linux/drivers/spi/spi-synquacer.c
Amit Kumar Mahapatra via Alsa-devel 9e264f3f85
spi: Replace all spi->chip_select and spi->cs_gpiod references with function call
Supporting multi-cs in spi drivers would require the chip_select & cs_gpiod
members of struct spi_device to be an array. But changing the type of these
members to array would break the spi driver functionality. To make the
transition smoother introduced four new APIs to get/set the
spi->chip_select & spi->cs_gpiod and replaced all spi->chip_select and
spi->cs_gpiod references with get or set API calls.
While adding multi-cs support in further patches the chip_select & cs_gpiod
members of the spi_device structure would be converted to arrays & the
"idx" parameter of the APIs would be used as array index i.e.,
spi->chip_select[idx] & spi->cs_gpiod[idx] respectively.

Signed-off-by: Amit Kumar Mahapatra <amit.kumar-mahapatra@amd.com>
Acked-by: Heiko Stuebner <heiko@sntech.de> # Rockchip drivers
Reviewed-by: Michal Simek <michal.simek@amd.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org> # Aspeed driver
Reviewed-by: Dhruva Gole <d-gole@ti.com> # SPI Cadence QSPI
Reviewed-by: Patrice Chotard <patrice.chotard@foss.st.com> # spi-stm32-qspi
Acked-by: William Zhang <william.zhang@broadcom.com> # bcm63xx-hsspi driver
Reviewed-by: Serge Semin <fancer.lancer@gmail.com> # DW SSI part
Link: https://lore.kernel.org/r/167847070432.26.15076794204368669839@mailman-core.alsa-project.org
Signed-off-by: Mark Brown <broonie@kernel.org>
2023-03-11 12:34:01 +00:00

829 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// Synquacer HSSPI controller driver
//
// Copyright (c) 2015-2018 Socionext Inc.
// Copyright (c) 2018-2019 Linaro Ltd.
//
#include <linux/acpi.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/spinlock.h>
#include <linux/clk.h>
/* HSSPI register address definitions */
#define SYNQUACER_HSSPI_REG_MCTRL 0x00
#define SYNQUACER_HSSPI_REG_PCC0 0x04
#define SYNQUACER_HSSPI_REG_PCC(n) (SYNQUACER_HSSPI_REG_PCC0 + (n) * 4)
#define SYNQUACER_HSSPI_REG_TXF 0x14
#define SYNQUACER_HSSPI_REG_TXE 0x18
#define SYNQUACER_HSSPI_REG_TXC 0x1C
#define SYNQUACER_HSSPI_REG_RXF 0x20
#define SYNQUACER_HSSPI_REG_RXE 0x24
#define SYNQUACER_HSSPI_REG_RXC 0x28
#define SYNQUACER_HSSPI_REG_FAULTF 0x2C
#define SYNQUACER_HSSPI_REG_FAULTC 0x30
#define SYNQUACER_HSSPI_REG_DMCFG 0x34
#define SYNQUACER_HSSPI_REG_DMSTART 0x38
#define SYNQUACER_HSSPI_REG_DMBCC 0x3C
#define SYNQUACER_HSSPI_REG_DMSTATUS 0x40
#define SYNQUACER_HSSPI_REG_FIFOCFG 0x4C
#define SYNQUACER_HSSPI_REG_TX_FIFO 0x50
#define SYNQUACER_HSSPI_REG_RX_FIFO 0x90
#define SYNQUACER_HSSPI_REG_MID 0xFC
/* HSSPI register bit definitions */
#define SYNQUACER_HSSPI_MCTRL_MEN BIT(0)
#define SYNQUACER_HSSPI_MCTRL_COMMAND_SEQUENCE_EN BIT(1)
#define SYNQUACER_HSSPI_MCTRL_CDSS BIT(3)
#define SYNQUACER_HSSPI_MCTRL_MES BIT(4)
#define SYNQUACER_HSSPI_MCTRL_SYNCON BIT(5)
#define SYNQUACER_HSSPI_PCC_CPHA BIT(0)
#define SYNQUACER_HSSPI_PCC_CPOL BIT(1)
#define SYNQUACER_HSSPI_PCC_ACES BIT(2)
#define SYNQUACER_HSSPI_PCC_RTM BIT(3)
#define SYNQUACER_HSSPI_PCC_SSPOL BIT(4)
#define SYNQUACER_HSSPI_PCC_SDIR BIT(7)
#define SYNQUACER_HSSPI_PCC_SENDIAN BIT(8)
#define SYNQUACER_HSSPI_PCC_SAFESYNC BIT(16)
#define SYNQUACER_HSSPI_PCC_SS2CD_SHIFT 5U
#define SYNQUACER_HSSPI_PCC_CDRS_MASK 0x7f
#define SYNQUACER_HSSPI_PCC_CDRS_SHIFT 9U
#define SYNQUACER_HSSPI_TXF_FIFO_FULL BIT(0)
#define SYNQUACER_HSSPI_TXF_FIFO_EMPTY BIT(1)
#define SYNQUACER_HSSPI_TXF_SLAVE_RELEASED BIT(6)
#define SYNQUACER_HSSPI_TXE_FIFO_FULL BIT(0)
#define SYNQUACER_HSSPI_TXE_FIFO_EMPTY BIT(1)
#define SYNQUACER_HSSPI_TXE_SLAVE_RELEASED BIT(6)
#define SYNQUACER_HSSPI_RXF_FIFO_MORE_THAN_THRESHOLD BIT(5)
#define SYNQUACER_HSSPI_RXF_SLAVE_RELEASED BIT(6)
#define SYNQUACER_HSSPI_RXE_FIFO_MORE_THAN_THRESHOLD BIT(5)
#define SYNQUACER_HSSPI_RXE_SLAVE_RELEASED BIT(6)
#define SYNQUACER_HSSPI_DMCFG_SSDC BIT(1)
#define SYNQUACER_HSSPI_DMCFG_MSTARTEN BIT(2)
#define SYNQUACER_HSSPI_DMSTART_START BIT(0)
#define SYNQUACER_HSSPI_DMSTOP_STOP BIT(8)
#define SYNQUACER_HSSPI_DMPSEL_CS_MASK 0x3
#define SYNQUACER_HSSPI_DMPSEL_CS_SHIFT 16U
#define SYNQUACER_HSSPI_DMTRP_BUS_WIDTH_SHIFT 24U
#define SYNQUACER_HSSPI_DMTRP_DATA_MASK 0x3
#define SYNQUACER_HSSPI_DMTRP_DATA_SHIFT 26U
#define SYNQUACER_HSSPI_DMTRP_DATA_TXRX 0
#define SYNQUACER_HSSPI_DMTRP_DATA_RX 1
#define SYNQUACER_HSSPI_DMTRP_DATA_TX 2
#define SYNQUACER_HSSPI_DMSTATUS_RX_DATA_MASK 0x1f
#define SYNQUACER_HSSPI_DMSTATUS_RX_DATA_SHIFT 8U
#define SYNQUACER_HSSPI_DMSTATUS_TX_DATA_MASK 0x1f
#define SYNQUACER_HSSPI_DMSTATUS_TX_DATA_SHIFT 16U
#define SYNQUACER_HSSPI_FIFOCFG_RX_THRESHOLD_MASK 0xf
#define SYNQUACER_HSSPI_FIFOCFG_RX_THRESHOLD_SHIFT 0U
#define SYNQUACER_HSSPI_FIFOCFG_TX_THRESHOLD_MASK 0xf
#define SYNQUACER_HSSPI_FIFOCFG_TX_THRESHOLD_SHIFT 4U
#define SYNQUACER_HSSPI_FIFOCFG_FIFO_WIDTH_MASK 0x3
#define SYNQUACER_HSSPI_FIFOCFG_FIFO_WIDTH_SHIFT 8U
#define SYNQUACER_HSSPI_FIFOCFG_RX_FLUSH BIT(11)
#define SYNQUACER_HSSPI_FIFOCFG_TX_FLUSH BIT(12)
#define SYNQUACER_HSSPI_FIFO_DEPTH 16U
#define SYNQUACER_HSSPI_FIFO_TX_THRESHOLD 4U
#define SYNQUACER_HSSPI_FIFO_RX_THRESHOLD \
(SYNQUACER_HSSPI_FIFO_DEPTH - SYNQUACER_HSSPI_FIFO_TX_THRESHOLD)
#define SYNQUACER_HSSPI_TRANSFER_MODE_TX BIT(1)
#define SYNQUACER_HSSPI_TRANSFER_MODE_RX BIT(2)
#define SYNQUACER_HSSPI_TRANSFER_TMOUT_MSEC 2000U
#define SYNQUACER_HSSPI_ENABLE_TMOUT_MSEC 1000U
#define SYNQUACER_HSSPI_CLOCK_SRC_IHCLK 0
#define SYNQUACER_HSSPI_CLOCK_SRC_IPCLK 1
#define SYNQUACER_HSSPI_NUM_CHIP_SELECT 4U
#define SYNQUACER_HSSPI_IRQ_NAME_MAX 32U
struct synquacer_spi {
struct device *dev;
struct completion transfer_done;
unsigned int cs;
unsigned int bpw;
unsigned int mode;
unsigned int speed;
bool aces, rtm;
void *rx_buf;
const void *tx_buf;
struct clk *clk;
int clk_src_type;
void __iomem *regs;
u32 tx_words, rx_words;
unsigned int bus_width;
unsigned int transfer_mode;
char rx_irq_name[SYNQUACER_HSSPI_IRQ_NAME_MAX];
char tx_irq_name[SYNQUACER_HSSPI_IRQ_NAME_MAX];
};
static int read_fifo(struct synquacer_spi *sspi)
{
u32 len = readl(sspi->regs + SYNQUACER_HSSPI_REG_DMSTATUS);
len = (len >> SYNQUACER_HSSPI_DMSTATUS_RX_DATA_SHIFT) &
SYNQUACER_HSSPI_DMSTATUS_RX_DATA_MASK;
len = min(len, sspi->rx_words);
switch (sspi->bpw) {
case 8: {
u8 *buf = sspi->rx_buf;
ioread8_rep(sspi->regs + SYNQUACER_HSSPI_REG_RX_FIFO,
buf, len);
sspi->rx_buf = buf + len;
break;
}
case 16: {
u16 *buf = sspi->rx_buf;
ioread16_rep(sspi->regs + SYNQUACER_HSSPI_REG_RX_FIFO,
buf, len);
sspi->rx_buf = buf + len;
break;
}
case 24:
/* fallthrough, should use 32-bits access */
case 32: {
u32 *buf = sspi->rx_buf;
ioread32_rep(sspi->regs + SYNQUACER_HSSPI_REG_RX_FIFO,
buf, len);
sspi->rx_buf = buf + len;
break;
}
default:
return -EINVAL;
}
sspi->rx_words -= len;
return 0;
}
static int write_fifo(struct synquacer_spi *sspi)
{
u32 len = readl(sspi->regs + SYNQUACER_HSSPI_REG_DMSTATUS);
len = (len >> SYNQUACER_HSSPI_DMSTATUS_TX_DATA_SHIFT) &
SYNQUACER_HSSPI_DMSTATUS_TX_DATA_MASK;
len = min(SYNQUACER_HSSPI_FIFO_DEPTH - len,
sspi->tx_words);
switch (sspi->bpw) {
case 8: {
const u8 *buf = sspi->tx_buf;
iowrite8_rep(sspi->regs + SYNQUACER_HSSPI_REG_TX_FIFO,
buf, len);
sspi->tx_buf = buf + len;
break;
}
case 16: {
const u16 *buf = sspi->tx_buf;
iowrite16_rep(sspi->regs + SYNQUACER_HSSPI_REG_TX_FIFO,
buf, len);
sspi->tx_buf = buf + len;
break;
}
case 24:
/* fallthrough, should use 32-bits access */
case 32: {
const u32 *buf = sspi->tx_buf;
iowrite32_rep(sspi->regs + SYNQUACER_HSSPI_REG_TX_FIFO,
buf, len);
sspi->tx_buf = buf + len;
break;
}
default:
return -EINVAL;
}
sspi->tx_words -= len;
return 0;
}
static int synquacer_spi_config(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct synquacer_spi *sspi = spi_master_get_devdata(master);
unsigned int speed, mode, bpw, cs, bus_width, transfer_mode;
u32 rate, val, div;
/* Full Duplex only on 1-bit wide bus */
if (xfer->rx_buf && xfer->tx_buf &&
(xfer->rx_nbits != 1 || xfer->tx_nbits != 1)) {
dev_err(sspi->dev,
"RX and TX bus widths must be 1-bit for Full-Duplex!\n");
return -EINVAL;
}
if (xfer->tx_buf) {
bus_width = xfer->tx_nbits;
transfer_mode = SYNQUACER_HSSPI_TRANSFER_MODE_TX;
} else {
bus_width = xfer->rx_nbits;
transfer_mode = SYNQUACER_HSSPI_TRANSFER_MODE_RX;
}
mode = spi->mode;
cs = spi_get_chipselect(spi, 0);
speed = xfer->speed_hz;
bpw = xfer->bits_per_word;
/* return if nothing to change */
if (speed == sspi->speed &&
bus_width == sspi->bus_width && bpw == sspi->bpw &&
mode == sspi->mode && cs == sspi->cs &&
transfer_mode == sspi->transfer_mode) {
return 0;
}
sspi->transfer_mode = transfer_mode;
rate = master->max_speed_hz;
div = DIV_ROUND_UP(rate, speed);
if (div > 254) {
dev_err(sspi->dev, "Requested rate too low (%u)\n",
sspi->speed);
return -EINVAL;
}
val = readl(sspi->regs + SYNQUACER_HSSPI_REG_PCC(cs));
val &= ~SYNQUACER_HSSPI_PCC_SAFESYNC;
if (bpw == 8 && (mode & (SPI_TX_DUAL | SPI_RX_DUAL)) && div < 3)
val |= SYNQUACER_HSSPI_PCC_SAFESYNC;
if (bpw == 8 && (mode & (SPI_TX_QUAD | SPI_RX_QUAD)) && div < 6)
val |= SYNQUACER_HSSPI_PCC_SAFESYNC;
if (bpw == 16 && (mode & (SPI_TX_QUAD | SPI_RX_QUAD)) && div < 3)
val |= SYNQUACER_HSSPI_PCC_SAFESYNC;
if (mode & SPI_CPHA)
val |= SYNQUACER_HSSPI_PCC_CPHA;
else
val &= ~SYNQUACER_HSSPI_PCC_CPHA;
if (mode & SPI_CPOL)
val |= SYNQUACER_HSSPI_PCC_CPOL;
else
val &= ~SYNQUACER_HSSPI_PCC_CPOL;
if (mode & SPI_CS_HIGH)
val |= SYNQUACER_HSSPI_PCC_SSPOL;
else
val &= ~SYNQUACER_HSSPI_PCC_SSPOL;
if (mode & SPI_LSB_FIRST)
val |= SYNQUACER_HSSPI_PCC_SDIR;
else
val &= ~SYNQUACER_HSSPI_PCC_SDIR;
if (sspi->aces)
val |= SYNQUACER_HSSPI_PCC_ACES;
else
val &= ~SYNQUACER_HSSPI_PCC_ACES;
if (sspi->rtm)
val |= SYNQUACER_HSSPI_PCC_RTM;
else
val &= ~SYNQUACER_HSSPI_PCC_RTM;
val |= (3 << SYNQUACER_HSSPI_PCC_SS2CD_SHIFT);
val |= SYNQUACER_HSSPI_PCC_SENDIAN;
val &= ~(SYNQUACER_HSSPI_PCC_CDRS_MASK <<
SYNQUACER_HSSPI_PCC_CDRS_SHIFT);
val |= ((div >> 1) << SYNQUACER_HSSPI_PCC_CDRS_SHIFT);
writel(val, sspi->regs + SYNQUACER_HSSPI_REG_PCC(cs));
val = readl(sspi->regs + SYNQUACER_HSSPI_REG_FIFOCFG);
val &= ~(SYNQUACER_HSSPI_FIFOCFG_FIFO_WIDTH_MASK <<
SYNQUACER_HSSPI_FIFOCFG_FIFO_WIDTH_SHIFT);
val |= ((bpw / 8 - 1) << SYNQUACER_HSSPI_FIFOCFG_FIFO_WIDTH_SHIFT);
writel(val, sspi->regs + SYNQUACER_HSSPI_REG_FIFOCFG);
val = readl(sspi->regs + SYNQUACER_HSSPI_REG_DMSTART);
val &= ~(SYNQUACER_HSSPI_DMTRP_DATA_MASK <<
SYNQUACER_HSSPI_DMTRP_DATA_SHIFT);
if (xfer->rx_buf)
val |= (SYNQUACER_HSSPI_DMTRP_DATA_RX <<
SYNQUACER_HSSPI_DMTRP_DATA_SHIFT);
else
val |= (SYNQUACER_HSSPI_DMTRP_DATA_TX <<
SYNQUACER_HSSPI_DMTRP_DATA_SHIFT);
val &= ~(3 << SYNQUACER_HSSPI_DMTRP_BUS_WIDTH_SHIFT);
val |= ((bus_width >> 1) << SYNQUACER_HSSPI_DMTRP_BUS_WIDTH_SHIFT);
writel(val, sspi->regs + SYNQUACER_HSSPI_REG_DMSTART);
sspi->bpw = bpw;
sspi->mode = mode;
sspi->speed = speed;
sspi->cs = spi_get_chipselect(spi, 0);
sspi->bus_width = bus_width;
return 0;
}
static int synquacer_spi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct synquacer_spi *sspi = spi_master_get_devdata(master);
int ret;
int status = 0;
u32 words;
u8 bpw;
u32 val;
val = readl(sspi->regs + SYNQUACER_HSSPI_REG_DMSTART);
val &= ~SYNQUACER_HSSPI_DMSTOP_STOP;
writel(val, sspi->regs + SYNQUACER_HSSPI_REG_DMSTART);
val = readl(sspi->regs + SYNQUACER_HSSPI_REG_FIFOCFG);
val |= SYNQUACER_HSSPI_FIFOCFG_RX_FLUSH;
val |= SYNQUACER_HSSPI_FIFOCFG_TX_FLUSH;
writel(val, sspi->regs + SYNQUACER_HSSPI_REG_FIFOCFG);
/*
* See if we can transfer 4-bytes as 1 word
* to maximize the FIFO buffer efficiency.
*/
bpw = xfer->bits_per_word;
if (bpw == 8 && !(xfer->len % 4) && !(spi->mode & SPI_LSB_FIRST))
xfer->bits_per_word = 32;
ret = synquacer_spi_config(master, spi, xfer);
/* restore */
xfer->bits_per_word = bpw;
if (ret)
return ret;
reinit_completion(&sspi->transfer_done);
sspi->tx_buf = xfer->tx_buf;
sspi->rx_buf = xfer->rx_buf;
switch (sspi->bpw) {
case 8:
words = xfer->len;
break;
case 16:
words = xfer->len / 2;
break;
case 24:
/* fallthrough, should use 32-bits access */
case 32:
words = xfer->len / 4;
break;
default:
dev_err(sspi->dev, "unsupported bpw: %d\n", sspi->bpw);
return -EINVAL;
}
if (xfer->tx_buf)
sspi->tx_words = words;
else
sspi->tx_words = 0;
if (xfer->rx_buf)
sspi->rx_words = words;
else
sspi->rx_words = 0;
if (xfer->tx_buf) {
status = write_fifo(sspi);
if (status < 0) {
dev_err(sspi->dev, "failed write_fifo. status: 0x%x\n",
status);
return status;
}
}
if (xfer->rx_buf) {
val = readl(sspi->regs + SYNQUACER_HSSPI_REG_FIFOCFG);
val &= ~(SYNQUACER_HSSPI_FIFOCFG_RX_THRESHOLD_MASK <<
SYNQUACER_HSSPI_FIFOCFG_RX_THRESHOLD_SHIFT);
val |= ((sspi->rx_words > SYNQUACER_HSSPI_FIFO_DEPTH ?
SYNQUACER_HSSPI_FIFO_RX_THRESHOLD : sspi->rx_words) <<
SYNQUACER_HSSPI_FIFOCFG_RX_THRESHOLD_SHIFT);
writel(val, sspi->regs + SYNQUACER_HSSPI_REG_FIFOCFG);
}
writel(~0, sspi->regs + SYNQUACER_HSSPI_REG_TXC);
writel(~0, sspi->regs + SYNQUACER_HSSPI_REG_RXC);
/* Trigger */
val = readl(sspi->regs + SYNQUACER_HSSPI_REG_DMSTART);
val |= SYNQUACER_HSSPI_DMSTART_START;
writel(val, sspi->regs + SYNQUACER_HSSPI_REG_DMSTART);
if (xfer->tx_buf) {
val = SYNQUACER_HSSPI_TXE_FIFO_EMPTY;
writel(val, sspi->regs + SYNQUACER_HSSPI_REG_TXE);
status = wait_for_completion_timeout(&sspi->transfer_done,
msecs_to_jiffies(SYNQUACER_HSSPI_TRANSFER_TMOUT_MSEC));
writel(0, sspi->regs + SYNQUACER_HSSPI_REG_TXE);
}
if (xfer->rx_buf) {
u32 buf[SYNQUACER_HSSPI_FIFO_DEPTH];
val = SYNQUACER_HSSPI_RXE_FIFO_MORE_THAN_THRESHOLD |
SYNQUACER_HSSPI_RXE_SLAVE_RELEASED;
writel(val, sspi->regs + SYNQUACER_HSSPI_REG_RXE);
status = wait_for_completion_timeout(&sspi->transfer_done,
msecs_to_jiffies(SYNQUACER_HSSPI_TRANSFER_TMOUT_MSEC));
writel(0, sspi->regs + SYNQUACER_HSSPI_REG_RXE);
/* stop RX and clean RXFIFO */
val = readl(sspi->regs + SYNQUACER_HSSPI_REG_DMSTART);
val |= SYNQUACER_HSSPI_DMSTOP_STOP;
writel(val, sspi->regs + SYNQUACER_HSSPI_REG_DMSTART);
sspi->rx_buf = buf;
sspi->rx_words = SYNQUACER_HSSPI_FIFO_DEPTH;
read_fifo(sspi);
}
if (status == 0) {
dev_err(sspi->dev, "failed to transfer. Timeout.\n");
return -ETIMEDOUT;
}
return 0;
}
static void synquacer_spi_set_cs(struct spi_device *spi, bool enable)
{
struct synquacer_spi *sspi = spi_master_get_devdata(spi->master);
u32 val;
val = readl(sspi->regs + SYNQUACER_HSSPI_REG_DMSTART);
val &= ~(SYNQUACER_HSSPI_DMPSEL_CS_MASK <<
SYNQUACER_HSSPI_DMPSEL_CS_SHIFT);
val |= spi_get_chipselect(spi, 0) << SYNQUACER_HSSPI_DMPSEL_CS_SHIFT;
if (!enable)
val |= SYNQUACER_HSSPI_DMSTOP_STOP;
writel(val, sspi->regs + SYNQUACER_HSSPI_REG_DMSTART);
}
static int synquacer_spi_wait_status_update(struct synquacer_spi *sspi,
bool enable)
{
u32 val;
unsigned long timeout = jiffies +
msecs_to_jiffies(SYNQUACER_HSSPI_ENABLE_TMOUT_MSEC);
/* wait MES(Module Enable Status) is updated */
do {
val = readl(sspi->regs + SYNQUACER_HSSPI_REG_MCTRL) &
SYNQUACER_HSSPI_MCTRL_MES;
if (enable && val)
return 0;
if (!enable && !val)
return 0;
} while (time_before(jiffies, timeout));
dev_err(sspi->dev, "timeout occurs in updating Module Enable Status\n");
return -EBUSY;
}
static int synquacer_spi_enable(struct spi_master *master)
{
u32 val;
int status;
struct synquacer_spi *sspi = spi_master_get_devdata(master);
/* Disable module */
writel(0, sspi->regs + SYNQUACER_HSSPI_REG_MCTRL);
status = synquacer_spi_wait_status_update(sspi, false);
if (status < 0)
return status;
writel(0, sspi->regs + SYNQUACER_HSSPI_REG_TXE);
writel(0, sspi->regs + SYNQUACER_HSSPI_REG_RXE);
writel(~0, sspi->regs + SYNQUACER_HSSPI_REG_TXC);
writel(~0, sspi->regs + SYNQUACER_HSSPI_REG_RXC);
writel(~0, sspi->regs + SYNQUACER_HSSPI_REG_FAULTC);
val = readl(sspi->regs + SYNQUACER_HSSPI_REG_DMCFG);
val &= ~SYNQUACER_HSSPI_DMCFG_SSDC;
val &= ~SYNQUACER_HSSPI_DMCFG_MSTARTEN;
writel(val, sspi->regs + SYNQUACER_HSSPI_REG_DMCFG);
val = readl(sspi->regs + SYNQUACER_HSSPI_REG_MCTRL);
if (sspi->clk_src_type == SYNQUACER_HSSPI_CLOCK_SRC_IPCLK)
val |= SYNQUACER_HSSPI_MCTRL_CDSS;
else
val &= ~SYNQUACER_HSSPI_MCTRL_CDSS;
val &= ~SYNQUACER_HSSPI_MCTRL_COMMAND_SEQUENCE_EN;
val |= SYNQUACER_HSSPI_MCTRL_MEN;
val |= SYNQUACER_HSSPI_MCTRL_SYNCON;
/* Enable module */
writel(val, sspi->regs + SYNQUACER_HSSPI_REG_MCTRL);
status = synquacer_spi_wait_status_update(sspi, true);
if (status < 0)
return status;
return 0;
}
static irqreturn_t sq_spi_rx_handler(int irq, void *priv)
{
uint32_t val;
struct synquacer_spi *sspi = priv;
val = readl(sspi->regs + SYNQUACER_HSSPI_REG_RXF);
if ((val & SYNQUACER_HSSPI_RXF_SLAVE_RELEASED) ||
(val & SYNQUACER_HSSPI_RXF_FIFO_MORE_THAN_THRESHOLD)) {
read_fifo(sspi);
if (sspi->rx_words == 0) {
writel(0, sspi->regs + SYNQUACER_HSSPI_REG_RXE);
complete(&sspi->transfer_done);
}
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static irqreturn_t sq_spi_tx_handler(int irq, void *priv)
{
uint32_t val;
struct synquacer_spi *sspi = priv;
val = readl(sspi->regs + SYNQUACER_HSSPI_REG_TXF);
if (val & SYNQUACER_HSSPI_TXF_FIFO_EMPTY) {
if (sspi->tx_words == 0) {
writel(0, sspi->regs + SYNQUACER_HSSPI_REG_TXE);
complete(&sspi->transfer_done);
} else {
write_fifo(sspi);
}
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static int synquacer_spi_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct spi_master *master;
struct synquacer_spi *sspi;
int ret;
int rx_irq, tx_irq;
master = spi_alloc_master(&pdev->dev, sizeof(*sspi));
if (!master)
return -ENOMEM;
platform_set_drvdata(pdev, master);
sspi = spi_master_get_devdata(master);
sspi->dev = &pdev->dev;
init_completion(&sspi->transfer_done);
sspi->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(sspi->regs)) {
ret = PTR_ERR(sspi->regs);
goto put_spi;
}
sspi->clk_src_type = SYNQUACER_HSSPI_CLOCK_SRC_IHCLK; /* Default */
device_property_read_u32(&pdev->dev, "socionext,ihclk-rate",
&master->max_speed_hz); /* for ACPI */
if (dev_of_node(&pdev->dev)) {
if (device_property_match_string(&pdev->dev,
"clock-names", "iHCLK") >= 0) {
sspi->clk_src_type = SYNQUACER_HSSPI_CLOCK_SRC_IHCLK;
sspi->clk = devm_clk_get(sspi->dev, "iHCLK");
} else if (device_property_match_string(&pdev->dev,
"clock-names", "iPCLK") >= 0) {
sspi->clk_src_type = SYNQUACER_HSSPI_CLOCK_SRC_IPCLK;
sspi->clk = devm_clk_get(sspi->dev, "iPCLK");
} else {
dev_err(&pdev->dev, "specified wrong clock source\n");
ret = -EINVAL;
goto put_spi;
}
if (IS_ERR(sspi->clk)) {
ret = dev_err_probe(&pdev->dev, PTR_ERR(sspi->clk),
"clock not found\n");
goto put_spi;
}
ret = clk_prepare_enable(sspi->clk);
if (ret) {
dev_err(&pdev->dev, "failed to enable clock (%d)\n",
ret);
goto put_spi;
}
master->max_speed_hz = clk_get_rate(sspi->clk);
}
if (!master->max_speed_hz) {
dev_err(&pdev->dev, "missing clock source\n");
ret = -EINVAL;
goto disable_clk;
}
master->min_speed_hz = master->max_speed_hz / 254;
sspi->aces = device_property_read_bool(&pdev->dev,
"socionext,set-aces");
sspi->rtm = device_property_read_bool(&pdev->dev, "socionext,use-rtm");
master->num_chipselect = SYNQUACER_HSSPI_NUM_CHIP_SELECT;
rx_irq = platform_get_irq(pdev, 0);
if (rx_irq <= 0) {
ret = rx_irq;
goto disable_clk;
}
snprintf(sspi->rx_irq_name, SYNQUACER_HSSPI_IRQ_NAME_MAX, "%s-rx",
dev_name(&pdev->dev));
ret = devm_request_irq(&pdev->dev, rx_irq, sq_spi_rx_handler,
0, sspi->rx_irq_name, sspi);
if (ret) {
dev_err(&pdev->dev, "request rx_irq failed (%d)\n", ret);
goto disable_clk;
}
tx_irq = platform_get_irq(pdev, 1);
if (tx_irq <= 0) {
ret = tx_irq;
goto disable_clk;
}
snprintf(sspi->tx_irq_name, SYNQUACER_HSSPI_IRQ_NAME_MAX, "%s-tx",
dev_name(&pdev->dev));
ret = devm_request_irq(&pdev->dev, tx_irq, sq_spi_tx_handler,
0, sspi->tx_irq_name, sspi);
if (ret) {
dev_err(&pdev->dev, "request tx_irq failed (%d)\n", ret);
goto disable_clk;
}
master->dev.of_node = np;
master->dev.fwnode = pdev->dev.fwnode;
master->auto_runtime_pm = true;
master->bus_num = pdev->id;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_TX_DUAL | SPI_RX_DUAL |
SPI_TX_QUAD | SPI_RX_QUAD;
master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(24) |
SPI_BPW_MASK(16) | SPI_BPW_MASK(8);
master->set_cs = synquacer_spi_set_cs;
master->transfer_one = synquacer_spi_transfer_one;
ret = synquacer_spi_enable(master);
if (ret)
goto disable_clk;
pm_runtime_set_active(sspi->dev);
pm_runtime_enable(sspi->dev);
ret = devm_spi_register_master(sspi->dev, master);
if (ret)
goto disable_pm;
return 0;
disable_pm:
pm_runtime_disable(sspi->dev);
disable_clk:
clk_disable_unprepare(sspi->clk);
put_spi:
spi_master_put(master);
return ret;
}
static void synquacer_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct synquacer_spi *sspi = spi_master_get_devdata(master);
pm_runtime_disable(sspi->dev);
clk_disable_unprepare(sspi->clk);
}
static int __maybe_unused synquacer_spi_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct synquacer_spi *sspi = spi_master_get_devdata(master);
int ret;
ret = spi_master_suspend(master);
if (ret)
return ret;
if (!pm_runtime_suspended(dev))
clk_disable_unprepare(sspi->clk);
return ret;
}
static int __maybe_unused synquacer_spi_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct synquacer_spi *sspi = spi_master_get_devdata(master);
int ret;
if (!pm_runtime_suspended(dev)) {
/* Ensure reconfigure during next xfer */
sspi->speed = 0;
ret = clk_prepare_enable(sspi->clk);
if (ret < 0) {
dev_err(dev, "failed to enable clk (%d)\n",
ret);
return ret;
}
ret = synquacer_spi_enable(master);
if (ret) {
clk_disable_unprepare(sspi->clk);
dev_err(dev, "failed to enable spi (%d)\n", ret);
return ret;
}
}
ret = spi_master_resume(master);
if (ret < 0)
clk_disable_unprepare(sspi->clk);
return ret;
}
static SIMPLE_DEV_PM_OPS(synquacer_spi_pm_ops, synquacer_spi_suspend,
synquacer_spi_resume);
static const struct of_device_id synquacer_spi_of_match[] = {
{.compatible = "socionext,synquacer-spi"},
{}
};
MODULE_DEVICE_TABLE(of, synquacer_spi_of_match);
#ifdef CONFIG_ACPI
static const struct acpi_device_id synquacer_hsspi_acpi_ids[] = {
{ "SCX0004" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(acpi, synquacer_hsspi_acpi_ids);
#endif
static struct platform_driver synquacer_spi_driver = {
.driver = {
.name = "synquacer-spi",
.pm = &synquacer_spi_pm_ops,
.of_match_table = synquacer_spi_of_match,
.acpi_match_table = ACPI_PTR(synquacer_hsspi_acpi_ids),
},
.probe = synquacer_spi_probe,
.remove_new = synquacer_spi_remove,
};
module_platform_driver(synquacer_spi_driver);
MODULE_DESCRIPTION("Socionext Synquacer HS-SPI controller driver");
MODULE_AUTHOR("Masahisa Kojima <masahisa.kojima@linaro.org>");
MODULE_AUTHOR("Jassi Brar <jaswinder.singh@linaro.org>");
MODULE_LICENSE("GPL v2");