linux/drivers/nvme/host/lightnvm.c
Javier González 613fa267c3 lightnvm: propagate right error code to target
If nvme_alloc_request fails, propagate the right error, instead of
assuming ENOMEM.

Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26 16:24:53 -06:00

995 lines
25 KiB
C

/*
* nvme-lightnvm.c - LightNVM NVMe device
*
* Copyright (C) 2014-2015 IT University of Copenhagen
* Initial release: Matias Bjorling <mb@lightnvm.io>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
* USA.
*
*/
#include "nvme.h"
#include <linux/nvme.h>
#include <linux/bitops.h>
#include <linux/lightnvm.h>
#include <linux/vmalloc.h>
#include <linux/sched/sysctl.h>
#include <uapi/linux/lightnvm.h>
enum nvme_nvm_admin_opcode {
nvme_nvm_admin_identity = 0xe2,
nvme_nvm_admin_get_l2p_tbl = 0xea,
nvme_nvm_admin_get_bb_tbl = 0xf2,
nvme_nvm_admin_set_bb_tbl = 0xf1,
};
struct nvme_nvm_hb_rw {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__u64 rsvd2;
__le64 metadata;
__le64 prp1;
__le64 prp2;
__le64 spba;
__le16 length;
__le16 control;
__le32 dsmgmt;
__le64 slba;
};
struct nvme_nvm_ph_rw {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__u64 rsvd2;
__le64 metadata;
__le64 prp1;
__le64 prp2;
__le64 spba;
__le16 length;
__le16 control;
__le32 dsmgmt;
__le64 resv;
};
struct nvme_nvm_identity {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__u64 rsvd[2];
__le64 prp1;
__le64 prp2;
__le32 chnl_off;
__u32 rsvd11[5];
};
struct nvme_nvm_l2ptbl {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__le32 cdw2[4];
__le64 prp1;
__le64 prp2;
__le64 slba;
__le32 nlb;
__le16 cdw14[6];
};
struct nvme_nvm_getbbtbl {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__u64 rsvd[2];
__le64 prp1;
__le64 prp2;
__le64 spba;
__u32 rsvd4[4];
};
struct nvme_nvm_setbbtbl {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__le64 rsvd[2];
__le64 prp1;
__le64 prp2;
__le64 spba;
__le16 nlb;
__u8 value;
__u8 rsvd3;
__u32 rsvd4[3];
};
struct nvme_nvm_erase_blk {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__u64 rsvd[2];
__le64 prp1;
__le64 prp2;
__le64 spba;
__le16 length;
__le16 control;
__le32 dsmgmt;
__le64 resv;
};
struct nvme_nvm_command {
union {
struct nvme_common_command common;
struct nvme_nvm_identity identity;
struct nvme_nvm_hb_rw hb_rw;
struct nvme_nvm_ph_rw ph_rw;
struct nvme_nvm_l2ptbl l2p;
struct nvme_nvm_getbbtbl get_bb;
struct nvme_nvm_setbbtbl set_bb;
struct nvme_nvm_erase_blk erase;
};
};
#define NVME_NVM_LP_MLC_PAIRS 886
struct nvme_nvm_lp_mlc {
__le16 num_pairs;
__u8 pairs[NVME_NVM_LP_MLC_PAIRS];
};
struct nvme_nvm_lp_tbl {
__u8 id[8];
struct nvme_nvm_lp_mlc mlc;
};
struct nvme_nvm_id_group {
__u8 mtype;
__u8 fmtype;
__le16 res16;
__u8 num_ch;
__u8 num_lun;
__u8 num_pln;
__u8 rsvd1;
__le16 num_blk;
__le16 num_pg;
__le16 fpg_sz;
__le16 csecs;
__le16 sos;
__le16 rsvd2;
__le32 trdt;
__le32 trdm;
__le32 tprt;
__le32 tprm;
__le32 tbet;
__le32 tbem;
__le32 mpos;
__le32 mccap;
__le16 cpar;
__u8 reserved[10];
struct nvme_nvm_lp_tbl lptbl;
} __packed;
struct nvme_nvm_addr_format {
__u8 ch_offset;
__u8 ch_len;
__u8 lun_offset;
__u8 lun_len;
__u8 pln_offset;
__u8 pln_len;
__u8 blk_offset;
__u8 blk_len;
__u8 pg_offset;
__u8 pg_len;
__u8 sect_offset;
__u8 sect_len;
__u8 res[4];
} __packed;
struct nvme_nvm_id {
__u8 ver_id;
__u8 vmnt;
__u8 cgrps;
__u8 res;
__le32 cap;
__le32 dom;
struct nvme_nvm_addr_format ppaf;
__u8 resv[228];
struct nvme_nvm_id_group groups[4];
} __packed;
struct nvme_nvm_bb_tbl {
__u8 tblid[4];
__le16 verid;
__le16 revid;
__le32 rvsd1;
__le32 tblks;
__le32 tfact;
__le32 tgrown;
__le32 tdresv;
__le32 thresv;
__le32 rsvd2[8];
__u8 blk[0];
};
/*
* Check we didn't inadvertently grow the command struct
*/
static inline void _nvme_nvm_check_size(void)
{
BUILD_BUG_ON(sizeof(struct nvme_nvm_identity) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_hb_rw) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_ph_rw) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_getbbtbl) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_setbbtbl) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_l2ptbl) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_erase_blk) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_id_group) != 960);
BUILD_BUG_ON(sizeof(struct nvme_nvm_addr_format) != 16);
BUILD_BUG_ON(sizeof(struct nvme_nvm_id) != NVME_IDENTIFY_DATA_SIZE);
BUILD_BUG_ON(sizeof(struct nvme_nvm_bb_tbl) != 64);
}
static int init_grps(struct nvm_id *nvm_id, struct nvme_nvm_id *nvme_nvm_id)
{
struct nvme_nvm_id_group *src;
struct nvm_id_group *dst;
if (nvme_nvm_id->cgrps != 1)
return -EINVAL;
src = &nvme_nvm_id->groups[0];
dst = &nvm_id->grp;
dst->mtype = src->mtype;
dst->fmtype = src->fmtype;
dst->num_ch = src->num_ch;
dst->num_lun = src->num_lun;
dst->num_pln = src->num_pln;
dst->num_pg = le16_to_cpu(src->num_pg);
dst->num_blk = le16_to_cpu(src->num_blk);
dst->fpg_sz = le16_to_cpu(src->fpg_sz);
dst->csecs = le16_to_cpu(src->csecs);
dst->sos = le16_to_cpu(src->sos);
dst->trdt = le32_to_cpu(src->trdt);
dst->trdm = le32_to_cpu(src->trdm);
dst->tprt = le32_to_cpu(src->tprt);
dst->tprm = le32_to_cpu(src->tprm);
dst->tbet = le32_to_cpu(src->tbet);
dst->tbem = le32_to_cpu(src->tbem);
dst->mpos = le32_to_cpu(src->mpos);
dst->mccap = le32_to_cpu(src->mccap);
dst->cpar = le16_to_cpu(src->cpar);
if (dst->fmtype == NVM_ID_FMTYPE_MLC) {
memcpy(dst->lptbl.id, src->lptbl.id, 8);
dst->lptbl.mlc.num_pairs =
le16_to_cpu(src->lptbl.mlc.num_pairs);
if (dst->lptbl.mlc.num_pairs > NVME_NVM_LP_MLC_PAIRS) {
pr_err("nvm: number of MLC pairs not supported\n");
return -EINVAL;
}
memcpy(dst->lptbl.mlc.pairs, src->lptbl.mlc.pairs,
dst->lptbl.mlc.num_pairs);
}
return 0;
}
static int nvme_nvm_identity(struct nvm_dev *nvmdev, struct nvm_id *nvm_id)
{
struct nvme_ns *ns = nvmdev->q->queuedata;
struct nvme_nvm_id *nvme_nvm_id;
struct nvme_nvm_command c = {};
int ret;
c.identity.opcode = nvme_nvm_admin_identity;
c.identity.nsid = cpu_to_le32(ns->ns_id);
c.identity.chnl_off = 0;
nvme_nvm_id = kmalloc(sizeof(struct nvme_nvm_id), GFP_KERNEL);
if (!nvme_nvm_id)
return -ENOMEM;
ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, (struct nvme_command *)&c,
nvme_nvm_id, sizeof(struct nvme_nvm_id));
if (ret) {
ret = -EIO;
goto out;
}
nvm_id->ver_id = nvme_nvm_id->ver_id;
nvm_id->vmnt = nvme_nvm_id->vmnt;
nvm_id->cap = le32_to_cpu(nvme_nvm_id->cap);
nvm_id->dom = le32_to_cpu(nvme_nvm_id->dom);
memcpy(&nvm_id->ppaf, &nvme_nvm_id->ppaf,
sizeof(struct nvm_addr_format));
ret = init_grps(nvm_id, nvme_nvm_id);
out:
kfree(nvme_nvm_id);
return ret;
}
static int nvme_nvm_get_l2p_tbl(struct nvm_dev *nvmdev, u64 slba, u32 nlb,
nvm_l2p_update_fn *update_l2p, void *priv)
{
struct nvme_ns *ns = nvmdev->q->queuedata;
struct nvme_nvm_command c = {};
u32 len = queue_max_hw_sectors(ns->ctrl->admin_q) << 9;
u32 nlb_pr_rq = len / sizeof(u64);
u64 cmd_slba = slba;
void *entries;
int ret = 0;
c.l2p.opcode = nvme_nvm_admin_get_l2p_tbl;
c.l2p.nsid = cpu_to_le32(ns->ns_id);
entries = kmalloc(len, GFP_KERNEL);
if (!entries)
return -ENOMEM;
while (nlb) {
u32 cmd_nlb = min(nlb_pr_rq, nlb);
u64 elba = slba + cmd_nlb;
c.l2p.slba = cpu_to_le64(cmd_slba);
c.l2p.nlb = cpu_to_le32(cmd_nlb);
ret = nvme_submit_sync_cmd(ns->ctrl->admin_q,
(struct nvme_command *)&c, entries, len);
if (ret) {
dev_err(ns->ctrl->device,
"L2P table transfer failed (%d)\n", ret);
ret = -EIO;
goto out;
}
if (unlikely(elba > nvmdev->total_secs)) {
pr_err("nvm: L2P data from device is out of bounds!\n");
ret = -EINVAL;
goto out;
}
/* Transform physical address to target address space */
nvm_part_to_tgt(nvmdev, entries, cmd_nlb);
if (update_l2p(cmd_slba, cmd_nlb, entries, priv)) {
ret = -EINTR;
goto out;
}
cmd_slba += cmd_nlb;
nlb -= cmd_nlb;
}
out:
kfree(entries);
return ret;
}
static int nvme_nvm_get_bb_tbl(struct nvm_dev *nvmdev, struct ppa_addr ppa,
u8 *blks)
{
struct request_queue *q = nvmdev->q;
struct nvm_geo *geo = &nvmdev->geo;
struct nvme_ns *ns = q->queuedata;
struct nvme_ctrl *ctrl = ns->ctrl;
struct nvme_nvm_command c = {};
struct nvme_nvm_bb_tbl *bb_tbl;
int nr_blks = geo->blks_per_lun * geo->plane_mode;
int tblsz = sizeof(struct nvme_nvm_bb_tbl) + nr_blks;
int ret = 0;
c.get_bb.opcode = nvme_nvm_admin_get_bb_tbl;
c.get_bb.nsid = cpu_to_le32(ns->ns_id);
c.get_bb.spba = cpu_to_le64(ppa.ppa);
bb_tbl = kzalloc(tblsz, GFP_KERNEL);
if (!bb_tbl)
return -ENOMEM;
ret = nvme_submit_sync_cmd(ctrl->admin_q, (struct nvme_command *)&c,
bb_tbl, tblsz);
if (ret) {
dev_err(ctrl->device, "get bad block table failed (%d)\n", ret);
ret = -EIO;
goto out;
}
if (bb_tbl->tblid[0] != 'B' || bb_tbl->tblid[1] != 'B' ||
bb_tbl->tblid[2] != 'L' || bb_tbl->tblid[3] != 'T') {
dev_err(ctrl->device, "bbt format mismatch\n");
ret = -EINVAL;
goto out;
}
if (le16_to_cpu(bb_tbl->verid) != 1) {
ret = -EINVAL;
dev_err(ctrl->device, "bbt version not supported\n");
goto out;
}
if (le32_to_cpu(bb_tbl->tblks) != nr_blks) {
ret = -EINVAL;
dev_err(ctrl->device,
"bbt unsuspected blocks returned (%u!=%u)",
le32_to_cpu(bb_tbl->tblks), nr_blks);
goto out;
}
memcpy(blks, bb_tbl->blk, geo->blks_per_lun * geo->plane_mode);
out:
kfree(bb_tbl);
return ret;
}
static int nvme_nvm_set_bb_tbl(struct nvm_dev *nvmdev, struct ppa_addr *ppas,
int nr_ppas, int type)
{
struct nvme_ns *ns = nvmdev->q->queuedata;
struct nvme_nvm_command c = {};
int ret = 0;
c.set_bb.opcode = nvme_nvm_admin_set_bb_tbl;
c.set_bb.nsid = cpu_to_le32(ns->ns_id);
c.set_bb.spba = cpu_to_le64(ppas->ppa);
c.set_bb.nlb = cpu_to_le16(nr_ppas - 1);
c.set_bb.value = type;
ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, (struct nvme_command *)&c,
NULL, 0);
if (ret)
dev_err(ns->ctrl->device, "set bad block table failed (%d)\n",
ret);
return ret;
}
static inline void nvme_nvm_rqtocmd(struct nvm_rq *rqd, struct nvme_ns *ns,
struct nvme_nvm_command *c)
{
c->ph_rw.opcode = rqd->opcode;
c->ph_rw.nsid = cpu_to_le32(ns->ns_id);
c->ph_rw.spba = cpu_to_le64(rqd->ppa_addr.ppa);
c->ph_rw.metadata = cpu_to_le64(rqd->dma_meta_list);
c->ph_rw.control = cpu_to_le16(rqd->flags);
c->ph_rw.length = cpu_to_le16(rqd->nr_ppas - 1);
if (rqd->opcode == NVM_OP_HBWRITE || rqd->opcode == NVM_OP_HBREAD)
c->hb_rw.slba = cpu_to_le64(nvme_block_nr(ns,
rqd->bio->bi_iter.bi_sector));
}
static void nvme_nvm_end_io(struct request *rq, blk_status_t status)
{
struct nvm_rq *rqd = rq->end_io_data;
rqd->ppa_status = le64_to_cpu(nvme_req(rq)->result.u64);
rqd->error = nvme_req(rq)->status;
nvm_end_io(rqd);
kfree(nvme_req(rq)->cmd);
blk_mq_free_request(rq);
}
static int nvme_nvm_submit_io(struct nvm_dev *dev, struct nvm_rq *rqd)
{
struct request_queue *q = dev->q;
struct nvme_ns *ns = q->queuedata;
struct request *rq;
struct bio *bio = rqd->bio;
struct nvme_nvm_command *cmd;
cmd = kzalloc(sizeof(struct nvme_nvm_command), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
nvme_nvm_rqtocmd(rqd, ns, cmd);
rq = nvme_alloc_request(q, (struct nvme_command *)cmd, 0, NVME_QID_ANY);
if (IS_ERR(rq)) {
kfree(cmd);
return PTR_ERR(rq);
}
rq->cmd_flags &= ~REQ_FAILFAST_DRIVER;
if (bio) {
blk_init_request_from_bio(rq, bio);
} else {
rq->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, IOPRIO_NORM);
rq->__data_len = 0;
}
rq->end_io_data = rqd;
blk_execute_rq_nowait(q, NULL, rq, 0, nvme_nvm_end_io);
return 0;
}
static void *nvme_nvm_create_dma_pool(struct nvm_dev *nvmdev, char *name)
{
struct nvme_ns *ns = nvmdev->q->queuedata;
return dma_pool_create(name, ns->ctrl->dev, PAGE_SIZE, PAGE_SIZE, 0);
}
static void nvme_nvm_destroy_dma_pool(void *pool)
{
struct dma_pool *dma_pool = pool;
dma_pool_destroy(dma_pool);
}
static void *nvme_nvm_dev_dma_alloc(struct nvm_dev *dev, void *pool,
gfp_t mem_flags, dma_addr_t *dma_handler)
{
return dma_pool_alloc(pool, mem_flags, dma_handler);
}
static void nvme_nvm_dev_dma_free(void *pool, void *addr,
dma_addr_t dma_handler)
{
dma_pool_free(pool, addr, dma_handler);
}
static struct nvm_dev_ops nvme_nvm_dev_ops = {
.identity = nvme_nvm_identity,
.get_l2p_tbl = nvme_nvm_get_l2p_tbl,
.get_bb_tbl = nvme_nvm_get_bb_tbl,
.set_bb_tbl = nvme_nvm_set_bb_tbl,
.submit_io = nvme_nvm_submit_io,
.create_dma_pool = nvme_nvm_create_dma_pool,
.destroy_dma_pool = nvme_nvm_destroy_dma_pool,
.dev_dma_alloc = nvme_nvm_dev_dma_alloc,
.dev_dma_free = nvme_nvm_dev_dma_free,
.max_phys_sect = 64,
};
static int nvme_nvm_submit_user_cmd(struct request_queue *q,
struct nvme_ns *ns,
struct nvme_nvm_command *vcmd,
void __user *ubuf, unsigned int bufflen,
void __user *meta_buf, unsigned int meta_len,
void __user *ppa_buf, unsigned int ppa_len,
u32 *result, u64 *status, unsigned int timeout)
{
bool write = nvme_is_write((struct nvme_command *)vcmd);
struct nvm_dev *dev = ns->ndev;
struct gendisk *disk = ns->disk;
struct request *rq;
struct bio *bio = NULL;
__le64 *ppa_list = NULL;
dma_addr_t ppa_dma;
__le64 *metadata = NULL;
dma_addr_t metadata_dma;
DECLARE_COMPLETION_ONSTACK(wait);
int ret = 0;
rq = nvme_alloc_request(q, (struct nvme_command *)vcmd, 0,
NVME_QID_ANY);
if (IS_ERR(rq)) {
ret = -ENOMEM;
goto err_cmd;
}
rq->timeout = timeout ? timeout : ADMIN_TIMEOUT;
rq->cmd_flags &= ~REQ_FAILFAST_DRIVER;
if (ppa_buf && ppa_len) {
ppa_list = dma_pool_alloc(dev->dma_pool, GFP_KERNEL, &ppa_dma);
if (!ppa_list) {
ret = -ENOMEM;
goto err_rq;
}
if (copy_from_user(ppa_list, (void __user *)ppa_buf,
sizeof(u64) * (ppa_len + 1))) {
ret = -EFAULT;
goto err_ppa;
}
vcmd->ph_rw.spba = cpu_to_le64(ppa_dma);
} else {
vcmd->ph_rw.spba = cpu_to_le64((uintptr_t)ppa_buf);
}
if (ubuf && bufflen) {
ret = blk_rq_map_user(q, rq, NULL, ubuf, bufflen, GFP_KERNEL);
if (ret)
goto err_ppa;
bio = rq->bio;
if (meta_buf && meta_len) {
metadata = dma_pool_alloc(dev->dma_pool, GFP_KERNEL,
&metadata_dma);
if (!metadata) {
ret = -ENOMEM;
goto err_map;
}
if (write) {
if (copy_from_user(metadata,
(void __user *)meta_buf,
meta_len)) {
ret = -EFAULT;
goto err_meta;
}
}
vcmd->ph_rw.metadata = cpu_to_le64(metadata_dma);
}
if (!disk)
goto submit;
bio->bi_bdev = bdget_disk(disk, 0);
if (!bio->bi_bdev) {
ret = -ENODEV;
goto err_meta;
}
}
submit:
blk_execute_rq(q, NULL, rq, 0);
if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
ret = -EINTR;
else if (nvme_req(rq)->status & 0x7ff)
ret = -EIO;
if (result)
*result = nvme_req(rq)->status & 0x7ff;
if (status)
*status = le64_to_cpu(nvme_req(rq)->result.u64);
if (metadata && !ret && !write) {
if (copy_to_user(meta_buf, (void *)metadata, meta_len))
ret = -EFAULT;
}
err_meta:
if (meta_buf && meta_len)
dma_pool_free(dev->dma_pool, metadata, metadata_dma);
err_map:
if (bio) {
if (disk && bio->bi_bdev)
bdput(bio->bi_bdev);
blk_rq_unmap_user(bio);
}
err_ppa:
if (ppa_buf && ppa_len)
dma_pool_free(dev->dma_pool, ppa_list, ppa_dma);
err_rq:
blk_mq_free_request(rq);
err_cmd:
return ret;
}
static int nvme_nvm_submit_vio(struct nvme_ns *ns,
struct nvm_user_vio __user *uvio)
{
struct nvm_user_vio vio;
struct nvme_nvm_command c;
unsigned int length;
int ret;
if (copy_from_user(&vio, uvio, sizeof(vio)))
return -EFAULT;
if (vio.flags)
return -EINVAL;
memset(&c, 0, sizeof(c));
c.ph_rw.opcode = vio.opcode;
c.ph_rw.nsid = cpu_to_le32(ns->ns_id);
c.ph_rw.control = cpu_to_le16(vio.control);
c.ph_rw.length = cpu_to_le16(vio.nppas);
length = (vio.nppas + 1) << ns->lba_shift;
ret = nvme_nvm_submit_user_cmd(ns->queue, ns, &c,
(void __user *)(uintptr_t)vio.addr, length,
(void __user *)(uintptr_t)vio.metadata,
vio.metadata_len,
(void __user *)(uintptr_t)vio.ppa_list, vio.nppas,
&vio.result, &vio.status, 0);
if (ret && copy_to_user(uvio, &vio, sizeof(vio)))
return -EFAULT;
return ret;
}
static int nvme_nvm_user_vcmd(struct nvme_ns *ns, int admin,
struct nvm_passthru_vio __user *uvcmd)
{
struct nvm_passthru_vio vcmd;
struct nvme_nvm_command c;
struct request_queue *q;
unsigned int timeout = 0;
int ret;
if (copy_from_user(&vcmd, uvcmd, sizeof(vcmd)))
return -EFAULT;
if ((vcmd.opcode != 0xF2) && (!capable(CAP_SYS_ADMIN)))
return -EACCES;
if (vcmd.flags)
return -EINVAL;
memset(&c, 0, sizeof(c));
c.common.opcode = vcmd.opcode;
c.common.nsid = cpu_to_le32(ns->ns_id);
c.common.cdw2[0] = cpu_to_le32(vcmd.cdw2);
c.common.cdw2[1] = cpu_to_le32(vcmd.cdw3);
/* cdw11-12 */
c.ph_rw.length = cpu_to_le16(vcmd.nppas);
c.ph_rw.control = cpu_to_le16(vcmd.control);
c.common.cdw10[3] = cpu_to_le32(vcmd.cdw13);
c.common.cdw10[4] = cpu_to_le32(vcmd.cdw14);
c.common.cdw10[5] = cpu_to_le32(vcmd.cdw15);
if (vcmd.timeout_ms)
timeout = msecs_to_jiffies(vcmd.timeout_ms);
q = admin ? ns->ctrl->admin_q : ns->queue;
ret = nvme_nvm_submit_user_cmd(q, ns,
(struct nvme_nvm_command *)&c,
(void __user *)(uintptr_t)vcmd.addr, vcmd.data_len,
(void __user *)(uintptr_t)vcmd.metadata,
vcmd.metadata_len,
(void __user *)(uintptr_t)vcmd.ppa_list, vcmd.nppas,
&vcmd.result, &vcmd.status, timeout);
if (ret && copy_to_user(uvcmd, &vcmd, sizeof(vcmd)))
return -EFAULT;
return ret;
}
int nvme_nvm_ioctl(struct nvme_ns *ns, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case NVME_NVM_IOCTL_ADMIN_VIO:
return nvme_nvm_user_vcmd(ns, 1, (void __user *)arg);
case NVME_NVM_IOCTL_IO_VIO:
return nvme_nvm_user_vcmd(ns, 0, (void __user *)arg);
case NVME_NVM_IOCTL_SUBMIT_VIO:
return nvme_nvm_submit_vio(ns, (void __user *)arg);
default:
return -ENOTTY;
}
}
int nvme_nvm_register(struct nvme_ns *ns, char *disk_name, int node)
{
struct request_queue *q = ns->queue;
struct nvm_dev *dev;
_nvme_nvm_check_size();
dev = nvm_alloc_dev(node);
if (!dev)
return -ENOMEM;
dev->q = q;
memcpy(dev->name, disk_name, DISK_NAME_LEN);
dev->ops = &nvme_nvm_dev_ops;
dev->private_data = ns;
ns->ndev = dev;
return nvm_register(dev);
}
void nvme_nvm_unregister(struct nvme_ns *ns)
{
nvm_unregister(ns->ndev);
}
static ssize_t nvm_dev_attr_show(struct device *dev,
struct device_attribute *dattr, char *page)
{
struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
struct nvm_dev *ndev = ns->ndev;
struct nvm_id *id;
struct nvm_id_group *grp;
struct attribute *attr;
if (!ndev)
return 0;
id = &ndev->identity;
grp = &id->grp;
attr = &dattr->attr;
if (strcmp(attr->name, "version") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", id->ver_id);
} else if (strcmp(attr->name, "vendor_opcode") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", id->vmnt);
} else if (strcmp(attr->name, "capabilities") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", id->cap);
} else if (strcmp(attr->name, "device_mode") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", id->dom);
/* kept for compatibility */
} else if (strcmp(attr->name, "media_manager") == 0) {
return scnprintf(page, PAGE_SIZE, "%s\n", "gennvm");
} else if (strcmp(attr->name, "ppa_format") == 0) {
return scnprintf(page, PAGE_SIZE,
"0x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
id->ppaf.ch_offset, id->ppaf.ch_len,
id->ppaf.lun_offset, id->ppaf.lun_len,
id->ppaf.pln_offset, id->ppaf.pln_len,
id->ppaf.blk_offset, id->ppaf.blk_len,
id->ppaf.pg_offset, id->ppaf.pg_len,
id->ppaf.sect_offset, id->ppaf.sect_len);
} else if (strcmp(attr->name, "media_type") == 0) { /* u8 */
return scnprintf(page, PAGE_SIZE, "%u\n", grp->mtype);
} else if (strcmp(attr->name, "flash_media_type") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", grp->fmtype);
} else if (strcmp(attr->name, "num_channels") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", grp->num_ch);
} else if (strcmp(attr->name, "num_luns") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", grp->num_lun);
} else if (strcmp(attr->name, "num_planes") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", grp->num_pln);
} else if (strcmp(attr->name, "num_blocks") == 0) { /* u16 */
return scnprintf(page, PAGE_SIZE, "%u\n", grp->num_blk);
} else if (strcmp(attr->name, "num_pages") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", grp->num_pg);
} else if (strcmp(attr->name, "page_size") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", grp->fpg_sz);
} else if (strcmp(attr->name, "hw_sector_size") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", grp->csecs);
} else if (strcmp(attr->name, "oob_sector_size") == 0) {/* u32 */
return scnprintf(page, PAGE_SIZE, "%u\n", grp->sos);
} else if (strcmp(attr->name, "read_typ") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", grp->trdt);
} else if (strcmp(attr->name, "read_max") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", grp->trdm);
} else if (strcmp(attr->name, "prog_typ") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", grp->tprt);
} else if (strcmp(attr->name, "prog_max") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", grp->tprm);
} else if (strcmp(attr->name, "erase_typ") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", grp->tbet);
} else if (strcmp(attr->name, "erase_max") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", grp->tbem);
} else if (strcmp(attr->name, "multiplane_modes") == 0) {
return scnprintf(page, PAGE_SIZE, "0x%08x\n", grp->mpos);
} else if (strcmp(attr->name, "media_capabilities") == 0) {
return scnprintf(page, PAGE_SIZE, "0x%08x\n", grp->mccap);
} else if (strcmp(attr->name, "max_phys_secs") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n",
ndev->ops->max_phys_sect);
} else {
return scnprintf(page,
PAGE_SIZE,
"Unhandled attr(%s) in `nvm_dev_attr_show`\n",
attr->name);
}
}
#define NVM_DEV_ATTR_RO(_name) \
DEVICE_ATTR(_name, S_IRUGO, nvm_dev_attr_show, NULL)
static NVM_DEV_ATTR_RO(version);
static NVM_DEV_ATTR_RO(vendor_opcode);
static NVM_DEV_ATTR_RO(capabilities);
static NVM_DEV_ATTR_RO(device_mode);
static NVM_DEV_ATTR_RO(ppa_format);
static NVM_DEV_ATTR_RO(media_manager);
static NVM_DEV_ATTR_RO(media_type);
static NVM_DEV_ATTR_RO(flash_media_type);
static NVM_DEV_ATTR_RO(num_channels);
static NVM_DEV_ATTR_RO(num_luns);
static NVM_DEV_ATTR_RO(num_planes);
static NVM_DEV_ATTR_RO(num_blocks);
static NVM_DEV_ATTR_RO(num_pages);
static NVM_DEV_ATTR_RO(page_size);
static NVM_DEV_ATTR_RO(hw_sector_size);
static NVM_DEV_ATTR_RO(oob_sector_size);
static NVM_DEV_ATTR_RO(read_typ);
static NVM_DEV_ATTR_RO(read_max);
static NVM_DEV_ATTR_RO(prog_typ);
static NVM_DEV_ATTR_RO(prog_max);
static NVM_DEV_ATTR_RO(erase_typ);
static NVM_DEV_ATTR_RO(erase_max);
static NVM_DEV_ATTR_RO(multiplane_modes);
static NVM_DEV_ATTR_RO(media_capabilities);
static NVM_DEV_ATTR_RO(max_phys_secs);
static struct attribute *nvm_dev_attrs[] = {
&dev_attr_version.attr,
&dev_attr_vendor_opcode.attr,
&dev_attr_capabilities.attr,
&dev_attr_device_mode.attr,
&dev_attr_media_manager.attr,
&dev_attr_ppa_format.attr,
&dev_attr_media_type.attr,
&dev_attr_flash_media_type.attr,
&dev_attr_num_channels.attr,
&dev_attr_num_luns.attr,
&dev_attr_num_planes.attr,
&dev_attr_num_blocks.attr,
&dev_attr_num_pages.attr,
&dev_attr_page_size.attr,
&dev_attr_hw_sector_size.attr,
&dev_attr_oob_sector_size.attr,
&dev_attr_read_typ.attr,
&dev_attr_read_max.attr,
&dev_attr_prog_typ.attr,
&dev_attr_prog_max.attr,
&dev_attr_erase_typ.attr,
&dev_attr_erase_max.attr,
&dev_attr_multiplane_modes.attr,
&dev_attr_media_capabilities.attr,
&dev_attr_max_phys_secs.attr,
NULL,
};
static const struct attribute_group nvm_dev_attr_group = {
.name = "lightnvm",
.attrs = nvm_dev_attrs,
};
int nvme_nvm_register_sysfs(struct nvme_ns *ns)
{
return sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
&nvm_dev_attr_group);
}
void nvme_nvm_unregister_sysfs(struct nvme_ns *ns)
{
sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
&nvm_dev_attr_group);
}
/* move to shared place when used in multiple places. */
#define PCI_VENDOR_ID_CNEX 0x1d1d
#define PCI_DEVICE_ID_CNEX_WL 0x2807
#define PCI_DEVICE_ID_CNEX_QEMU 0x1f1f
int nvme_nvm_ns_supported(struct nvme_ns *ns, struct nvme_id_ns *id)
{
struct nvme_ctrl *ctrl = ns->ctrl;
/* XXX: this is poking into PCI structures from generic code! */
struct pci_dev *pdev = to_pci_dev(ctrl->dev);
/* QEMU NVMe simulator - PCI ID + Vendor specific bit */
if (pdev->vendor == PCI_VENDOR_ID_CNEX &&
pdev->device == PCI_DEVICE_ID_CNEX_QEMU &&
id->vs[0] == 0x1)
return 1;
/* CNEX Labs - PCI ID + Vendor specific bit */
if (pdev->vendor == PCI_VENDOR_ID_CNEX &&
pdev->device == PCI_DEVICE_ID_CNEX_WL &&
id->vs[0] == 0x1)
return 1;
return 0;
}