linux/arch/x86/mm/cpu_entry_area.c
Andrey Ryabinin 3f148f3318 x86/kasan: Map shadow for percpu pages on demand
KASAN maps shadow for the entire CPU-entry-area:
  [CPU_ENTRY_AREA_BASE, CPU_ENTRY_AREA_BASE + CPU_ENTRY_AREA_MAP_SIZE]

This will explode once the per-cpu entry areas are randomized since it
will increase CPU_ENTRY_AREA_MAP_SIZE to 512 GB and KASAN fails to
allocate shadow for such big area.

Fix this by allocating KASAN shadow only for really used cpu entry area
addresses mapped by cea_map_percpu_pages()

Thanks to the 0day folks for finding and reporting this to be an issue.

[ dhansen: tweak changelog since this will get committed before peterz's
	   actual cpu-entry-area randomization ]

Signed-off-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Yujie Liu <yujie.liu@intel.com>
Cc: kernel test robot <yujie.liu@intel.com>
Link: https://lore.kernel.org/r/202210241508.2e203c3d-yujie.liu@intel.com
2022-12-15 10:37:26 -08:00

241 lines
7.2 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/kallsyms.h>
#include <linux/kcore.h>
#include <linux/pgtable.h>
#include <asm/cpu_entry_area.h>
#include <asm/fixmap.h>
#include <asm/desc.h>
#include <asm/kasan.h>
static DEFINE_PER_CPU_PAGE_ALIGNED(struct entry_stack_page, entry_stack_storage);
#ifdef CONFIG_X86_64
static DEFINE_PER_CPU_PAGE_ALIGNED(struct exception_stacks, exception_stacks);
DEFINE_PER_CPU(struct cea_exception_stacks*, cea_exception_stacks);
#endif
#ifdef CONFIG_X86_32
DECLARE_PER_CPU_PAGE_ALIGNED(struct doublefault_stack, doublefault_stack);
#endif
/* Is called from entry code, so must be noinstr */
noinstr struct cpu_entry_area *get_cpu_entry_area(int cpu)
{
unsigned long va = CPU_ENTRY_AREA_PER_CPU + cpu * CPU_ENTRY_AREA_SIZE;
BUILD_BUG_ON(sizeof(struct cpu_entry_area) % PAGE_SIZE != 0);
return (struct cpu_entry_area *) va;
}
EXPORT_SYMBOL(get_cpu_entry_area);
void cea_set_pte(void *cea_vaddr, phys_addr_t pa, pgprot_t flags)
{
unsigned long va = (unsigned long) cea_vaddr;
pte_t pte = pfn_pte(pa >> PAGE_SHIFT, flags);
/*
* The cpu_entry_area is shared between the user and kernel
* page tables. All of its ptes can safely be global.
* _PAGE_GLOBAL gets reused to help indicate PROT_NONE for
* non-present PTEs, so be careful not to set it in that
* case to avoid confusion.
*/
if (boot_cpu_has(X86_FEATURE_PGE) &&
(pgprot_val(flags) & _PAGE_PRESENT))
pte = pte_set_flags(pte, _PAGE_GLOBAL);
set_pte_vaddr(va, pte);
}
static void __init
cea_map_percpu_pages(void *cea_vaddr, void *ptr, int pages, pgprot_t prot)
{
phys_addr_t pa = per_cpu_ptr_to_phys(ptr);
kasan_populate_shadow_for_vaddr(cea_vaddr, pages * PAGE_SIZE,
early_pfn_to_nid(PFN_DOWN(pa)));
for ( ; pages; pages--, cea_vaddr+= PAGE_SIZE, ptr += PAGE_SIZE)
cea_set_pte(cea_vaddr, pa, prot);
}
static void __init percpu_setup_debug_store(unsigned int cpu)
{
#ifdef CONFIG_CPU_SUP_INTEL
unsigned int npages;
void *cea;
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
return;
cea = &get_cpu_entry_area(cpu)->cpu_debug_store;
npages = sizeof(struct debug_store) / PAGE_SIZE;
BUILD_BUG_ON(sizeof(struct debug_store) % PAGE_SIZE != 0);
cea_map_percpu_pages(cea, &per_cpu(cpu_debug_store, cpu), npages,
PAGE_KERNEL);
cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers;
/*
* Force the population of PMDs for not yet allocated per cpu
* memory like debug store buffers.
*/
npages = sizeof(struct debug_store_buffers) / PAGE_SIZE;
for (; npages; npages--, cea += PAGE_SIZE)
cea_set_pte(cea, 0, PAGE_NONE);
#endif
}
#ifdef CONFIG_X86_64
#define cea_map_stack(name) do { \
npages = sizeof(estacks->name## _stack) / PAGE_SIZE; \
cea_map_percpu_pages(cea->estacks.name## _stack, \
estacks->name## _stack, npages, PAGE_KERNEL); \
} while (0)
static void __init percpu_setup_exception_stacks(unsigned int cpu)
{
struct exception_stacks *estacks = per_cpu_ptr(&exception_stacks, cpu);
struct cpu_entry_area *cea = get_cpu_entry_area(cpu);
unsigned int npages;
BUILD_BUG_ON(sizeof(exception_stacks) % PAGE_SIZE != 0);
per_cpu(cea_exception_stacks, cpu) = &cea->estacks;
/*
* The exceptions stack mappings in the per cpu area are protected
* by guard pages so each stack must be mapped separately. DB2 is
* not mapped; it just exists to catch triple nesting of #DB.
*/
cea_map_stack(DF);
cea_map_stack(NMI);
cea_map_stack(DB);
cea_map_stack(MCE);
if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) {
if (cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT)) {
cea_map_stack(VC);
cea_map_stack(VC2);
}
}
}
#else
static inline void percpu_setup_exception_stacks(unsigned int cpu)
{
struct cpu_entry_area *cea = get_cpu_entry_area(cpu);
cea_map_percpu_pages(&cea->doublefault_stack,
&per_cpu(doublefault_stack, cpu), 1, PAGE_KERNEL);
}
#endif
/* Setup the fixmap mappings only once per-processor */
static void __init setup_cpu_entry_area(unsigned int cpu)
{
struct cpu_entry_area *cea = get_cpu_entry_area(cpu);
#ifdef CONFIG_X86_64
/* On 64-bit systems, we use a read-only fixmap GDT and TSS. */
pgprot_t gdt_prot = PAGE_KERNEL_RO;
pgprot_t tss_prot = PAGE_KERNEL_RO;
#else
/*
* On native 32-bit systems, the GDT cannot be read-only because
* our double fault handler uses a task gate, and entering through
* a task gate needs to change an available TSS to busy. If the
* GDT is read-only, that will triple fault. The TSS cannot be
* read-only because the CPU writes to it on task switches.
*
* On Xen PV, the GDT must be read-only because the hypervisor
* requires it.
*/
pgprot_t gdt_prot = boot_cpu_has(X86_FEATURE_XENPV) ?
PAGE_KERNEL_RO : PAGE_KERNEL;
pgprot_t tss_prot = PAGE_KERNEL;
#endif
cea_set_pte(&cea->gdt, get_cpu_gdt_paddr(cpu), gdt_prot);
cea_map_percpu_pages(&cea->entry_stack_page,
per_cpu_ptr(&entry_stack_storage, cpu), 1,
PAGE_KERNEL);
/*
* The Intel SDM says (Volume 3, 7.2.1):
*
* Avoid placing a page boundary in the part of the TSS that the
* processor reads during a task switch (the first 104 bytes). The
* processor may not correctly perform address translations if a
* boundary occurs in this area. During a task switch, the processor
* reads and writes into the first 104 bytes of each TSS (using
* contiguous physical addresses beginning with the physical address
* of the first byte of the TSS). So, after TSS access begins, if
* part of the 104 bytes is not physically contiguous, the processor
* will access incorrect information without generating a page-fault
* exception.
*
* There are also a lot of errata involving the TSS spanning a page
* boundary. Assert that we're not doing that.
*/
BUILD_BUG_ON((offsetof(struct tss_struct, x86_tss) ^
offsetofend(struct tss_struct, x86_tss)) & PAGE_MASK);
BUILD_BUG_ON(sizeof(struct tss_struct) % PAGE_SIZE != 0);
/*
* VMX changes the host TR limit to 0x67 after a VM exit. This is
* okay, since 0x67 covers the size of struct x86_hw_tss. Make sure
* that this is correct.
*/
BUILD_BUG_ON(offsetof(struct tss_struct, x86_tss) != 0);
BUILD_BUG_ON(sizeof(struct x86_hw_tss) != 0x68);
cea_map_percpu_pages(&cea->tss, &per_cpu(cpu_tss_rw, cpu),
sizeof(struct tss_struct) / PAGE_SIZE, tss_prot);
#ifdef CONFIG_X86_32
per_cpu(cpu_entry_area, cpu) = cea;
#endif
percpu_setup_exception_stacks(cpu);
percpu_setup_debug_store(cpu);
}
static __init void setup_cpu_entry_area_ptes(void)
{
#ifdef CONFIG_X86_32
unsigned long start, end;
/* The +1 is for the readonly IDT: */
BUILD_BUG_ON((CPU_ENTRY_AREA_PAGES+1)*PAGE_SIZE != CPU_ENTRY_AREA_MAP_SIZE);
BUILD_BUG_ON(CPU_ENTRY_AREA_TOTAL_SIZE != CPU_ENTRY_AREA_MAP_SIZE);
BUG_ON(CPU_ENTRY_AREA_BASE & ~PMD_MASK);
start = CPU_ENTRY_AREA_BASE;
end = start + CPU_ENTRY_AREA_MAP_SIZE;
/* Careful here: start + PMD_SIZE might wrap around */
for (; start < end && start >= CPU_ENTRY_AREA_BASE; start += PMD_SIZE)
populate_extra_pte(start);
#endif
}
void __init setup_cpu_entry_areas(void)
{
unsigned int cpu;
setup_cpu_entry_area_ptes();
for_each_possible_cpu(cpu)
setup_cpu_entry_area(cpu);
/*
* This is the last essential update to swapper_pgdir which needs
* to be synchronized to initial_page_table on 32bit.
*/
sync_initial_page_table();
}