mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-28 22:54:05 +08:00
91d0b78c51
Users who want to share a single public IP address for outgoing connections between several hosts traditionally reach for SNAT. However, SNAT requires state keeping on the node(s) performing the NAT. A stateless alternative exists, where a single IP address used for egress can be shared between several hosts by partitioning the available ephemeral port range. In such a setup: 1. Each host gets assigned a disjoint range of ephemeral ports. 2. Applications open connections from the host-assigned port range. 3. Return traffic gets routed to the host based on both, the destination IP and the destination port. An application which wants to open an outgoing connection (connect) from a given port range today can choose between two solutions: 1. Manually pick the source port by bind()'ing to it before connect()'ing the socket. This approach has a couple of downsides: a) Search for a free port has to be implemented in the user-space. If the chosen 4-tuple happens to be busy, the application needs to retry from a different local port number. Detecting if 4-tuple is busy can be either easy (TCP) or hard (UDP). In TCP case, the application simply has to check if connect() returned an error (EADDRNOTAVAIL). That is assuming that the local port sharing was enabled (REUSEADDR) by all the sockets. # Assume desired local port range is 60_000-60_511 s = socket(AF_INET, SOCK_STREAM) s.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) s.bind(("192.0.2.1", 60_000)) s.connect(("1.1.1.1", 53)) # Fails only if 192.0.2.1:60000 -> 1.1.1.1:53 is busy # Application must retry with another local port In case of UDP, the network stack allows binding more than one socket to the same 4-tuple, when local port sharing is enabled (REUSEADDR). Hence detecting the conflict is much harder and involves querying sock_diag and toggling the REUSEADDR flag [1]. b) For TCP, bind()-ing to a port within the ephemeral port range means that no connecting sockets, that is those which leave it to the network stack to find a free local port at connect() time, can use the this port. IOW, the bind hash bucket tb->fastreuse will be 0 or 1, and the port will be skipped during the free port search at connect() time. 2. Isolate the app in a dedicated netns and use the use the per-netns ip_local_port_range sysctl to adjust the ephemeral port range bounds. The per-netns setting affects all sockets, so this approach can be used only if: - there is just one egress IP address, or - the desired egress port range is the same for all egress IP addresses used by the application. For TCP, this approach avoids the downsides of (1). Free port search and 4-tuple conflict detection is done by the network stack: system("sysctl -w net.ipv4.ip_local_port_range='60000 60511'") s = socket(AF_INET, SOCK_STREAM) s.setsockopt(SOL_IP, IP_BIND_ADDRESS_NO_PORT, 1) s.bind(("192.0.2.1", 0)) s.connect(("1.1.1.1", 53)) # Fails if all 4-tuples 192.0.2.1:60000-60511 -> 1.1.1.1:53 are busy For UDP this approach has limited applicability. Setting the IP_BIND_ADDRESS_NO_PORT socket option does not result in local source port being shared with other connected UDP sockets. Hence relying on the network stack to find a free source port, limits the number of outgoing UDP flows from a single IP address down to the number of available ephemeral ports. To put it another way, partitioning the ephemeral port range between hosts using the existing Linux networking API is cumbersome. To address this use case, add a new socket option at the SOL_IP level, named IP_LOCAL_PORT_RANGE. The new option can be used to clamp down the ephemeral port range for each socket individually. The option can be used only to narrow down the per-netns local port range. If the per-socket range lies outside of the per-netns range, the latter takes precedence. UAPI-wise, the low and high range bounds are passed to the kernel as a pair of u16 values in host byte order packed into a u32. This avoids pointer passing. PORT_LO = 40_000 PORT_HI = 40_511 s = socket(AF_INET, SOCK_STREAM) v = struct.pack("I", PORT_HI << 16 | PORT_LO) s.setsockopt(SOL_IP, IP_LOCAL_PORT_RANGE, v) s.bind(("127.0.0.1", 0)) s.getsockname() # Local address between ("127.0.0.1", 40_000) and ("127.0.0.1", 40_511), # if there is a free port. EADDRINUSE otherwise. [1] https://github.com/cloudflare/cloudflare-blog/blob/232b432c1d57/2022-02-connectx/connectx.py#L116 Reviewed-by: Marek Majkowski <marek@cloudflare.com> Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com> Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
1501 lines
41 KiB
C
1501 lines
41 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* INET An implementation of the TCP/IP protocol suite for the LINUX
|
|
* operating system. INET is implemented using the BSD Socket
|
|
* interface as the means of communication with the user level.
|
|
*
|
|
* Support for INET connection oriented protocols.
|
|
*
|
|
* Authors: See the TCP sources
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/jhash.h>
|
|
|
|
#include <net/inet_connection_sock.h>
|
|
#include <net/inet_hashtables.h>
|
|
#include <net/inet_timewait_sock.h>
|
|
#include <net/ip.h>
|
|
#include <net/route.h>
|
|
#include <net/tcp_states.h>
|
|
#include <net/xfrm.h>
|
|
#include <net/tcp.h>
|
|
#include <net/sock_reuseport.h>
|
|
#include <net/addrconf.h>
|
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
/* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
|
|
* if IPv6 only, and any IPv4 addresses
|
|
* if not IPv6 only
|
|
* match_sk*_wildcard == false: addresses must be exactly the same, i.e.
|
|
* IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
|
|
* and 0.0.0.0 equals to 0.0.0.0 only
|
|
*/
|
|
static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
|
|
const struct in6_addr *sk2_rcv_saddr6,
|
|
__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
|
|
bool sk1_ipv6only, bool sk2_ipv6only,
|
|
bool match_sk1_wildcard,
|
|
bool match_sk2_wildcard)
|
|
{
|
|
int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
|
|
int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
|
|
|
|
/* if both are mapped, treat as IPv4 */
|
|
if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
|
|
if (!sk2_ipv6only) {
|
|
if (sk1_rcv_saddr == sk2_rcv_saddr)
|
|
return true;
|
|
return (match_sk1_wildcard && !sk1_rcv_saddr) ||
|
|
(match_sk2_wildcard && !sk2_rcv_saddr);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
|
|
return true;
|
|
|
|
if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
|
|
!(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
|
|
return true;
|
|
|
|
if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
|
|
!(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
|
|
return true;
|
|
|
|
if (sk2_rcv_saddr6 &&
|
|
ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
|
|
* match_sk*_wildcard == false: addresses must be exactly the same, i.e.
|
|
* 0.0.0.0 only equals to 0.0.0.0
|
|
*/
|
|
static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
|
|
bool sk2_ipv6only, bool match_sk1_wildcard,
|
|
bool match_sk2_wildcard)
|
|
{
|
|
if (!sk2_ipv6only) {
|
|
if (sk1_rcv_saddr == sk2_rcv_saddr)
|
|
return true;
|
|
return (match_sk1_wildcard && !sk1_rcv_saddr) ||
|
|
(match_sk2_wildcard && !sk2_rcv_saddr);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
|
|
bool match_wildcard)
|
|
{
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
if (sk->sk_family == AF_INET6)
|
|
return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
|
|
inet6_rcv_saddr(sk2),
|
|
sk->sk_rcv_saddr,
|
|
sk2->sk_rcv_saddr,
|
|
ipv6_only_sock(sk),
|
|
ipv6_only_sock(sk2),
|
|
match_wildcard,
|
|
match_wildcard);
|
|
#endif
|
|
return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
|
|
ipv6_only_sock(sk2), match_wildcard,
|
|
match_wildcard);
|
|
}
|
|
EXPORT_SYMBOL(inet_rcv_saddr_equal);
|
|
|
|
bool inet_rcv_saddr_any(const struct sock *sk)
|
|
{
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
if (sk->sk_family == AF_INET6)
|
|
return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
|
|
#endif
|
|
return !sk->sk_rcv_saddr;
|
|
}
|
|
|
|
void inet_get_local_port_range(const struct net *net, int *low, int *high)
|
|
{
|
|
unsigned int seq;
|
|
|
|
do {
|
|
seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
|
|
|
|
*low = net->ipv4.ip_local_ports.range[0];
|
|
*high = net->ipv4.ip_local_ports.range[1];
|
|
} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
|
|
}
|
|
EXPORT_SYMBOL(inet_get_local_port_range);
|
|
|
|
void inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
|
|
{
|
|
const struct inet_sock *inet = inet_sk(sk);
|
|
const struct net *net = sock_net(sk);
|
|
int lo, hi, sk_lo, sk_hi;
|
|
|
|
inet_get_local_port_range(net, &lo, &hi);
|
|
|
|
sk_lo = inet->local_port_range.lo;
|
|
sk_hi = inet->local_port_range.hi;
|
|
|
|
if (unlikely(lo <= sk_lo && sk_lo <= hi))
|
|
lo = sk_lo;
|
|
if (unlikely(lo <= sk_hi && sk_hi <= hi))
|
|
hi = sk_hi;
|
|
|
|
*low = lo;
|
|
*high = hi;
|
|
}
|
|
EXPORT_SYMBOL(inet_sk_get_local_port_range);
|
|
|
|
static bool inet_use_bhash2_on_bind(const struct sock *sk)
|
|
{
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
if (sk->sk_family == AF_INET6) {
|
|
int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
|
|
|
|
return addr_type != IPV6_ADDR_ANY &&
|
|
addr_type != IPV6_ADDR_MAPPED;
|
|
}
|
|
#endif
|
|
return sk->sk_rcv_saddr != htonl(INADDR_ANY);
|
|
}
|
|
|
|
static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
|
|
kuid_t sk_uid, bool relax,
|
|
bool reuseport_cb_ok, bool reuseport_ok)
|
|
{
|
|
int bound_dev_if2;
|
|
|
|
if (sk == sk2)
|
|
return false;
|
|
|
|
bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
|
|
|
|
if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
|
|
sk->sk_bound_dev_if == bound_dev_if2) {
|
|
if (sk->sk_reuse && sk2->sk_reuse &&
|
|
sk2->sk_state != TCP_LISTEN) {
|
|
if (!relax || (!reuseport_ok && sk->sk_reuseport &&
|
|
sk2->sk_reuseport && reuseport_cb_ok &&
|
|
(sk2->sk_state == TCP_TIME_WAIT ||
|
|
uid_eq(sk_uid, sock_i_uid(sk2)))))
|
|
return true;
|
|
} else if (!reuseport_ok || !sk->sk_reuseport ||
|
|
!sk2->sk_reuseport || !reuseport_cb_ok ||
|
|
(sk2->sk_state != TCP_TIME_WAIT &&
|
|
!uid_eq(sk_uid, sock_i_uid(sk2)))) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
|
|
kuid_t sk_uid, bool relax,
|
|
bool reuseport_cb_ok, bool reuseport_ok)
|
|
{
|
|
if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
|
|
return false;
|
|
|
|
return inet_bind_conflict(sk, sk2, sk_uid, relax,
|
|
reuseport_cb_ok, reuseport_ok);
|
|
}
|
|
|
|
static bool inet_bhash2_conflict(const struct sock *sk,
|
|
const struct inet_bind2_bucket *tb2,
|
|
kuid_t sk_uid,
|
|
bool relax, bool reuseport_cb_ok,
|
|
bool reuseport_ok)
|
|
{
|
|
struct inet_timewait_sock *tw2;
|
|
struct sock *sk2;
|
|
|
|
sk_for_each_bound_bhash2(sk2, &tb2->owners) {
|
|
if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
|
|
reuseport_cb_ok, reuseport_ok))
|
|
return true;
|
|
}
|
|
|
|
twsk_for_each_bound_bhash2(tw2, &tb2->deathrow) {
|
|
sk2 = (struct sock *)tw2;
|
|
|
|
if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
|
|
reuseport_cb_ok, reuseport_ok))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* This should be called only when the tb and tb2 hashbuckets' locks are held */
|
|
static int inet_csk_bind_conflict(const struct sock *sk,
|
|
const struct inet_bind_bucket *tb,
|
|
const struct inet_bind2_bucket *tb2, /* may be null */
|
|
bool relax, bool reuseport_ok)
|
|
{
|
|
bool reuseport_cb_ok;
|
|
struct sock_reuseport *reuseport_cb;
|
|
kuid_t uid = sock_i_uid((struct sock *)sk);
|
|
|
|
rcu_read_lock();
|
|
reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
|
|
/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
|
|
reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* Unlike other sk lookup places we do not check
|
|
* for sk_net here, since _all_ the socks listed
|
|
* in tb->owners and tb2->owners list belong
|
|
* to the same net - the one this bucket belongs to.
|
|
*/
|
|
|
|
if (!inet_use_bhash2_on_bind(sk)) {
|
|
struct sock *sk2;
|
|
|
|
sk_for_each_bound(sk2, &tb->owners)
|
|
if (inet_bind_conflict(sk, sk2, uid, relax,
|
|
reuseport_cb_ok, reuseport_ok) &&
|
|
inet_rcv_saddr_equal(sk, sk2, true))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
|
|
* ipv4) should have been checked already. We need to do these two
|
|
* checks separately because their spinlocks have to be acquired/released
|
|
* independently of each other, to prevent possible deadlocks
|
|
*/
|
|
return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
|
|
reuseport_ok);
|
|
}
|
|
|
|
/* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
|
|
* INADDR_ANY (if ipv4) socket.
|
|
*
|
|
* Caller must hold bhash hashbucket lock with local bh disabled, to protect
|
|
* against concurrent binds on the port for addr any
|
|
*/
|
|
static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
|
|
bool relax, bool reuseport_ok)
|
|
{
|
|
kuid_t uid = sock_i_uid((struct sock *)sk);
|
|
const struct net *net = sock_net(sk);
|
|
struct sock_reuseport *reuseport_cb;
|
|
struct inet_bind_hashbucket *head2;
|
|
struct inet_bind2_bucket *tb2;
|
|
bool reuseport_cb_ok;
|
|
|
|
rcu_read_lock();
|
|
reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
|
|
/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
|
|
reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
|
|
rcu_read_unlock();
|
|
|
|
head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
|
|
|
|
spin_lock(&head2->lock);
|
|
|
|
inet_bind_bucket_for_each(tb2, &head2->chain)
|
|
if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
|
|
break;
|
|
|
|
if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
|
|
reuseport_ok)) {
|
|
spin_unlock(&head2->lock);
|
|
return true;
|
|
}
|
|
|
|
spin_unlock(&head2->lock);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Find an open port number for the socket. Returns with the
|
|
* inet_bind_hashbucket locks held if successful.
|
|
*/
|
|
static struct inet_bind_hashbucket *
|
|
inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
|
|
struct inet_bind2_bucket **tb2_ret,
|
|
struct inet_bind_hashbucket **head2_ret, int *port_ret)
|
|
{
|
|
struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
|
|
int i, low, high, attempt_half, port, l3mdev;
|
|
struct inet_bind_hashbucket *head, *head2;
|
|
struct net *net = sock_net(sk);
|
|
struct inet_bind2_bucket *tb2;
|
|
struct inet_bind_bucket *tb;
|
|
u32 remaining, offset;
|
|
bool relax = false;
|
|
|
|
l3mdev = inet_sk_bound_l3mdev(sk);
|
|
ports_exhausted:
|
|
attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
|
|
other_half_scan:
|
|
inet_sk_get_local_port_range(sk, &low, &high);
|
|
high++; /* [32768, 60999] -> [32768, 61000[ */
|
|
if (high - low < 4)
|
|
attempt_half = 0;
|
|
if (attempt_half) {
|
|
int half = low + (((high - low) >> 2) << 1);
|
|
|
|
if (attempt_half == 1)
|
|
high = half;
|
|
else
|
|
low = half;
|
|
}
|
|
remaining = high - low;
|
|
if (likely(remaining > 1))
|
|
remaining &= ~1U;
|
|
|
|
offset = get_random_u32_below(remaining);
|
|
/* __inet_hash_connect() favors ports having @low parity
|
|
* We do the opposite to not pollute connect() users.
|
|
*/
|
|
offset |= 1U;
|
|
|
|
other_parity_scan:
|
|
port = low + offset;
|
|
for (i = 0; i < remaining; i += 2, port += 2) {
|
|
if (unlikely(port >= high))
|
|
port -= remaining;
|
|
if (inet_is_local_reserved_port(net, port))
|
|
continue;
|
|
head = &hinfo->bhash[inet_bhashfn(net, port,
|
|
hinfo->bhash_size)];
|
|
spin_lock_bh(&head->lock);
|
|
if (inet_use_bhash2_on_bind(sk)) {
|
|
if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
|
|
goto next_port;
|
|
}
|
|
|
|
head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
|
|
spin_lock(&head2->lock);
|
|
tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
|
|
inet_bind_bucket_for_each(tb, &head->chain)
|
|
if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
|
|
if (!inet_csk_bind_conflict(sk, tb, tb2,
|
|
relax, false))
|
|
goto success;
|
|
spin_unlock(&head2->lock);
|
|
goto next_port;
|
|
}
|
|
tb = NULL;
|
|
goto success;
|
|
next_port:
|
|
spin_unlock_bh(&head->lock);
|
|
cond_resched();
|
|
}
|
|
|
|
offset--;
|
|
if (!(offset & 1))
|
|
goto other_parity_scan;
|
|
|
|
if (attempt_half == 1) {
|
|
/* OK we now try the upper half of the range */
|
|
attempt_half = 2;
|
|
goto other_half_scan;
|
|
}
|
|
|
|
if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
|
|
/* We still have a chance to connect to different destinations */
|
|
relax = true;
|
|
goto ports_exhausted;
|
|
}
|
|
return NULL;
|
|
success:
|
|
*port_ret = port;
|
|
*tb_ret = tb;
|
|
*tb2_ret = tb2;
|
|
*head2_ret = head2;
|
|
return head;
|
|
}
|
|
|
|
static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
|
|
struct sock *sk)
|
|
{
|
|
kuid_t uid = sock_i_uid(sk);
|
|
|
|
if (tb->fastreuseport <= 0)
|
|
return 0;
|
|
if (!sk->sk_reuseport)
|
|
return 0;
|
|
if (rcu_access_pointer(sk->sk_reuseport_cb))
|
|
return 0;
|
|
if (!uid_eq(tb->fastuid, uid))
|
|
return 0;
|
|
/* We only need to check the rcv_saddr if this tb was once marked
|
|
* without fastreuseport and then was reset, as we can only know that
|
|
* the fast_*rcv_saddr doesn't have any conflicts with the socks on the
|
|
* owners list.
|
|
*/
|
|
if (tb->fastreuseport == FASTREUSEPORT_ANY)
|
|
return 1;
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
if (tb->fast_sk_family == AF_INET6)
|
|
return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
|
|
inet6_rcv_saddr(sk),
|
|
tb->fast_rcv_saddr,
|
|
sk->sk_rcv_saddr,
|
|
tb->fast_ipv6_only,
|
|
ipv6_only_sock(sk), true, false);
|
|
#endif
|
|
return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
|
|
ipv6_only_sock(sk), true, false);
|
|
}
|
|
|
|
void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
|
|
struct sock *sk)
|
|
{
|
|
kuid_t uid = sock_i_uid(sk);
|
|
bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
|
|
|
|
if (hlist_empty(&tb->owners)) {
|
|
tb->fastreuse = reuse;
|
|
if (sk->sk_reuseport) {
|
|
tb->fastreuseport = FASTREUSEPORT_ANY;
|
|
tb->fastuid = uid;
|
|
tb->fast_rcv_saddr = sk->sk_rcv_saddr;
|
|
tb->fast_ipv6_only = ipv6_only_sock(sk);
|
|
tb->fast_sk_family = sk->sk_family;
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
|
|
#endif
|
|
} else {
|
|
tb->fastreuseport = 0;
|
|
}
|
|
} else {
|
|
if (!reuse)
|
|
tb->fastreuse = 0;
|
|
if (sk->sk_reuseport) {
|
|
/* We didn't match or we don't have fastreuseport set on
|
|
* the tb, but we have sk_reuseport set on this socket
|
|
* and we know that there are no bind conflicts with
|
|
* this socket in this tb, so reset our tb's reuseport
|
|
* settings so that any subsequent sockets that match
|
|
* our current socket will be put on the fast path.
|
|
*
|
|
* If we reset we need to set FASTREUSEPORT_STRICT so we
|
|
* do extra checking for all subsequent sk_reuseport
|
|
* socks.
|
|
*/
|
|
if (!sk_reuseport_match(tb, sk)) {
|
|
tb->fastreuseport = FASTREUSEPORT_STRICT;
|
|
tb->fastuid = uid;
|
|
tb->fast_rcv_saddr = sk->sk_rcv_saddr;
|
|
tb->fast_ipv6_only = ipv6_only_sock(sk);
|
|
tb->fast_sk_family = sk->sk_family;
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
|
|
#endif
|
|
}
|
|
} else {
|
|
tb->fastreuseport = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Obtain a reference to a local port for the given sock,
|
|
* if snum is zero it means select any available local port.
|
|
* We try to allocate an odd port (and leave even ports for connect())
|
|
*/
|
|
int inet_csk_get_port(struct sock *sk, unsigned short snum)
|
|
{
|
|
struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
|
|
bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
|
|
bool found_port = false, check_bind_conflict = true;
|
|
bool bhash_created = false, bhash2_created = false;
|
|
int ret = -EADDRINUSE, port = snum, l3mdev;
|
|
struct inet_bind_hashbucket *head, *head2;
|
|
struct inet_bind2_bucket *tb2 = NULL;
|
|
struct inet_bind_bucket *tb = NULL;
|
|
bool head2_lock_acquired = false;
|
|
struct net *net = sock_net(sk);
|
|
|
|
l3mdev = inet_sk_bound_l3mdev(sk);
|
|
|
|
if (!port) {
|
|
head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
|
|
if (!head)
|
|
return ret;
|
|
|
|
head2_lock_acquired = true;
|
|
|
|
if (tb && tb2)
|
|
goto success;
|
|
found_port = true;
|
|
} else {
|
|
head = &hinfo->bhash[inet_bhashfn(net, port,
|
|
hinfo->bhash_size)];
|
|
spin_lock_bh(&head->lock);
|
|
inet_bind_bucket_for_each(tb, &head->chain)
|
|
if (inet_bind_bucket_match(tb, net, port, l3mdev))
|
|
break;
|
|
}
|
|
|
|
if (!tb) {
|
|
tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
|
|
head, port, l3mdev);
|
|
if (!tb)
|
|
goto fail_unlock;
|
|
bhash_created = true;
|
|
}
|
|
|
|
if (!found_port) {
|
|
if (!hlist_empty(&tb->owners)) {
|
|
if (sk->sk_reuse == SK_FORCE_REUSE ||
|
|
(tb->fastreuse > 0 && reuse) ||
|
|
sk_reuseport_match(tb, sk))
|
|
check_bind_conflict = false;
|
|
}
|
|
|
|
if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
|
|
if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
|
|
goto fail_unlock;
|
|
}
|
|
|
|
head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
|
|
spin_lock(&head2->lock);
|
|
head2_lock_acquired = true;
|
|
tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
|
|
}
|
|
|
|
if (!tb2) {
|
|
tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
|
|
net, head2, port, l3mdev, sk);
|
|
if (!tb2)
|
|
goto fail_unlock;
|
|
bhash2_created = true;
|
|
}
|
|
|
|
if (!found_port && check_bind_conflict) {
|
|
if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
|
|
goto fail_unlock;
|
|
}
|
|
|
|
success:
|
|
inet_csk_update_fastreuse(tb, sk);
|
|
|
|
if (!inet_csk(sk)->icsk_bind_hash)
|
|
inet_bind_hash(sk, tb, tb2, port);
|
|
WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
|
|
WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
|
|
ret = 0;
|
|
|
|
fail_unlock:
|
|
if (ret) {
|
|
if (bhash_created)
|
|
inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
|
|
if (bhash2_created)
|
|
inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep,
|
|
tb2);
|
|
}
|
|
if (head2_lock_acquired)
|
|
spin_unlock(&head2->lock);
|
|
spin_unlock_bh(&head->lock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(inet_csk_get_port);
|
|
|
|
/*
|
|
* Wait for an incoming connection, avoid race conditions. This must be called
|
|
* with the socket locked.
|
|
*/
|
|
static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
DEFINE_WAIT(wait);
|
|
int err;
|
|
|
|
/*
|
|
* True wake-one mechanism for incoming connections: only
|
|
* one process gets woken up, not the 'whole herd'.
|
|
* Since we do not 'race & poll' for established sockets
|
|
* anymore, the common case will execute the loop only once.
|
|
*
|
|
* Subtle issue: "add_wait_queue_exclusive()" will be added
|
|
* after any current non-exclusive waiters, and we know that
|
|
* it will always _stay_ after any new non-exclusive waiters
|
|
* because all non-exclusive waiters are added at the
|
|
* beginning of the wait-queue. As such, it's ok to "drop"
|
|
* our exclusiveness temporarily when we get woken up without
|
|
* having to remove and re-insert us on the wait queue.
|
|
*/
|
|
for (;;) {
|
|
prepare_to_wait_exclusive(sk_sleep(sk), &wait,
|
|
TASK_INTERRUPTIBLE);
|
|
release_sock(sk);
|
|
if (reqsk_queue_empty(&icsk->icsk_accept_queue))
|
|
timeo = schedule_timeout(timeo);
|
|
sched_annotate_sleep();
|
|
lock_sock(sk);
|
|
err = 0;
|
|
if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
|
|
break;
|
|
err = -EINVAL;
|
|
if (sk->sk_state != TCP_LISTEN)
|
|
break;
|
|
err = sock_intr_errno(timeo);
|
|
if (signal_pending(current))
|
|
break;
|
|
err = -EAGAIN;
|
|
if (!timeo)
|
|
break;
|
|
}
|
|
finish_wait(sk_sleep(sk), &wait);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* This will accept the next outstanding connection.
|
|
*/
|
|
struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct request_sock_queue *queue = &icsk->icsk_accept_queue;
|
|
struct request_sock *req;
|
|
struct sock *newsk;
|
|
int error;
|
|
|
|
lock_sock(sk);
|
|
|
|
/* We need to make sure that this socket is listening,
|
|
* and that it has something pending.
|
|
*/
|
|
error = -EINVAL;
|
|
if (sk->sk_state != TCP_LISTEN)
|
|
goto out_err;
|
|
|
|
/* Find already established connection */
|
|
if (reqsk_queue_empty(queue)) {
|
|
long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
|
|
|
|
/* If this is a non blocking socket don't sleep */
|
|
error = -EAGAIN;
|
|
if (!timeo)
|
|
goto out_err;
|
|
|
|
error = inet_csk_wait_for_connect(sk, timeo);
|
|
if (error)
|
|
goto out_err;
|
|
}
|
|
req = reqsk_queue_remove(queue, sk);
|
|
newsk = req->sk;
|
|
|
|
if (sk->sk_protocol == IPPROTO_TCP &&
|
|
tcp_rsk(req)->tfo_listener) {
|
|
spin_lock_bh(&queue->fastopenq.lock);
|
|
if (tcp_rsk(req)->tfo_listener) {
|
|
/* We are still waiting for the final ACK from 3WHS
|
|
* so can't free req now. Instead, we set req->sk to
|
|
* NULL to signify that the child socket is taken
|
|
* so reqsk_fastopen_remove() will free the req
|
|
* when 3WHS finishes (or is aborted).
|
|
*/
|
|
req->sk = NULL;
|
|
req = NULL;
|
|
}
|
|
spin_unlock_bh(&queue->fastopenq.lock);
|
|
}
|
|
|
|
out:
|
|
release_sock(sk);
|
|
if (newsk && mem_cgroup_sockets_enabled) {
|
|
int amt;
|
|
|
|
/* atomically get the memory usage, set and charge the
|
|
* newsk->sk_memcg.
|
|
*/
|
|
lock_sock(newsk);
|
|
|
|
/* The socket has not been accepted yet, no need to look at
|
|
* newsk->sk_wmem_queued.
|
|
*/
|
|
amt = sk_mem_pages(newsk->sk_forward_alloc +
|
|
atomic_read(&newsk->sk_rmem_alloc));
|
|
mem_cgroup_sk_alloc(newsk);
|
|
if (newsk->sk_memcg && amt)
|
|
mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
|
|
release_sock(newsk);
|
|
}
|
|
if (req)
|
|
reqsk_put(req);
|
|
return newsk;
|
|
out_err:
|
|
newsk = NULL;
|
|
req = NULL;
|
|
*err = error;
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL(inet_csk_accept);
|
|
|
|
/*
|
|
* Using different timers for retransmit, delayed acks and probes
|
|
* We may wish use just one timer maintaining a list of expire jiffies
|
|
* to optimize.
|
|
*/
|
|
void inet_csk_init_xmit_timers(struct sock *sk,
|
|
void (*retransmit_handler)(struct timer_list *t),
|
|
void (*delack_handler)(struct timer_list *t),
|
|
void (*keepalive_handler)(struct timer_list *t))
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
|
|
timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
|
|
timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
|
|
timer_setup(&sk->sk_timer, keepalive_handler, 0);
|
|
icsk->icsk_pending = icsk->icsk_ack.pending = 0;
|
|
}
|
|
EXPORT_SYMBOL(inet_csk_init_xmit_timers);
|
|
|
|
void inet_csk_clear_xmit_timers(struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
|
|
icsk->icsk_pending = icsk->icsk_ack.pending = 0;
|
|
|
|
sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
|
|
sk_stop_timer(sk, &icsk->icsk_delack_timer);
|
|
sk_stop_timer(sk, &sk->sk_timer);
|
|
}
|
|
EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
|
|
|
|
void inet_csk_delete_keepalive_timer(struct sock *sk)
|
|
{
|
|
sk_stop_timer(sk, &sk->sk_timer);
|
|
}
|
|
EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
|
|
|
|
void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
|
|
{
|
|
sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
|
|
}
|
|
EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
|
|
|
|
struct dst_entry *inet_csk_route_req(const struct sock *sk,
|
|
struct flowi4 *fl4,
|
|
const struct request_sock *req)
|
|
{
|
|
const struct inet_request_sock *ireq = inet_rsk(req);
|
|
struct net *net = read_pnet(&ireq->ireq_net);
|
|
struct ip_options_rcu *opt;
|
|
struct rtable *rt;
|
|
|
|
rcu_read_lock();
|
|
opt = rcu_dereference(ireq->ireq_opt);
|
|
|
|
flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
|
|
RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
|
|
sk->sk_protocol, inet_sk_flowi_flags(sk),
|
|
(opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
|
|
ireq->ir_loc_addr, ireq->ir_rmt_port,
|
|
htons(ireq->ir_num), sk->sk_uid);
|
|
security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
|
|
rt = ip_route_output_flow(net, fl4, sk);
|
|
if (IS_ERR(rt))
|
|
goto no_route;
|
|
if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
|
|
goto route_err;
|
|
rcu_read_unlock();
|
|
return &rt->dst;
|
|
|
|
route_err:
|
|
ip_rt_put(rt);
|
|
no_route:
|
|
rcu_read_unlock();
|
|
__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(inet_csk_route_req);
|
|
|
|
struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
|
|
struct sock *newsk,
|
|
const struct request_sock *req)
|
|
{
|
|
const struct inet_request_sock *ireq = inet_rsk(req);
|
|
struct net *net = read_pnet(&ireq->ireq_net);
|
|
struct inet_sock *newinet = inet_sk(newsk);
|
|
struct ip_options_rcu *opt;
|
|
struct flowi4 *fl4;
|
|
struct rtable *rt;
|
|
|
|
opt = rcu_dereference(ireq->ireq_opt);
|
|
fl4 = &newinet->cork.fl.u.ip4;
|
|
|
|
flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
|
|
RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
|
|
sk->sk_protocol, inet_sk_flowi_flags(sk),
|
|
(opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
|
|
ireq->ir_loc_addr, ireq->ir_rmt_port,
|
|
htons(ireq->ir_num), sk->sk_uid);
|
|
security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
|
|
rt = ip_route_output_flow(net, fl4, sk);
|
|
if (IS_ERR(rt))
|
|
goto no_route;
|
|
if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
|
|
goto route_err;
|
|
return &rt->dst;
|
|
|
|
route_err:
|
|
ip_rt_put(rt);
|
|
no_route:
|
|
__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
|
|
|
|
/* Decide when to expire the request and when to resend SYN-ACK */
|
|
static void syn_ack_recalc(struct request_sock *req,
|
|
const int max_syn_ack_retries,
|
|
const u8 rskq_defer_accept,
|
|
int *expire, int *resend)
|
|
{
|
|
if (!rskq_defer_accept) {
|
|
*expire = req->num_timeout >= max_syn_ack_retries;
|
|
*resend = 1;
|
|
return;
|
|
}
|
|
*expire = req->num_timeout >= max_syn_ack_retries &&
|
|
(!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
|
|
/* Do not resend while waiting for data after ACK,
|
|
* start to resend on end of deferring period to give
|
|
* last chance for data or ACK to create established socket.
|
|
*/
|
|
*resend = !inet_rsk(req)->acked ||
|
|
req->num_timeout >= rskq_defer_accept - 1;
|
|
}
|
|
|
|
int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
|
|
{
|
|
int err = req->rsk_ops->rtx_syn_ack(parent, req);
|
|
|
|
if (!err)
|
|
req->num_retrans++;
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(inet_rtx_syn_ack);
|
|
|
|
static struct request_sock *inet_reqsk_clone(struct request_sock *req,
|
|
struct sock *sk)
|
|
{
|
|
struct sock *req_sk, *nreq_sk;
|
|
struct request_sock *nreq;
|
|
|
|
nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
|
|
if (!nreq) {
|
|
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
|
|
|
|
/* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
|
|
sock_put(sk);
|
|
return NULL;
|
|
}
|
|
|
|
req_sk = req_to_sk(req);
|
|
nreq_sk = req_to_sk(nreq);
|
|
|
|
memcpy(nreq_sk, req_sk,
|
|
offsetof(struct sock, sk_dontcopy_begin));
|
|
memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
|
|
req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
|
|
|
|
sk_node_init(&nreq_sk->sk_node);
|
|
nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
|
|
#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
|
|
nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
|
|
#endif
|
|
nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
|
|
|
|
nreq->rsk_listener = sk;
|
|
|
|
/* We need not acquire fastopenq->lock
|
|
* because the child socket is locked in inet_csk_listen_stop().
|
|
*/
|
|
if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
|
|
rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
|
|
|
|
return nreq;
|
|
}
|
|
|
|
static void reqsk_queue_migrated(struct request_sock_queue *queue,
|
|
const struct request_sock *req)
|
|
{
|
|
if (req->num_timeout == 0)
|
|
atomic_inc(&queue->young);
|
|
atomic_inc(&queue->qlen);
|
|
}
|
|
|
|
static void reqsk_migrate_reset(struct request_sock *req)
|
|
{
|
|
req->saved_syn = NULL;
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
inet_rsk(req)->ipv6_opt = NULL;
|
|
inet_rsk(req)->pktopts = NULL;
|
|
#else
|
|
inet_rsk(req)->ireq_opt = NULL;
|
|
#endif
|
|
}
|
|
|
|
/* return true if req was found in the ehash table */
|
|
static bool reqsk_queue_unlink(struct request_sock *req)
|
|
{
|
|
struct sock *sk = req_to_sk(req);
|
|
bool found = false;
|
|
|
|
if (sk_hashed(sk)) {
|
|
struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
|
|
spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
|
|
|
|
spin_lock(lock);
|
|
found = __sk_nulls_del_node_init_rcu(sk);
|
|
spin_unlock(lock);
|
|
}
|
|
if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
|
|
reqsk_put(req);
|
|
return found;
|
|
}
|
|
|
|
bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
|
|
{
|
|
bool unlinked = reqsk_queue_unlink(req);
|
|
|
|
if (unlinked) {
|
|
reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
|
|
reqsk_put(req);
|
|
}
|
|
return unlinked;
|
|
}
|
|
EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
|
|
|
|
void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
|
|
{
|
|
inet_csk_reqsk_queue_drop(sk, req);
|
|
reqsk_put(req);
|
|
}
|
|
EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
|
|
|
|
static void reqsk_timer_handler(struct timer_list *t)
|
|
{
|
|
struct request_sock *req = from_timer(req, t, rsk_timer);
|
|
struct request_sock *nreq = NULL, *oreq = req;
|
|
struct sock *sk_listener = req->rsk_listener;
|
|
struct inet_connection_sock *icsk;
|
|
struct request_sock_queue *queue;
|
|
struct net *net;
|
|
int max_syn_ack_retries, qlen, expire = 0, resend = 0;
|
|
|
|
if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
|
|
struct sock *nsk;
|
|
|
|
nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
|
|
if (!nsk)
|
|
goto drop;
|
|
|
|
nreq = inet_reqsk_clone(req, nsk);
|
|
if (!nreq)
|
|
goto drop;
|
|
|
|
/* The new timer for the cloned req can decrease the 2
|
|
* by calling inet_csk_reqsk_queue_drop_and_put(), so
|
|
* hold another count to prevent use-after-free and
|
|
* call reqsk_put() just before return.
|
|
*/
|
|
refcount_set(&nreq->rsk_refcnt, 2 + 1);
|
|
timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
|
|
reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
|
|
|
|
req = nreq;
|
|
sk_listener = nsk;
|
|
}
|
|
|
|
icsk = inet_csk(sk_listener);
|
|
net = sock_net(sk_listener);
|
|
max_syn_ack_retries = icsk->icsk_syn_retries ? :
|
|
READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
|
|
/* Normally all the openreqs are young and become mature
|
|
* (i.e. converted to established socket) for first timeout.
|
|
* If synack was not acknowledged for 1 second, it means
|
|
* one of the following things: synack was lost, ack was lost,
|
|
* rtt is high or nobody planned to ack (i.e. synflood).
|
|
* When server is a bit loaded, queue is populated with old
|
|
* open requests, reducing effective size of queue.
|
|
* When server is well loaded, queue size reduces to zero
|
|
* after several minutes of work. It is not synflood,
|
|
* it is normal operation. The solution is pruning
|
|
* too old entries overriding normal timeout, when
|
|
* situation becomes dangerous.
|
|
*
|
|
* Essentially, we reserve half of room for young
|
|
* embrions; and abort old ones without pity, if old
|
|
* ones are about to clog our table.
|
|
*/
|
|
queue = &icsk->icsk_accept_queue;
|
|
qlen = reqsk_queue_len(queue);
|
|
if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
|
|
int young = reqsk_queue_len_young(queue) << 1;
|
|
|
|
while (max_syn_ack_retries > 2) {
|
|
if (qlen < young)
|
|
break;
|
|
max_syn_ack_retries--;
|
|
young <<= 1;
|
|
}
|
|
}
|
|
syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
|
|
&expire, &resend);
|
|
req->rsk_ops->syn_ack_timeout(req);
|
|
if (!expire &&
|
|
(!resend ||
|
|
!inet_rtx_syn_ack(sk_listener, req) ||
|
|
inet_rsk(req)->acked)) {
|
|
if (req->num_timeout++ == 0)
|
|
atomic_dec(&queue->young);
|
|
mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
|
|
|
|
if (!nreq)
|
|
return;
|
|
|
|
if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
|
|
/* delete timer */
|
|
inet_csk_reqsk_queue_drop(sk_listener, nreq);
|
|
goto no_ownership;
|
|
}
|
|
|
|
__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
|
|
reqsk_migrate_reset(oreq);
|
|
reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
|
|
reqsk_put(oreq);
|
|
|
|
reqsk_put(nreq);
|
|
return;
|
|
}
|
|
|
|
/* Even if we can clone the req, we may need not retransmit any more
|
|
* SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
|
|
* CPU may win the "own_req" race so that inet_ehash_insert() fails.
|
|
*/
|
|
if (nreq) {
|
|
__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
|
|
no_ownership:
|
|
reqsk_migrate_reset(nreq);
|
|
reqsk_queue_removed(queue, nreq);
|
|
__reqsk_free(nreq);
|
|
}
|
|
|
|
drop:
|
|
inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
|
|
}
|
|
|
|
static void reqsk_queue_hash_req(struct request_sock *req,
|
|
unsigned long timeout)
|
|
{
|
|
timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
|
|
mod_timer(&req->rsk_timer, jiffies + timeout);
|
|
|
|
inet_ehash_insert(req_to_sk(req), NULL, NULL);
|
|
/* before letting lookups find us, make sure all req fields
|
|
* are committed to memory and refcnt initialized.
|
|
*/
|
|
smp_wmb();
|
|
refcount_set(&req->rsk_refcnt, 2 + 1);
|
|
}
|
|
|
|
void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
|
|
unsigned long timeout)
|
|
{
|
|
reqsk_queue_hash_req(req, timeout);
|
|
inet_csk_reqsk_queue_added(sk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
|
|
|
|
static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
|
|
const gfp_t priority)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(newsk);
|
|
|
|
if (!icsk->icsk_ulp_ops)
|
|
return;
|
|
|
|
if (icsk->icsk_ulp_ops->clone)
|
|
icsk->icsk_ulp_ops->clone(req, newsk, priority);
|
|
}
|
|
|
|
/**
|
|
* inet_csk_clone_lock - clone an inet socket, and lock its clone
|
|
* @sk: the socket to clone
|
|
* @req: request_sock
|
|
* @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
|
|
*
|
|
* Caller must unlock socket even in error path (bh_unlock_sock(newsk))
|
|
*/
|
|
struct sock *inet_csk_clone_lock(const struct sock *sk,
|
|
const struct request_sock *req,
|
|
const gfp_t priority)
|
|
{
|
|
struct sock *newsk = sk_clone_lock(sk, priority);
|
|
|
|
if (newsk) {
|
|
struct inet_connection_sock *newicsk = inet_csk(newsk);
|
|
|
|
inet_sk_set_state(newsk, TCP_SYN_RECV);
|
|
newicsk->icsk_bind_hash = NULL;
|
|
newicsk->icsk_bind2_hash = NULL;
|
|
|
|
inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
|
|
inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
|
|
inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
|
|
|
|
/* listeners have SOCK_RCU_FREE, not the children */
|
|
sock_reset_flag(newsk, SOCK_RCU_FREE);
|
|
|
|
inet_sk(newsk)->mc_list = NULL;
|
|
|
|
newsk->sk_mark = inet_rsk(req)->ir_mark;
|
|
atomic64_set(&newsk->sk_cookie,
|
|
atomic64_read(&inet_rsk(req)->ir_cookie));
|
|
|
|
newicsk->icsk_retransmits = 0;
|
|
newicsk->icsk_backoff = 0;
|
|
newicsk->icsk_probes_out = 0;
|
|
newicsk->icsk_probes_tstamp = 0;
|
|
|
|
/* Deinitialize accept_queue to trap illegal accesses. */
|
|
memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
|
|
|
|
inet_clone_ulp(req, newsk, priority);
|
|
|
|
security_inet_csk_clone(newsk, req);
|
|
}
|
|
return newsk;
|
|
}
|
|
EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
|
|
|
|
/*
|
|
* At this point, there should be no process reference to this
|
|
* socket, and thus no user references at all. Therefore we
|
|
* can assume the socket waitqueue is inactive and nobody will
|
|
* try to jump onto it.
|
|
*/
|
|
void inet_csk_destroy_sock(struct sock *sk)
|
|
{
|
|
WARN_ON(sk->sk_state != TCP_CLOSE);
|
|
WARN_ON(!sock_flag(sk, SOCK_DEAD));
|
|
|
|
/* It cannot be in hash table! */
|
|
WARN_ON(!sk_unhashed(sk));
|
|
|
|
/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
|
|
WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
|
|
|
|
sk->sk_prot->destroy(sk);
|
|
|
|
sk_stream_kill_queues(sk);
|
|
|
|
xfrm_sk_free_policy(sk);
|
|
|
|
sk_refcnt_debug_release(sk);
|
|
|
|
this_cpu_dec(*sk->sk_prot->orphan_count);
|
|
|
|
sock_put(sk);
|
|
}
|
|
EXPORT_SYMBOL(inet_csk_destroy_sock);
|
|
|
|
/* This function allows to force a closure of a socket after the call to
|
|
* tcp/dccp_create_openreq_child().
|
|
*/
|
|
void inet_csk_prepare_forced_close(struct sock *sk)
|
|
__releases(&sk->sk_lock.slock)
|
|
{
|
|
/* sk_clone_lock locked the socket and set refcnt to 2 */
|
|
bh_unlock_sock(sk);
|
|
sock_put(sk);
|
|
inet_csk_prepare_for_destroy_sock(sk);
|
|
inet_sk(sk)->inet_num = 0;
|
|
}
|
|
EXPORT_SYMBOL(inet_csk_prepare_forced_close);
|
|
|
|
static int inet_ulp_can_listen(const struct sock *sk)
|
|
{
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
|
|
|
if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int inet_csk_listen_start(struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
int err;
|
|
|
|
err = inet_ulp_can_listen(sk);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
reqsk_queue_alloc(&icsk->icsk_accept_queue);
|
|
|
|
sk->sk_ack_backlog = 0;
|
|
inet_csk_delack_init(sk);
|
|
|
|
if (sk->sk_txrehash == SOCK_TXREHASH_DEFAULT)
|
|
sk->sk_txrehash = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
|
|
|
|
/* There is race window here: we announce ourselves listening,
|
|
* but this transition is still not validated by get_port().
|
|
* It is OK, because this socket enters to hash table only
|
|
* after validation is complete.
|
|
*/
|
|
inet_sk_state_store(sk, TCP_LISTEN);
|
|
err = sk->sk_prot->get_port(sk, inet->inet_num);
|
|
if (!err) {
|
|
inet->inet_sport = htons(inet->inet_num);
|
|
|
|
sk_dst_reset(sk);
|
|
err = sk->sk_prot->hash(sk);
|
|
|
|
if (likely(!err))
|
|
return 0;
|
|
}
|
|
|
|
inet_sk_set_state(sk, TCP_CLOSE);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(inet_csk_listen_start);
|
|
|
|
static void inet_child_forget(struct sock *sk, struct request_sock *req,
|
|
struct sock *child)
|
|
{
|
|
sk->sk_prot->disconnect(child, O_NONBLOCK);
|
|
|
|
sock_orphan(child);
|
|
|
|
this_cpu_inc(*sk->sk_prot->orphan_count);
|
|
|
|
if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
|
|
BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
|
|
BUG_ON(sk != req->rsk_listener);
|
|
|
|
/* Paranoid, to prevent race condition if
|
|
* an inbound pkt destined for child is
|
|
* blocked by sock lock in tcp_v4_rcv().
|
|
* Also to satisfy an assertion in
|
|
* tcp_v4_destroy_sock().
|
|
*/
|
|
RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
|
|
}
|
|
inet_csk_destroy_sock(child);
|
|
}
|
|
|
|
struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
|
|
struct request_sock *req,
|
|
struct sock *child)
|
|
{
|
|
struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
|
|
|
|
spin_lock(&queue->rskq_lock);
|
|
if (unlikely(sk->sk_state != TCP_LISTEN)) {
|
|
inet_child_forget(sk, req, child);
|
|
child = NULL;
|
|
} else {
|
|
req->sk = child;
|
|
req->dl_next = NULL;
|
|
if (queue->rskq_accept_head == NULL)
|
|
WRITE_ONCE(queue->rskq_accept_head, req);
|
|
else
|
|
queue->rskq_accept_tail->dl_next = req;
|
|
queue->rskq_accept_tail = req;
|
|
sk_acceptq_added(sk);
|
|
}
|
|
spin_unlock(&queue->rskq_lock);
|
|
return child;
|
|
}
|
|
EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
|
|
|
|
struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
|
|
struct request_sock *req, bool own_req)
|
|
{
|
|
if (own_req) {
|
|
inet_csk_reqsk_queue_drop(req->rsk_listener, req);
|
|
reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
|
|
|
|
if (sk != req->rsk_listener) {
|
|
/* another listening sk has been selected,
|
|
* migrate the req to it.
|
|
*/
|
|
struct request_sock *nreq;
|
|
|
|
/* hold a refcnt for the nreq->rsk_listener
|
|
* which is assigned in inet_reqsk_clone()
|
|
*/
|
|
sock_hold(sk);
|
|
nreq = inet_reqsk_clone(req, sk);
|
|
if (!nreq) {
|
|
inet_child_forget(sk, req, child);
|
|
goto child_put;
|
|
}
|
|
|
|
refcount_set(&nreq->rsk_refcnt, 1);
|
|
if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
|
|
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
|
|
reqsk_migrate_reset(req);
|
|
reqsk_put(req);
|
|
return child;
|
|
}
|
|
|
|
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
|
|
reqsk_migrate_reset(nreq);
|
|
__reqsk_free(nreq);
|
|
} else if (inet_csk_reqsk_queue_add(sk, req, child)) {
|
|
return child;
|
|
}
|
|
}
|
|
/* Too bad, another child took ownership of the request, undo. */
|
|
child_put:
|
|
bh_unlock_sock(child);
|
|
sock_put(child);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(inet_csk_complete_hashdance);
|
|
|
|
/*
|
|
* This routine closes sockets which have been at least partially
|
|
* opened, but not yet accepted.
|
|
*/
|
|
void inet_csk_listen_stop(struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct request_sock_queue *queue = &icsk->icsk_accept_queue;
|
|
struct request_sock *next, *req;
|
|
|
|
/* Following specs, it would be better either to send FIN
|
|
* (and enter FIN-WAIT-1, it is normal close)
|
|
* or to send active reset (abort).
|
|
* Certainly, it is pretty dangerous while synflood, but it is
|
|
* bad justification for our negligence 8)
|
|
* To be honest, we are not able to make either
|
|
* of the variants now. --ANK
|
|
*/
|
|
while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
|
|
struct sock *child = req->sk, *nsk;
|
|
struct request_sock *nreq;
|
|
|
|
local_bh_disable();
|
|
bh_lock_sock(child);
|
|
WARN_ON(sock_owned_by_user(child));
|
|
sock_hold(child);
|
|
|
|
nsk = reuseport_migrate_sock(sk, child, NULL);
|
|
if (nsk) {
|
|
nreq = inet_reqsk_clone(req, nsk);
|
|
if (nreq) {
|
|
refcount_set(&nreq->rsk_refcnt, 1);
|
|
|
|
if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
|
|
__NET_INC_STATS(sock_net(nsk),
|
|
LINUX_MIB_TCPMIGRATEREQSUCCESS);
|
|
reqsk_migrate_reset(req);
|
|
} else {
|
|
__NET_INC_STATS(sock_net(nsk),
|
|
LINUX_MIB_TCPMIGRATEREQFAILURE);
|
|
reqsk_migrate_reset(nreq);
|
|
__reqsk_free(nreq);
|
|
}
|
|
|
|
/* inet_csk_reqsk_queue_add() has already
|
|
* called inet_child_forget() on failure case.
|
|
*/
|
|
goto skip_child_forget;
|
|
}
|
|
}
|
|
|
|
inet_child_forget(sk, req, child);
|
|
skip_child_forget:
|
|
reqsk_put(req);
|
|
bh_unlock_sock(child);
|
|
local_bh_enable();
|
|
sock_put(child);
|
|
|
|
cond_resched();
|
|
}
|
|
if (queue->fastopenq.rskq_rst_head) {
|
|
/* Free all the reqs queued in rskq_rst_head. */
|
|
spin_lock_bh(&queue->fastopenq.lock);
|
|
req = queue->fastopenq.rskq_rst_head;
|
|
queue->fastopenq.rskq_rst_head = NULL;
|
|
spin_unlock_bh(&queue->fastopenq.lock);
|
|
while (req != NULL) {
|
|
next = req->dl_next;
|
|
reqsk_put(req);
|
|
req = next;
|
|
}
|
|
}
|
|
WARN_ON_ONCE(sk->sk_ack_backlog);
|
|
}
|
|
EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
|
|
|
|
void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
|
|
{
|
|
struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
|
|
const struct inet_sock *inet = inet_sk(sk);
|
|
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_addr.s_addr = inet->inet_daddr;
|
|
sin->sin_port = inet->inet_dport;
|
|
}
|
|
EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
|
|
|
|
static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
|
|
{
|
|
const struct inet_sock *inet = inet_sk(sk);
|
|
const struct ip_options_rcu *inet_opt;
|
|
__be32 daddr = inet->inet_daddr;
|
|
struct flowi4 *fl4;
|
|
struct rtable *rt;
|
|
|
|
rcu_read_lock();
|
|
inet_opt = rcu_dereference(inet->inet_opt);
|
|
if (inet_opt && inet_opt->opt.srr)
|
|
daddr = inet_opt->opt.faddr;
|
|
fl4 = &fl->u.ip4;
|
|
rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
|
|
inet->inet_saddr, inet->inet_dport,
|
|
inet->inet_sport, sk->sk_protocol,
|
|
RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
|
|
if (IS_ERR(rt))
|
|
rt = NULL;
|
|
if (rt)
|
|
sk_setup_caps(sk, &rt->dst);
|
|
rcu_read_unlock();
|
|
|
|
return &rt->dst;
|
|
}
|
|
|
|
struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
|
|
{
|
|
struct dst_entry *dst = __sk_dst_check(sk, 0);
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
|
|
if (!dst) {
|
|
dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
|
|
if (!dst)
|
|
goto out;
|
|
}
|
|
dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
|
|
|
|
dst = __sk_dst_check(sk, 0);
|
|
if (!dst)
|
|
dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
|
|
out:
|
|
return dst;
|
|
}
|
|
EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
|