number
|
|
* @vid_hdr: volume identifier header
|
|
*
|
|
* If the volume corresponding to the @vid_hdr logical eraseblock is already
|
|
* present in the scanning information, this function does nothing. Otherwise
|
|
* it adds corresponding volume to the scanning information. Returns a pointer
|
|
* to the scanning volume object in case of success and a negative error code
|
|
* in case of failure.
|
|
*/
|
|
static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
|
|
int pnum,
|
|
const struct ubi_vid_hdr *vid_hdr)
|
|
{
|
|
struct ubi_scan_volume *sv;
|
|
struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
|
|
|
|
ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
|
|
|
|
/* Walk the volume RB-tree to look if this volume is already present */
|
|
while (*p) {
|
|
parent = *p;
|
|
sv = rb_entry(parent, struct ubi_scan_volume, rb);
|
|
|
|
if (vol_id == sv->vol_id)
|
|
return sv;
|
|
|
|
if (vol_id > sv->vol_id)
|
|
p = &(*p)->rb_left;
|
|
else
|
|
p = &(*p)->rb_right;
|
|
}
|
|
|
|
/* The volume is absent - add it */
|
|
sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
|
|
if (!sv)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
sv->highest_lnum = sv->leb_count = 0;
|
|
sv->vol_id = vol_id;
|
|
sv->root = RB_ROOT;
|
|
sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
|
|
sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
|
|
sv->compat = vid_hdr->compat;
|
|
sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
|
|
: UBI_STATIC_VOLUME;
|
|
if (vol_id > si->highest_vol_id)
|
|
si->highest_vol_id = vol_id;
|
|
|
|
rb_link_node(&sv->rb, parent, p);
|
|
rb_insert_color(&sv->rb, &si->volumes);
|
|
si->vols_found += 1;
|
|
dbg_bld("added volume %d", vol_id);
|
|
return sv;
|
|
}
|
|
|
|
/**
|
|
* compare_lebs - find out which logical eraseblock is newer.
|
|
* @ubi: UBI device description object
|
|
* @seb: first logical eraseblock to compare
|
|
* @pnum: physical eraseblock number of the second logical eraseblock to
|
|
* compare
|
|
* @vid_hdr: volume identifier header of the second logical eraseblock
|
|
*
|
|
* This function compares 2 copies of a LEB and informs which one is newer. In
|
|
* case of success this function returns a positive value, in case of failure, a
|
|
* negative error code is returned. The success return codes use the following
|
|
* bits:
|
|
* o bit 0 is cleared: the first PEB (described by @seb) is newer then the
|
|
* second PEB (described by @pnum and @vid_hdr);
|
|
* o bit 0 is set: the second PEB is newer;
|
|
* o bit 1 is cleared: no bit-flips were detected in the newer LEB;
|
|
* o bit 1 is set: bit-flips were detected in the newer LEB;
|
|
* o bit 2 is cleared: the older LEB is not corrupted;
|
|
* o bit 2 is set: the older LEB is corrupted.
|
|
*/
|
|
static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
|
|
int pnum, const struct ubi_vid_hdr *vid_hdr)
|
|
{
|
|
void *buf;
|
|
int len, err, second_is_newer, bitflips = 0, corrupted = 0;
|
|
uint32_t data_crc, crc;
|
|
struct ubi_vid_hdr *vh = NULL;
|
|
unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
|
|
|
|
if (seb->sqnum == 0 && sqnum2 == 0) {
|
|
long long abs, v1 = seb->leb_ver, v2 = be32_to_cpu(vid_hdr->leb_ver);
|
|
|
|
/*
|
|
* UBI constantly increases the logical eraseblock version
|
|
* number and it can overflow. Thus, we have to bear in mind
|
|
* that versions that are close to %0xFFFFFFFF are less then
|
|
* versions that are close to %0.
|
|
*
|
|
* The UBI WL unit guarantees that the number of pending tasks
|
|
* is not greater then %0x7FFFFFFF. So, if the difference
|
|
* between any two versions is greater or equivalent to
|
|
* %0x7FFFFFFF, there was an overflow and the logical
|
|
* eraseblock with lower version is actually newer then the one
|
|
* with higher version.
|
|
*
|
|
* FIXME: but this is anyway obsolete and will be removed at
|
|
* some point.
|
|
*/
|
|
|
|
dbg_bld("using old crappy leb_ver stuff");
|
|
|
|
abs = v1 - v2;
|
|
if (abs < 0)
|
|
abs = -abs;
|
|
|
|
if (abs < 0x7FFFFFFF)
|
|
/* Non-overflow situation */
|
|
second_is_newer = (v2 > v1);
|
|
else
|
|
second_is_newer = (v2 < v1);
|
|
} else
|
|
/* Obviously the LEB with lower sequence counter is older */
|
|
second_is_newer = sqnum2 > seb->sqnum;
|
|
|
|
/*
|
|
* Now we know which copy is newer. If the copy flag of the PEB with
|
|
* newer version is not set, then we just return, otherwise we have to
|
|
* check data CRC. For the second PEB we already have the VID header,
|
|
* for the first one - we'll need to re-read it from flash.
|
|
*
|
|
* FIXME: this may be optimized so that we wouldn't read twice.
|
|
*/
|
|
|
|
if (second_is_newer) {
|
|
if (!vid_hdr->copy_flag) {
|
|
/* It is not a copy, so it is newer */
|
|
dbg_bld("second PEB %d is newer, copy_flag is unset",
|
|
pnum);
|
|
return 1;
|
|
}
|
|
} else {
|
|
pnum = seb->pnum;
|
|
|
|
vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
|
|
if (!vh)
|
|
return -ENOMEM;
|
|
|
|
err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
|
|
if (err) {
|
|
if (err == UBI_IO_BITFLIPS)
|
|
bitflips = 1;
|
|
else {
|
|
dbg_err("VID of PEB %d header is bad, but it "
|
|
"was OK earlier", pnum);
|
|
if (err > 0)
|
|
err = -EIO;
|
|
|
|
goto out_free_vidh;
|
|
}
|
|
}
|
|
|
|
if (!vh->copy_flag) {
|
|
/* It is not a copy, so it is newer */
|
|
dbg_bld("first PEB %d is newer, copy_flag is unset",
|
|
pnum);
|
|
err = bitflips << 1;
|
|
goto out_free_vidh;
|
|
}
|
|
|
|
vid_hdr = vh;
|
|
}
|
|
|
|
/* Read the data of the copy and check the CRC */
|
|
|
|
len = be32_to_cpu(vid_hdr->data_size);
|
|
buf = vmalloc(len);
|
|
if (!buf) {
|
|
err = -ENOMEM;
|
|
goto out_free_vidh;
|
|
}
|
|
|
|
err = ubi_io_read_data(ubi, buf, pnum, 0, len);
|
|
if (err && err != UBI_IO_BITFLIPS)
|
|
goto out_free_buf;
|
|
|
|
data_crc = be32_to_cpu(vid_hdr->data_crc);
|
|
crc = crc32(UBI_CRC32_INIT, buf, len);
|
|
if (crc != data_crc) {
|
|
dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
|
|
pnum, crc, data_crc);
|
|
corrupted = 1;
|
|
bitflips = 0;
|
|
second_is_newer = !second_is_newer;
|
|
} else {
|
|
dbg_bld("PEB %d CRC is OK", pnum);
|
|
bitflips = !!err;
|
|
}
|
|
|
|
vfree(buf);
|
|
ubi_free_vid_hdr(ubi, vh);
|
|
|
|
if (second_is_newer)
|
|
dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
|
|
else
|
|
dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
|
|
|
|
return second_is_newer | (bitflips << 1) | (corrupted << 2);
|
|
|
|
out_free_buf:
|
|
vfree(buf);
|
|
out_free_vidh:
|
|
ubi_free_vid_hdr(ubi, vh);
|
|
ubi_assert(err < 0);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_scan_add_used - add information about a physical eraseblock to the
|
|
* scanning information.
|
|
* @ubi: UBI device description object
|
|
* @si: scanning information
|
|
* @pnum: the physical eraseblock number
|
|
* @ec: erase counter
|
|
* @vid_hdr: the volume identifier header
|
|
* @bitflips: if bit-flips were detected when this physical eraseblock was read
|
|
*
|
|
* This function adds information about a used physical eraseblock to the
|
|
* 'used' tree of the corresponding volume. The function is rather complex
|
|
* because it has to handle cases when this is not the first physical
|
|
* eraseblock belonging to the same logical eraseblock, and the newer one has
|
|
* to be picked, while the older one has to be dropped. This function returns
|
|
* zero in case of success and a negative error code in case of failure.
|
|
*/
|
|
int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
|
|
int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
|
|
int bitflips)
|
|
{
|
|
int err, vol_id, lnum;
|
|
uint32_t leb_ver;
|
|
unsigned long long sqnum;
|
|
struct ubi_scan_volume *sv;
|
|
struct ubi_scan_leb *seb;
|
|
struct rb_node **p, *parent = NULL;
|
|
|
|
vol_id = be32_to_cpu(vid_hdr->vol_id);
|
|
lnum = be32_to_cpu(vid_hdr->lnum);
|
|
sqnum = be64_to_cpu(vid_hdr->sqnum);
|
|
leb_ver = be32_to_cpu(vid_hdr->leb_ver);
|
|
|
|
dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, ver %u, bitflips %d",
|
|
pnum, vol_id, lnum, ec, sqnum, leb_ver, bitflips);
|
|
|
|
sv = add_volume(si, vol_id, pnum, vid_hdr);
|
|
if (IS_ERR(sv) < 0)
|
|
return PTR_ERR(sv);
|
|
|
|
if (si->max_sqnum < sqnum)
|
|
si->max_sqnum = sqnum;
|
|
|
|
/*
|
|
* Walk the RB-tree of logical eraseblocks of volume @vol_id to look
|
|
* if this is the first instance of this logical eraseblock or not.
|
|
*/
|
|
p = &sv->root.rb_node;
|
|
while (*p) {
|
|
int cmp_res;
|
|
|
|
parent = *p;
|
|
seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
|
|
if (lnum != seb->lnum) {
|
|
if (lnum < seb->lnum)
|
|
p = &(*p)->rb_left;
|
|
else
|
|
p = &(*p)->rb_right;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* There is already a physical eraseblock describing the same
|
|
* logical eraseblock present.
|
|
*/
|
|
|
|
dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
|
|
"LEB ver %u, EC %d", seb->pnum, seb->sqnum,
|
|
seb->leb_ver, seb->ec);
|
|
|
|
/*
|
|
* Make sure that the logical eraseblocks have different
|
|
* versions. Otherwise the image is bad.
|
|
*/
|
|
if (seb->leb_ver == leb_ver && leb_ver != 0) {
|
|
ubi_err("two LEBs with same version %u", leb_ver);
|
|
ubi_dbg_dump_seb(seb, 0);
|
|
ubi_dbg_dump_vid_hdr(vid_hdr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Make sure that the logical eraseblocks have different
|
|
* sequence numbers. Otherwise the image is bad.
|
|
*
|
|
* FIXME: remove 'sqnum != 0' check when leb_ver is removed.
|
|
*/
|
|
if (seb->sqnum == sqnum && sqnum != 0) {
|
|
ubi_err("two LEBs with same sequence number %llu",
|
|
sqnum);
|
|
ubi_dbg_dump_seb(seb, 0);
|
|
ubi_dbg_dump_vid_hdr(vid_hdr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Now we have to drop the older one and preserve the newer
|
|
* one.
|
|
*/
|
|
cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
|
|
if (cmp_res < 0)
|
|
return cmp_res;
|
|
|
|
if (cmp_res & 1) {
|
|
/*
|
|
* This logical eraseblock is newer then the one
|
|
* found earlier.
|
|
*/
|
|
err = validate_vid_hdr(vid_hdr, sv, pnum);
|
|
if (err)
|
|
return err;
|
|
|
|
if (cmp_res & 4)
|
|
err = add_to_list(si, seb->pnum, seb->ec,
|
|
&si->corr);
|
|
else
|
|
err = add_to_list(si, seb->pnum, seb->ec,
|
|
&si->erase);
|
|
if (err)
|
|
return err;
|
|
|
|
seb->ec = ec;
|
|
seb->pnum = pnum;
|
|
seb->scrub = ((cmp_res & 2) || bitflips);
|
|
seb->sqnum = sqnum;
|
|
seb->leb_ver = leb_ver;
|
|
|
|
if (sv->highest_lnum == lnum)
|
|
sv->last_data_size =
|
|
be32_to_cpu(vid_hdr->data_size);
|
|
|
|
return 0;
|
|
} else {
|
|
/*
|
|
* This logical eraseblock is older then the one found
|
|
* previously.
|
|
*/
|
|
if (cmp_res & 4)
|
|
return add_to_list(si, pnum, ec, &si->corr);
|
|
else
|
|
return add_to_list(si, pnum, ec, &si->erase);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We've met this logical eraseblock for the first time, add it to the
|
|
* scanning information.
|
|
*/
|
|
|
|
err = validate_vid_hdr(vid_hdr, sv, pnum);
|
|
if (err)
|
|
return err;
|
|
|
|
seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
|
|
if (!seb)
|
|
return -ENOMEM;
|
|
|
|
seb->ec = ec;
|
|
seb->pnum = pnum;
|
|
seb->lnum = lnum;
|
|
seb->sqnum = sqnum;
|
|
seb->scrub = bitflips;
|
|
seb->leb_ver = leb_ver;
|
|
|
|
if (sv->highest_lnum <= lnum) {
|
|
sv->highest_lnum = lnum;
|
|
sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
|
|
}
|
|
|
|
sv->leb_count += 1;
|
|
rb_link_node(&seb->u.rb, parent, p);
|
|
rb_insert_color(&seb->u.rb, &sv->root);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_scan_find_sv - find information about a particular volume in the
|
|
* scanning information.
|
|
* @si: scanning information
|
|
* @vol_id: the requested volume ID
|
|
*
|
|
* This function returns a pointer to the volume description or %NULL if there
|
|
* are no data about this volume in the scanning information.
|
|
*/
|
|
struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
|
|
int vol_id)
|
|
{
|
|
struct ubi_scan_volume *sv;
|
|
struct rb_node *p = si->volumes.rb_node;
|
|
|
|
while (p) {
|
|
sv = rb_entry(p, struct ubi_scan_volume, rb);
|
|
|
|
if (vol_id == sv->vol_id)
|
|
return sv;
|
|
|
|
if (vol_id > sv->vol_id)
|
|
p = p->rb_left;
|
|
else
|
|
p = p->rb_right;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ubi_scan_find_seb - find information about a particular logical
|
|
* eraseblock in the volume scanning information.
|
|
* @sv: a pointer to the volume scanning information
|
|
* @lnum: the requested logical eraseblock
|
|
*
|
|
* This function returns a pointer to the scanning logical eraseblock or %NULL
|
|
* if there are no data about it in the scanning volume information.
|
|
*/
|
|
struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
|
|
int lnum)
|
|
{
|
|
struct ubi_scan_leb *seb;
|
|
struct rb_node *p = sv->root.rb_node;
|
|
|
|
while (p) {
|
|
seb = rb_entry(p, struct ubi_scan_leb, u.rb);
|
|
|
|
if (lnum == seb->lnum)
|
|
return seb;
|
|
|
|
if (lnum > seb->lnum)
|
|
p = p->rb_left;
|
|
else
|
|
p = p->rb_right;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ubi_scan_rm_volume - delete scanning information about a volume.
|
|
* @si: scanning information
|
|
* @sv: the volume scanning information to delete
|
|
*/
|
|
void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
|
|
{
|
|
struct rb_node *rb;
|
|
struct ubi_scan_leb *seb;
|
|
|
|
dbg_bld("remove scanning information about volume %d", sv->vol_id);
|
|
|
|
while ((rb = rb_first(&sv->root))) {
|
|
seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
|
|
rb_erase(&seb->u.rb, &sv->root);
|
|
list_add_tail(&seb->u.list, &si->erase);
|
|
}
|
|
|
|
rb_erase(&sv->rb, &si->volumes);
|
|
kfree(sv);
|
|
si->vols_found -= 1;
|
|
}
|
|
|
|
/**
|
|
* ubi_scan_erase_peb - erase a physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @si: scanning information
|
|
* @pnum: physical eraseblock number to erase;
|
|
* @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
|
|
*
|
|
* This function erases physical eraseblock 'pnum', and writes the erase
|
|
* counter header to it. This function should only be used on UBI device
|
|
* initialization stages, when the EBA unit had not been yet initialized. This
|
|
* function returns zero in case of success and a negative error code in case
|
|
* of failure.
|
|
*/
|
|
int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
|
|
int pnum, int ec)
|
|
{
|
|
int err;
|
|
struct ubi_ec_hdr *ec_hdr;
|
|
|
|
if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
|
|
/*
|
|
* Erase counter overflow. Upgrade UBI and use 64-bit
|
|
* erase counters internally.
|
|
*/
|
|
ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
|
|
if (!ec_hdr)
|
|
return -ENOMEM;
|
|
|
|
ec_hdr->ec = cpu_to_be64(ec);
|
|
|
|
err = ubi_io_sync_erase(ubi, pnum, 0);
|
|
if (err < 0)
|
|
goto out_free;
|
|
|
|
err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
|
|
|
|
out_free:
|
|
kfree(ec_hdr);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_scan_get_free_peb - get a free physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @si: scanning information
|
|
*
|
|
* This function returns a free physical eraseblock. It is supposed to be
|
|
* called on the UBI initialization stages when the wear-leveling unit is not
|
|
* initialized yet. This function picks a physical eraseblocks from one of the
|
|
* lists, writes the EC header if it is needed, and removes it from the list.
|
|
*
|
|
* This function returns scanning physical eraseblock information in case of
|
|
* success and an error code in case of failure.
|
|
*/
|
|
struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
|
|
struct ubi_scan_info *si)
|
|
{
|
|
int err = 0, i;
|
|
struct ubi_scan_leb *seb;
|
|
|
|
if (!list_empty(&si->free)) {
|
|
seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
|
|
list_del(&seb->u.list);
|
|
dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
|
|
return seb;
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
struct list_head *head;
|
|
struct ubi_scan_leb *tmp_seb;
|
|
|
|
if (i == 0)
|
|
head = &si->erase;
|
|
else
|
|
head = &si->corr;
|
|
|
|
/*
|
|
* We try to erase the first physical eraseblock from the @head
|
|
* list and pick it if we succeed, or try to erase the
|
|
* next one if not. And so forth. We don't want to take care
|
|
* about bad eraseblocks here - they'll be handled later.
|
|
*/
|
|
list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
|
|
if (seb->ec == UBI_SCAN_UNKNOWN_EC)
|
|
seb->ec = si->mean_ec;
|
|
|
|
err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
|
|
if (err)
|
|
continue;
|
|
|
|
seb->ec += 1;
|
|
list_del(&seb->u.list);
|
|
dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
|
|
return seb;
|
|
}
|
|
}
|
|
|
|
ubi_err("no eraseblocks found");
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
|
|
/**
|
|
* process_eb - read UBI headers, check them and add corresponding data
|
|
* to the scanning information.
|
|
* @ubi: UBI device description object
|
|
* @si: scanning information
|
|
* @pnum: the physical eraseblock number
|
|
*
|
|
* This function returns a zero if the physical eraseblock was successfully
|
|
* handled and a negative error code in case of failure.
|
|
*/
|
|
static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, int pnum)
|
|
{
|
|
long long ec;
|
|
int err, bitflips = 0, vol_id, ec_corr = 0;
|
|
|
|
dbg_bld("scan PEB %d", pnum);
|
|
|
|
/* Skip bad physical eraseblocks */
|
|
err = ubi_io_is_bad(ubi, pnum);
|
|
if (err < 0)
|
|
return err;
|
|
else if (err) {
|
|
/*
|
|
* FIXME: this is actually duty of the I/O unit to initialize
|
|
* this, but MTD does not provide enough information.
|
|
*/
|
|
si->bad_peb_count += 1;
|
|
return 0;
|
|
}
|
|
|
|
err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
|
|
if (err < 0)
|
|
return err;
|
|
else if (err == UBI_IO_BITFLIPS)
|
|
bitflips = 1;
|
|
else if (err == UBI_IO_PEB_EMPTY)
|
|
return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
|
|
else if (err == UBI_IO_BAD_EC_HDR) {
|
|
/*
|
|
* We have to also look at the VID header, possibly it is not
|
|
* corrupted. Set %bitflips flag in order to make this PEB be
|
|
* moved and EC be re-created.
|
|
*/
|
|
ec_corr = 1;
|
|
ec = UBI_SCAN_UNKNOWN_EC;
|
|
bitflips = 1;
|
|
}
|
|
|
|
si->is_empty = 0;
|
|
|
|
if (!ec_corr) {
|
|
/* Make sure UBI version is OK */
|
|
if (ech->version != UBI_VERSION) {
|
|
ubi_err("this UBI version is %d, image version is %d",
|
|
UBI_VERSION, (int)ech->version);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ec = be64_to_cpu(ech->ec);
|
|
if (ec > UBI_MAX_ERASECOUNTER) {
|
|
/*
|
|
* Erase counter overflow. The EC headers have 64 bits
|
|
* reserved, but we anyway make use of only 31 bit
|
|
* values, as this seems to be enough for any existing
|
|
* flash. Upgrade UBI and use 64-bit erase counters
|
|
* internally.
|
|
*/
|
|
ubi_err("erase counter overflow, max is %d",
|
|
UBI_MAX_ERASECOUNTER);
|
|
ubi_dbg_dump_ec_hdr(ech);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* OK, we've done with the EC header, let's look at the VID header */
|
|
|
|
err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
|
|
if (err < 0)
|
|
return err;
|
|
else if (err == UBI_IO_BITFLIPS)
|
|
bitflips = 1;
|
|
else if (err == UBI_IO_BAD_VID_HDR ||
|
|
(err == UBI_IO_PEB_FREE && ec_corr)) {
|
|
/* VID header is corrupted */
|
|
err = add_to_list(si, pnum, ec, &si->corr);
|
|
if (err)
|
|
return err;
|
|
goto adjust_mean_ec;
|
|
} else if (err == UBI_IO_PEB_FREE) {
|
|
/* No VID header - the physical eraseblock is free */
|
|
err = add_to_list(si, pnum, ec, &si->free);
|
|
if (err)
|
|
return err;
|
|
goto adjust_mean_ec;
|
|
}
|
|
|
|
vol_id = be32_to_cpu(vidh->vol_id);
|
|
if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOL_ID) {
|
|
int lnum = be32_to_cpu(vidh->lnum);
|
|
|
|
/* Unsupported internal volume */
|
|
switch (vidh->compat) {
|
|
case UBI_COMPAT_DELETE:
|
|
ubi_msg("\"delete\" compatible internal volume %d:%d"
|
|
" found, remove it", vol_id, lnum);
|
|
err = add_to_list(si, pnum, ec, &si->corr);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
|
|
case UBI_COMPAT_RO:
|
|
ubi_msg("read-only compatible internal volume %d:%d"
|
|
" found, switch to read-only mode",
|
|
vol_id, lnum);
|
|
ubi->ro_mode = 1;
|
|
break;
|
|
|
|
case UBI_COMPAT_PRESERVE:
|
|
ubi_msg("\"preserve\" compatible internal volume %d:%d"
|
|
" found", vol_id, lnum);
|
|
err = add_to_list(si, pnum, ec, &si->alien);
|
|
if (err)
|
|
return err;
|
|
si->alien_peb_count += 1;
|
|
return 0;
|
|
|
|
case UBI_COMPAT_REJECT:
|
|
ubi_err("incompatible internal volume %d:%d found",
|
|
vol_id, lnum);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Both UBI headers seem to be fine */
|
|
err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
|
|
if (err)
|
|
return err;
|
|
|
|
adjust_mean_ec:
|
|
if (!ec_corr) {
|
|
if (si->ec_sum + ec < ec) {
|
|
commit_to_mean_value(si);
|
|
si->ec_sum = 0;
|
|
si->ec_count = 0;
|
|
} else {
|
|
si->ec_sum += ec;
|
|
si->ec_count += 1;
|
|
}
|
|
|
|
if (ec > si->max_ec)
|
|
si->max_ec = ec;
|
|
if (ec < si->min_ec)
|
|
si->min_ec = ec;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_scan - scan an MTD device.
|
|
* @ubi: UBI device description object
|
|
*
|
|
* This function does full scanning of an MTD device and returns complete
|
|
* information about it. In case of failure, an error code is returned.
|
|
*/
|
|
struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
|
|
{
|
|
int err, pnum;
|
|
struct rb_node *rb1, *rb2;
|
|
struct ubi_scan_volume *sv;
|
|
struct ubi_scan_leb *seb;
|
|
struct ubi_scan_info *si;
|
|
|
|
si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
|
|
if (!si)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
INIT_LIST_HEAD(&si->corr);
|
|
INIT_LIST_HEAD(&si->free);
|
|
INIT_LIST_HEAD(&si->erase);
|
|
INIT_LIST_HEAD(&si->alien);
|
|
si->volumes = RB_ROOT;
|
|
si->is_empty = 1;
|
|
|
|
err = -ENOMEM;
|
|
ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
|
|
if (!ech)
|
|
goto out_si;
|
|
|
|
vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
|
|
if (!vidh)
|
|
goto out_ech;
|
|
|
|
for (pnum = 0; pnum < ubi->peb_count; pnum++) {
|
|
cond_resched();
|
|
|
|
dbg_msg("process PEB %d", pnum);
|
|
err = process_eb(ubi, si, pnum);
|
|
if (err < 0)
|
|
goto out_vidh;
|
|
}
|
|
|
|
dbg_msg("scanning is finished");
|
|
|
|
/* Finish mean erase counter calculations */
|
|
if (si->ec_count)
|
|
commit_to_mean_value(si);
|
|
|
|
if (si->is_empty)
|
|
ubi_msg("empty MTD device detected");
|
|
|
|
/*
|
|
* In case of unknown erase counter we use the mean erase counter
|
|
* value.
|
|
*/
|
|
ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
|
|
ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
|
|
if (seb->ec == UBI_SCAN_UNKNOWN_EC)
|
|
seb->ec = si->mean_ec;
|
|
}
|
|
|
|
list_for_each_entry(seb, &si->free, u.list) {
|
|
if (seb->ec == UBI_SCAN_UNKNOWN_EC)
|
|
seb->ec = si->mean_ec;
|
|
}
|
|
|
|
list_for_each_entry(seb, &si->corr, u.list)
|
|
if (seb->ec == UBI_SCAN_UNKNOWN_EC)
|
|
seb->ec = si->mean_ec;
|
|
|
|
list_for_each_entry(seb, &si->erase, u.list)
|
|
if (seb->ec == UBI_SCAN_UNKNOWN_EC)
|
|
seb->ec = si->mean_ec;
|
|
|
|
err = paranoid_check_si(ubi, si);
|
|
if (err) {
|
|
if (err > 0)
|
|
err = -EINVAL;
|
|
goto out_vidh;
|
|
}
|
|
|
|
ubi_free_vid_hdr(ubi, vidh);
|
|
kfree(ech);
|
|
|
|
return si;
|
|
|
|
out_vidh:
|
|
ubi_free_vid_hdr(ubi, vidh);
|
|
out_ech:
|
|
kfree(ech);
|
|
out_si:
|
|
ubi_scan_destroy_si(si);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/**
|
|
* destroy_sv - free the scanning volume information
|
|
* @sv: scanning volume information
|
|
*
|
|
* This function destroys the volume RB-tree (@sv->root) and the scanning
|
|
* volume information.
|
|
*/
|
|
static void destroy_sv(struct ubi_scan_volume *sv)
|
|
{
|
|
struct ubi_scan_leb *seb;
|
|
struct rb_node *this = sv->root.rb_node;
|
|
|
|
while (this) {
|
|
if (this->rb_left)
|
|
this = this->rb_left;
|
|
else if (this->rb_right)
|
|
this = this->rb_right;
|
|
else {
|
|
seb = rb_entry(this, struct ubi_scan_leb, u.rb);
|
|
this = rb_parent(this);
|
|
if (this) {
|
|
if (this->rb_left == &seb->u.rb)
|
|
this->rb_left = NULL;
|
|
else
|
|
this->rb_right = NULL;
|
|
}
|
|
|
|
kfree(seb);
|
|
}
|
|
}
|
|
kfree(sv);
|
|
}
|
|
|
|
/**
|
|
* ubi_scan_destroy_si - destroy scanning information.
|
|
* @si: scanning information
|
|
*/
|
|
void ubi_scan_destroy_si(struct ubi_scan_info *si)
|
|
{
|
|
struct ubi_scan_leb *seb, *seb_tmp;
|
|
struct ubi_scan_volume *sv;
|
|
struct rb_node *rb;
|
|
|
|
list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
|
|
list_del(&seb->u.list);
|
|
kfree(seb);
|
|
}
|
|
list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
|
|
list_del(&seb->u.list);
|
|
kfree(seb);
|
|
}
|
|
list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
|
|
list_del(&seb->u.list);
|
|
kfree(seb);
|
|
}
|
|
list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
|
|
list_del(&seb->u.list);
|
|
kfree(seb);
|
|
}
|
|
|
|
/* Destroy the volume RB-tree */
|
|
rb = si->volumes.rb_node;
|
|
while (rb) {
|
|
if (rb->rb_left)
|
|
rb = rb->rb_left;
|
|
else if (rb->rb_right)
|
|
rb = rb->rb_right;
|
|
else {
|
|
sv = rb_entry(rb, struct ubi_scan_volume, rb);
|
|
|
|
rb = rb_parent(rb);
|
|
if (rb) {
|
|
if (rb->rb_left == &sv->rb)
|
|
rb->rb_left = NULL;
|
|
else
|
|
rb->rb_right = NULL;
|
|
}
|
|
|
|
destroy_sv(sv);
|
|
}
|
|
}
|
|
|
|
kfree(si);
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
|
|
|
|
/**
|
|
* paranoid_check_si - check if the scanning information is correct and
|
|
* consistent.
|
|
* @ubi: UBI device description object
|
|
* @si: scanning information
|
|
*
|
|
* This function returns zero if the scanning information is all right, %1 if
|
|
* not and a negative error code if an error occurred.
|
|
*/
|
|
static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
|
|
{
|
|
int pnum, err, vols_found = 0;
|
|
struct rb_node *rb1, *rb2;
|
|
struct ubi_scan_volume *sv;
|
|
struct ubi_scan_leb *seb, *last_seb;
|
|
uint8_t *buf;
|
|
|
|
/*
|
|
* At first, check that scanning information is OK.
|
|
*/
|
|
ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
|
|
int leb_count = 0;
|
|
|
|
cond_resched();
|
|
|
|
vols_found += 1;
|
|
|
|
if (si->is_empty) {
|
|
ubi_err("bad is_empty flag");
|
|
goto bad_sv;
|
|
}
|
|
|
|
if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
|
|
sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
|
|
sv->data_pad < 0 || sv->last_data_size < 0) {
|
|
ubi_err("negative values");
|
|
goto bad_sv;
|
|
}
|
|
|
|
if (sv->vol_id >= UBI_MAX_VOLUMES &&
|
|
sv->vol_id < UBI_INTERNAL_VOL_START) {
|
|
ubi_err("bad vol_id");
|
|
goto bad_sv;
|
|
}
|
|
|
|
if (sv->vol_id > si->highest_vol_id) {
|
|
ubi_err("highest_vol_id is %d, but vol_id %d is there",
|
|
si->highest_vol_id, sv->vol_id);
|
|
goto out;
|
|
}
|
|
|
|
if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
|
|
sv->vol_type != UBI_STATIC_VOLUME) {
|
|
ubi_err("bad vol_type");
|
|
goto bad_sv;
|
|
}
|
|
|
|
if (sv->data_pad > ubi->leb_size / 2) {
|
|
ubi_err("bad data_pad");
|
|
goto bad_sv;
|
|
}
|
|
|
|
last_seb = NULL;
|
|
ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
|
|
cond_resched();
|
|
|
|
last_seb = seb;
|
|
leb_count += 1;
|
|
|
|
if (seb->pnum < 0 || seb->ec < 0) {
|
|
ubi_err("negative values");
|
|
goto bad_seb;
|
|
}
|
|
|
|
if (seb->ec < si->min_ec) {
|
|
ubi_err("bad si->min_ec (%d), %d found",
|
|
si->min_ec, seb->ec);
|
|
goto bad_seb;
|
|
}
|
|
|
|
if (seb->ec > si->max_ec) {
|
|
ubi_err("bad si->max_ec (%d), %d found",
|
|
si->max_ec, seb->ec);
|
|
goto bad_seb;
|
|
}
|
|
|
|
if (seb->pnum >= ubi->peb_count) {
|
|
ubi_err("too high PEB number %d, total PEBs %d",
|
|
seb->pnum, ubi->peb_count);
|
|
goto bad_seb;
|
|
}
|
|
|
|
if (sv->vol_type == UBI_STATIC_VOLUME) {
|
|
if (seb->lnum >= sv->used_ebs) {
|
|
ubi_err("bad lnum or used_ebs");
|
|
goto bad_seb;
|
|
}
|
|
} else {
|
|
if (sv->used_ebs != 0) {
|
|
ubi_err("non-zero used_ebs");
|
|
goto bad_seb;
|
|
}
|
|
}
|
|
|
|
if (seb->lnum > sv->highest_lnum) {
|
|
ubi_err("incorrect highest_lnum or lnum");
|
|
goto bad_seb;
|
|
}
|
|
}
|
|
|
|
if (sv->leb_count != leb_count) {
|
|
ubi_err("bad leb_count, %d objects in the tree",
|
|
leb_count);
|
|
goto bad_sv;
|
|
}
|
|
|
|
if (!last_seb)
|
|
continue;
|
|
|
|
seb = last_seb;
|
|
|
|
if (seb->lnum != sv->highest_lnum) {
|
|
ubi_err("bad highest_lnum");
|
|
goto bad_seb;
|
|
}
|
|
}
|
|
|
|
if (vols_found != si->vols_found) {
|
|
ubi_err("bad si->vols_found %d, should be %d",
|
|
si->vols_found, vols_found);
|
|
goto out;
|
|
}
|
|
|
|
/* Check that scanning information is correct */
|
|
ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
|
|
last_seb = NULL;
|
|
ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
|
|
int vol_type;
|
|
|
|
cond_resched();
|
|
|
|
last_seb = seb;
|
|
|
|
err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
|
|
if (err && err != UBI_IO_BITFLIPS) {
|
|
ubi_err("VID header is not OK (%d)", err);
|
|
if (err > 0)
|
|
err = -EIO;
|
|
return err;
|
|
}
|
|
|
|
vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
|
|
UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
|
|
if (sv->vol_type != vol_type) {
|
|
ubi_err("bad vol_type");
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
|
|
ubi_err("bad sqnum %llu", seb->sqnum);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
|
|
ubi_err("bad vol_id %d", sv->vol_id);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (sv->compat != vidh->compat) {
|
|
ubi_err("bad compat %d", vidh->compat);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (seb->lnum != be32_to_cpu(vidh->lnum)) {
|
|
ubi_err("bad lnum %d", seb->lnum);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
|
|
ubi_err("bad used_ebs %d", sv->used_ebs);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
|
|
ubi_err("bad data_pad %d", sv->data_pad);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (seb->leb_ver != be32_to_cpu(vidh->leb_ver)) {
|
|
ubi_err("bad leb_ver %u", seb->leb_ver);
|
|
goto bad_vid_hdr;
|
|
}
|
|
}
|
|
|
|
if (!last_seb)
|
|
continue;
|
|
|
|
if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
|
|
ubi_err("bad highest_lnum %d", sv->highest_lnum);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
|
|
ubi_err("bad last_data_size %d", sv->last_data_size);
|
|
goto bad_vid_hdr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure that all the physical eraseblocks are in one of the lists
|
|
* or trees.
|
|
*/
|
|
buf = kzalloc(ubi->peb_count, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
for (pnum = 0; pnum < ubi->peb_count; pnum++) {
|
|
err = ubi_io_is_bad(ubi, pnum);
|
|
if (err < 0) {
|
|
kfree(buf);
|
|
return err;
|
|
}
|
|
else if (err)
|
|
buf[pnum] = 1;
|
|
}
|
|
|
|
ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
|
|
ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
|
|
buf[seb->pnum] = 1;
|
|
|
|
list_for_each_entry(seb, &si->free, u.list)
|
|
buf[seb->pnum] = 1;
|
|
|
|
list_for_each_entry(seb, &si->corr, u.list)
|
|
buf[seb->pnum] = 1;
|
|
|
|
list_for_each_entry(seb, &si->erase, u.list)
|
|
buf[seb->pnum] = 1;
|
|
|
|
list_for_each_entry(seb, &si->alien, u.list)
|
|
buf[seb->pnum] = 1;
|
|
|
|
err = 0;
|
|
for (pnum = 0; pnum < ubi->peb_count; pnum++)
|
|
if (!buf[pnum]) {
|
|
ubi_err("PEB %d is not referred", pnum);
|
|
err = 1;
|
|
}
|
|
|
|
kfree(buf);
|
|
if (err)
|
|
goto out;
|
|
return 0;
|
|
|
|
bad_seb:
|
|
ubi_err("bad scanning information about LEB %d", seb->lnum);
|
|
ubi_dbg_dump_seb(seb, 0);
|
|
ubi_dbg_dump_sv(sv);
|
|
goto out;
|
|
|
|
bad_sv:
|
|
ubi_err("bad scanning information about volume %d", sv->vol_id);
|
|
ubi_dbg_dump_sv(sv);
|
|
goto out;
|
|
|
|
bad_vid_hdr:
|
|
ubi_err("bad scanning information about volume %d", sv->vol_id);
|
|
ubi_dbg_dump_sv(sv);
|
|
ubi_dbg_dump_vid_hdr(vidh);
|
|
|
|
out:
|
|
ubi_dbg_dump_stack();
|
|
return 1;
|
|
}
|
|
|
|
#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
|