mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-21 18:14:48 +08:00
ad8fb5537a
Both were defined as 23 rsp. 52 though the mentissa is actually a bit more than the fraction. Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
171 lines
4.7 KiB
C
171 lines
4.7 KiB
C
/* IEEE754 floating point arithmetic
|
|
* single precision
|
|
*/
|
|
/*
|
|
* MIPS floating point support
|
|
* Copyright (C) 1994-2000 Algorithmics Ltd.
|
|
*
|
|
* ########################################################################
|
|
*
|
|
* This program is free software; you can distribute it and/or modify it
|
|
* under the terms of the GNU General Public License (Version 2) as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
|
|
*
|
|
* ########################################################################
|
|
*/
|
|
|
|
|
|
#include "ieee754sp.h"
|
|
|
|
union ieee754sp ieee754sp_mul(union ieee754sp x, union ieee754sp y)
|
|
{
|
|
COMPXSP;
|
|
COMPYSP;
|
|
|
|
EXPLODEXSP;
|
|
EXPLODEYSP;
|
|
|
|
ieee754_clearcx();
|
|
|
|
FLUSHXSP;
|
|
FLUSHYSP;
|
|
|
|
switch (CLPAIR(xc, yc)) {
|
|
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN):
|
|
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN):
|
|
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN):
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN):
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN):
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN):
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN):
|
|
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO):
|
|
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM):
|
|
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM):
|
|
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF):
|
|
ieee754_setcx(IEEE754_INVALID_OPERATION);
|
|
return ieee754sp_nanxcpt(ieee754sp_indef(), "mul", x, y);
|
|
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN):
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN):
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN):
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN):
|
|
return y;
|
|
|
|
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN):
|
|
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO):
|
|
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM):
|
|
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM):
|
|
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF):
|
|
return x;
|
|
|
|
|
|
/* Infinity handling */
|
|
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
|
|
ieee754_setcx(IEEE754_INVALID_OPERATION);
|
|
return ieee754sp_xcpt(ieee754sp_indef(), "mul", x, y);
|
|
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
|
|
return ieee754sp_inf(xs ^ ys);
|
|
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
|
|
return ieee754sp_zero(xs ^ ys);
|
|
|
|
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
|
|
SPDNORMX;
|
|
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
|
|
SPDNORMY;
|
|
break;
|
|
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
|
|
SPDNORMX;
|
|
break;
|
|
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
|
|
break;
|
|
}
|
|
/* rm = xm * ym, re = xe+ye basically */
|
|
assert(xm & SP_HIDDEN_BIT);
|
|
assert(ym & SP_HIDDEN_BIT);
|
|
|
|
{
|
|
int re = xe + ye;
|
|
int rs = xs ^ ys;
|
|
unsigned rm;
|
|
|
|
/* shunt to top of word */
|
|
xm <<= 32 - (SP_FBITS + 1);
|
|
ym <<= 32 - (SP_FBITS + 1);
|
|
|
|
/* multiply 32bits xm,ym to give high 32bits rm with stickness
|
|
*/
|
|
{
|
|
unsigned short lxm = xm & 0xffff;
|
|
unsigned short hxm = xm >> 16;
|
|
unsigned short lym = ym & 0xffff;
|
|
unsigned short hym = ym >> 16;
|
|
unsigned lrm;
|
|
unsigned hrm;
|
|
|
|
lrm = lxm * lym; /* 16 * 16 => 32 */
|
|
hrm = hxm * hym; /* 16 * 16 => 32 */
|
|
|
|
{
|
|
unsigned t = lxm * hym; /* 16 * 16 => 32 */
|
|
{
|
|
unsigned at = lrm + (t << 16);
|
|
hrm += at < lrm;
|
|
lrm = at;
|
|
}
|
|
hrm = hrm + (t >> 16);
|
|
}
|
|
|
|
{
|
|
unsigned t = hxm * lym; /* 16 * 16 => 32 */
|
|
{
|
|
unsigned at = lrm + (t << 16);
|
|
hrm += at < lrm;
|
|
lrm = at;
|
|
}
|
|
hrm = hrm + (t >> 16);
|
|
}
|
|
rm = hrm | (lrm != 0);
|
|
}
|
|
|
|
/*
|
|
* sticky shift down to normal rounding precision
|
|
*/
|
|
if ((int) rm < 0) {
|
|
rm = (rm >> (32 - (SP_FBITS + 1 + 3))) |
|
|
((rm << (SP_FBITS + 1 + 3)) != 0);
|
|
re++;
|
|
} else {
|
|
rm = (rm >> (32 - (SP_FBITS + 1 + 3 + 1))) |
|
|
((rm << (SP_FBITS + 1 + 3 + 1)) != 0);
|
|
}
|
|
assert(rm & (SP_HIDDEN_BIT << 3));
|
|
|
|
SPNORMRET2(rs, re, rm, "mul", x, y);
|
|
}
|
|
}
|