linux/tools/perf/util/maps.c
Namhyung Kim 3cdd98b42d perf maps: Remove check_invariants() from maps__lock()
I found that the debug build was a slowed down a lot by the maps lock
code since it checks the invariants whenever it gets the pointer to the
lock.  This means it checks twice the invariants before and after the
access.

Instead, let's move the checking code within the lock area but after any
modification and remove it from the read paths.  This would remove (more
than) half of the maps lock overhead.

The time for perf report with a huge data file (200k+ of MMAP2 events).

  Non-debug     Before      After
  ---------   --------   --------
     2m 43s     6m 45s     4m 21s

Reviewed-by: Ian Rogers <irogers@google.com>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240429225738.1491791-1-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2024-05-02 16:35:47 -03:00

1206 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <errno.h>
#include <stdlib.h>
#include <linux/zalloc.h>
#include "debug.h"
#include "dso.h"
#include "map.h"
#include "maps.h"
#include "rwsem.h"
#include "thread.h"
#include "ui/ui.h"
#include "unwind.h"
#include <internal/rc_check.h>
/*
* Locking/sorting note:
*
* Sorting is done with the write lock, iteration and binary searching happens
* under the read lock requiring being sorted. There is a race between sorting
* releasing the write lock and acquiring the read lock for iteration/searching
* where another thread could insert and break the sorting of the maps. In
* practice inserting maps should be rare meaning that the race shouldn't lead
* to live lock. Removal of maps doesn't break being sorted.
*/
DECLARE_RC_STRUCT(maps) {
struct rw_semaphore lock;
/**
* @maps_by_address: array of maps sorted by their starting address if
* maps_by_address_sorted is true.
*/
struct map **maps_by_address;
/**
* @maps_by_name: optional array of maps sorted by their dso name if
* maps_by_name_sorted is true.
*/
struct map **maps_by_name;
struct machine *machine;
#ifdef HAVE_LIBUNWIND_SUPPORT
void *addr_space;
const struct unwind_libunwind_ops *unwind_libunwind_ops;
#endif
refcount_t refcnt;
/**
* @nr_maps: number of maps_by_address, and possibly maps_by_name,
* entries that contain maps.
*/
unsigned int nr_maps;
/**
* @nr_maps_allocated: number of entries in maps_by_address and possibly
* maps_by_name.
*/
unsigned int nr_maps_allocated;
/**
* @last_search_by_name_idx: cache of last found by name entry's index
* as frequent searches for the same dso name are common.
*/
unsigned int last_search_by_name_idx;
/** @maps_by_address_sorted: is maps_by_address sorted. */
bool maps_by_address_sorted;
/** @maps_by_name_sorted: is maps_by_name sorted. */
bool maps_by_name_sorted;
/** @ends_broken: does the map contain a map where end values are unset/unsorted? */
bool ends_broken;
};
static void check_invariants(const struct maps *maps __maybe_unused)
{
#ifndef NDEBUG
assert(RC_CHK_ACCESS(maps)->nr_maps <= RC_CHK_ACCESS(maps)->nr_maps_allocated);
for (unsigned int i = 0; i < RC_CHK_ACCESS(maps)->nr_maps; i++) {
struct map *map = RC_CHK_ACCESS(maps)->maps_by_address[i];
/* Check map is well-formed. */
assert(map__end(map) == 0 || map__start(map) <= map__end(map));
/* Expect at least 1 reference count. */
assert(refcount_read(map__refcnt(map)) > 0);
if (map__dso(map) && map__dso(map)->kernel)
assert(RC_CHK_EQUAL(map__kmap(map)->kmaps, maps));
if (i > 0) {
struct map *prev = RC_CHK_ACCESS(maps)->maps_by_address[i - 1];
/* If addresses are sorted... */
if (RC_CHK_ACCESS(maps)->maps_by_address_sorted) {
/* Maps should be in start address order. */
assert(map__start(prev) <= map__start(map));
/*
* If the ends of maps aren't broken (during
* construction) then they should be ordered
* too.
*/
if (!RC_CHK_ACCESS(maps)->ends_broken) {
assert(map__end(prev) <= map__end(map));
assert(map__end(prev) <= map__start(map) ||
map__start(prev) == map__start(map));
}
}
}
}
if (RC_CHK_ACCESS(maps)->maps_by_name) {
for (unsigned int i = 0; i < RC_CHK_ACCESS(maps)->nr_maps; i++) {
struct map *map = RC_CHK_ACCESS(maps)->maps_by_name[i];
/*
* Maps by name maps should be in maps_by_address, so
* the reference count should be higher.
*/
assert(refcount_read(map__refcnt(map)) > 1);
}
}
#endif
}
static struct map **maps__maps_by_address(const struct maps *maps)
{
return RC_CHK_ACCESS(maps)->maps_by_address;
}
static void maps__set_maps_by_address(struct maps *maps, struct map **new)
{
RC_CHK_ACCESS(maps)->maps_by_address = new;
}
static struct map ***maps__maps_by_name_addr(struct maps *maps)
{
return &RC_CHK_ACCESS(maps)->maps_by_name;
}
static void maps__set_nr_maps_allocated(struct maps *maps, unsigned int nr_maps_allocated)
{
RC_CHK_ACCESS(maps)->nr_maps_allocated = nr_maps_allocated;
}
static void maps__set_nr_maps(struct maps *maps, unsigned int nr_maps)
{
RC_CHK_ACCESS(maps)->nr_maps = nr_maps;
}
/* Not in the header, to aid reference counting. */
static struct map **maps__maps_by_name(const struct maps *maps)
{
return RC_CHK_ACCESS(maps)->maps_by_name;
}
static void maps__set_maps_by_name(struct maps *maps, struct map **new)
{
RC_CHK_ACCESS(maps)->maps_by_name = new;
}
static bool maps__maps_by_address_sorted(const struct maps *maps)
{
return RC_CHK_ACCESS(maps)->maps_by_address_sorted;
}
static void maps__set_maps_by_address_sorted(struct maps *maps, bool value)
{
RC_CHK_ACCESS(maps)->maps_by_address_sorted = value;
}
static bool maps__maps_by_name_sorted(const struct maps *maps)
{
return RC_CHK_ACCESS(maps)->maps_by_name_sorted;
}
static void maps__set_maps_by_name_sorted(struct maps *maps, bool value)
{
RC_CHK_ACCESS(maps)->maps_by_name_sorted = value;
}
struct machine *maps__machine(const struct maps *maps)
{
return RC_CHK_ACCESS(maps)->machine;
}
unsigned int maps__nr_maps(const struct maps *maps)
{
return RC_CHK_ACCESS(maps)->nr_maps;
}
refcount_t *maps__refcnt(struct maps *maps)
{
return &RC_CHK_ACCESS(maps)->refcnt;
}
#ifdef HAVE_LIBUNWIND_SUPPORT
void *maps__addr_space(const struct maps *maps)
{
return RC_CHK_ACCESS(maps)->addr_space;
}
void maps__set_addr_space(struct maps *maps, void *addr_space)
{
RC_CHK_ACCESS(maps)->addr_space = addr_space;
}
const struct unwind_libunwind_ops *maps__unwind_libunwind_ops(const struct maps *maps)
{
return RC_CHK_ACCESS(maps)->unwind_libunwind_ops;
}
void maps__set_unwind_libunwind_ops(struct maps *maps, const struct unwind_libunwind_ops *ops)
{
RC_CHK_ACCESS(maps)->unwind_libunwind_ops = ops;
}
#endif
static struct rw_semaphore *maps__lock(struct maps *maps)
{
return &RC_CHK_ACCESS(maps)->lock;
}
static void maps__init(struct maps *maps, struct machine *machine)
{
init_rwsem(maps__lock(maps));
RC_CHK_ACCESS(maps)->maps_by_address = NULL;
RC_CHK_ACCESS(maps)->maps_by_name = NULL;
RC_CHK_ACCESS(maps)->machine = machine;
#ifdef HAVE_LIBUNWIND_SUPPORT
RC_CHK_ACCESS(maps)->addr_space = NULL;
RC_CHK_ACCESS(maps)->unwind_libunwind_ops = NULL;
#endif
refcount_set(maps__refcnt(maps), 1);
RC_CHK_ACCESS(maps)->nr_maps = 0;
RC_CHK_ACCESS(maps)->nr_maps_allocated = 0;
RC_CHK_ACCESS(maps)->last_search_by_name_idx = 0;
RC_CHK_ACCESS(maps)->maps_by_address_sorted = true;
RC_CHK_ACCESS(maps)->maps_by_name_sorted = false;
}
static void maps__exit(struct maps *maps)
{
struct map **maps_by_address = maps__maps_by_address(maps);
struct map **maps_by_name = maps__maps_by_name(maps);
for (unsigned int i = 0; i < maps__nr_maps(maps); i++) {
map__zput(maps_by_address[i]);
if (maps_by_name)
map__zput(maps_by_name[i]);
}
zfree(&maps_by_address);
zfree(&maps_by_name);
unwind__finish_access(maps);
}
struct maps *maps__new(struct machine *machine)
{
struct maps *result;
RC_STRUCT(maps) *maps = zalloc(sizeof(*maps));
if (ADD_RC_CHK(result, maps))
maps__init(result, machine);
return result;
}
static void maps__delete(struct maps *maps)
{
maps__exit(maps);
RC_CHK_FREE(maps);
}
struct maps *maps__get(struct maps *maps)
{
struct maps *result;
if (RC_CHK_GET(result, maps))
refcount_inc(maps__refcnt(maps));
return result;
}
void maps__put(struct maps *maps)
{
if (maps && refcount_dec_and_test(maps__refcnt(maps)))
maps__delete(maps);
else
RC_CHK_PUT(maps);
}
static void __maps__free_maps_by_name(struct maps *maps)
{
/*
* Free everything to try to do it from the rbtree in the next search
*/
for (unsigned int i = 0; i < maps__nr_maps(maps); i++)
map__put(maps__maps_by_name(maps)[i]);
zfree(&RC_CHK_ACCESS(maps)->maps_by_name);
}
static int map__start_cmp(const void *a, const void *b)
{
const struct map *map_a = *(const struct map * const *)a;
const struct map *map_b = *(const struct map * const *)b;
u64 map_a_start = map__start(map_a);
u64 map_b_start = map__start(map_b);
if (map_a_start == map_b_start) {
u64 map_a_end = map__end(map_a);
u64 map_b_end = map__end(map_b);
if (map_a_end == map_b_end) {
/* Ensure maps with the same addresses have a fixed order. */
if (RC_CHK_ACCESS(map_a) == RC_CHK_ACCESS(map_b))
return 0;
return (intptr_t)RC_CHK_ACCESS(map_a) > (intptr_t)RC_CHK_ACCESS(map_b)
? 1 : -1;
}
return map_a_end > map_b_end ? 1 : -1;
}
return map_a_start > map_b_start ? 1 : -1;
}
static void __maps__sort_by_address(struct maps *maps)
{
if (maps__maps_by_address_sorted(maps))
return;
qsort(maps__maps_by_address(maps),
maps__nr_maps(maps),
sizeof(struct map *),
map__start_cmp);
maps__set_maps_by_address_sorted(maps, true);
}
static void maps__sort_by_address(struct maps *maps)
{
down_write(maps__lock(maps));
__maps__sort_by_address(maps);
up_write(maps__lock(maps));
}
static int map__strcmp(const void *a, const void *b)
{
const struct map *map_a = *(const struct map * const *)a;
const struct map *map_b = *(const struct map * const *)b;
const struct dso *dso_a = map__dso(map_a);
const struct dso *dso_b = map__dso(map_b);
int ret = strcmp(dso_a->short_name, dso_b->short_name);
if (ret == 0 && RC_CHK_ACCESS(map_a) != RC_CHK_ACCESS(map_b)) {
/* Ensure distinct but name equal maps have an order. */
return map__start_cmp(a, b);
}
return ret;
}
static int maps__sort_by_name(struct maps *maps)
{
int err = 0;
down_write(maps__lock(maps));
if (!maps__maps_by_name_sorted(maps)) {
struct map **maps_by_name = maps__maps_by_name(maps);
if (!maps_by_name) {
maps_by_name = malloc(RC_CHK_ACCESS(maps)->nr_maps_allocated *
sizeof(*maps_by_name));
if (!maps_by_name)
err = -ENOMEM;
else {
struct map **maps_by_address = maps__maps_by_address(maps);
unsigned int n = maps__nr_maps(maps);
maps__set_maps_by_name(maps, maps_by_name);
for (unsigned int i = 0; i < n; i++)
maps_by_name[i] = map__get(maps_by_address[i]);
}
}
if (!err) {
qsort(maps_by_name,
maps__nr_maps(maps),
sizeof(struct map *),
map__strcmp);
maps__set_maps_by_name_sorted(maps, true);
}
}
check_invariants(maps);
up_write(maps__lock(maps));
return err;
}
static unsigned int maps__by_address_index(const struct maps *maps, const struct map *map)
{
struct map **maps_by_address = maps__maps_by_address(maps);
if (maps__maps_by_address_sorted(maps)) {
struct map **mapp =
bsearch(&map, maps__maps_by_address(maps), maps__nr_maps(maps),
sizeof(*mapp), map__start_cmp);
if (mapp)
return mapp - maps_by_address;
} else {
for (unsigned int i = 0; i < maps__nr_maps(maps); i++) {
if (RC_CHK_ACCESS(maps_by_address[i]) == RC_CHK_ACCESS(map))
return i;
}
}
pr_err("Map missing from maps");
return -1;
}
static unsigned int maps__by_name_index(const struct maps *maps, const struct map *map)
{
struct map **maps_by_name = maps__maps_by_name(maps);
if (maps__maps_by_name_sorted(maps)) {
struct map **mapp =
bsearch(&map, maps_by_name, maps__nr_maps(maps),
sizeof(*mapp), map__strcmp);
if (mapp)
return mapp - maps_by_name;
} else {
for (unsigned int i = 0; i < maps__nr_maps(maps); i++) {
if (RC_CHK_ACCESS(maps_by_name[i]) == RC_CHK_ACCESS(map))
return i;
}
}
pr_err("Map missing from maps");
return -1;
}
static int __maps__insert(struct maps *maps, struct map *new)
{
struct map **maps_by_address = maps__maps_by_address(maps);
struct map **maps_by_name = maps__maps_by_name(maps);
const struct dso *dso = map__dso(new);
unsigned int nr_maps = maps__nr_maps(maps);
unsigned int nr_allocate = RC_CHK_ACCESS(maps)->nr_maps_allocated;
if (nr_maps + 1 > nr_allocate) {
nr_allocate = !nr_allocate ? 32 : nr_allocate * 2;
maps_by_address = realloc(maps_by_address, nr_allocate * sizeof(new));
if (!maps_by_address)
return -ENOMEM;
maps__set_maps_by_address(maps, maps_by_address);
if (maps_by_name) {
maps_by_name = realloc(maps_by_name, nr_allocate * sizeof(new));
if (!maps_by_name) {
/*
* If by name fails, just disable by name and it will
* recompute next time it is required.
*/
__maps__free_maps_by_name(maps);
}
maps__set_maps_by_name(maps, maps_by_name);
}
RC_CHK_ACCESS(maps)->nr_maps_allocated = nr_allocate;
}
/* Insert the value at the end. */
maps_by_address[nr_maps] = map__get(new);
if (maps_by_name)
maps_by_name[nr_maps] = map__get(new);
nr_maps++;
RC_CHK_ACCESS(maps)->nr_maps = nr_maps;
/*
* Recompute if things are sorted. If things are inserted in a sorted
* manner, for example by processing /proc/pid/maps, then no
* sorting/resorting will be necessary.
*/
if (nr_maps == 1) {
/* If there's just 1 entry then maps are sorted. */
maps__set_maps_by_address_sorted(maps, true);
maps__set_maps_by_name_sorted(maps, maps_by_name != NULL);
} else {
/* Sorted if maps were already sorted and this map starts after the last one. */
maps__set_maps_by_address_sorted(maps,
maps__maps_by_address_sorted(maps) &&
map__end(maps_by_address[nr_maps - 2]) <= map__start(new));
maps__set_maps_by_name_sorted(maps, false);
}
if (map__end(new) < map__start(new))
RC_CHK_ACCESS(maps)->ends_broken = true;
if (dso && dso->kernel) {
struct kmap *kmap = map__kmap(new);
if (kmap)
kmap->kmaps = maps;
else
pr_err("Internal error: kernel dso with non kernel map\n");
}
return 0;
}
int maps__insert(struct maps *maps, struct map *map)
{
int ret;
down_write(maps__lock(maps));
ret = __maps__insert(maps, map);
check_invariants(maps);
up_write(maps__lock(maps));
return ret;
}
static void __maps__remove(struct maps *maps, struct map *map)
{
struct map **maps_by_address = maps__maps_by_address(maps);
struct map **maps_by_name = maps__maps_by_name(maps);
unsigned int nr_maps = maps__nr_maps(maps);
unsigned int address_idx;
/* Slide later mappings over the one to remove */
address_idx = maps__by_address_index(maps, map);
map__put(maps_by_address[address_idx]);
memmove(&maps_by_address[address_idx],
&maps_by_address[address_idx + 1],
(nr_maps - address_idx - 1) * sizeof(*maps_by_address));
if (maps_by_name) {
unsigned int name_idx = maps__by_name_index(maps, map);
map__put(maps_by_name[name_idx]);
memmove(&maps_by_name[name_idx],
&maps_by_name[name_idx + 1],
(nr_maps - name_idx - 1) * sizeof(*maps_by_name));
}
--RC_CHK_ACCESS(maps)->nr_maps;
}
void maps__remove(struct maps *maps, struct map *map)
{
down_write(maps__lock(maps));
__maps__remove(maps, map);
check_invariants(maps);
up_write(maps__lock(maps));
}
bool maps__empty(struct maps *maps)
{
bool res;
down_read(maps__lock(maps));
res = maps__nr_maps(maps) == 0;
up_read(maps__lock(maps));
return res;
}
bool maps__equal(struct maps *a, struct maps *b)
{
return RC_CHK_EQUAL(a, b);
}
int maps__for_each_map(struct maps *maps, int (*cb)(struct map *map, void *data), void *data)
{
bool done = false;
int ret = 0;
/* See locking/sorting note. */
while (!done) {
down_read(maps__lock(maps));
if (maps__maps_by_address_sorted(maps)) {
/*
* maps__for_each_map callbacks may buggily/unsafely
* insert into maps_by_address. Deliberately reload
* maps__nr_maps and maps_by_address on each iteration
* to avoid using memory freed by maps__insert growing
* the array - this may cause maps to be skipped or
* repeated.
*/
for (unsigned int i = 0; i < maps__nr_maps(maps); i++) {
struct map **maps_by_address = maps__maps_by_address(maps);
struct map *map = maps_by_address[i];
ret = cb(map, data);
if (ret)
break;
}
done = true;
}
up_read(maps__lock(maps));
if (!done)
maps__sort_by_address(maps);
}
return ret;
}
void maps__remove_maps(struct maps *maps, bool (*cb)(struct map *map, void *data), void *data)
{
struct map **maps_by_address;
down_write(maps__lock(maps));
maps_by_address = maps__maps_by_address(maps);
for (unsigned int i = 0; i < maps__nr_maps(maps);) {
if (cb(maps_by_address[i], data))
__maps__remove(maps, maps_by_address[i]);
else
i++;
}
check_invariants(maps);
up_write(maps__lock(maps));
}
struct symbol *maps__find_symbol(struct maps *maps, u64 addr, struct map **mapp)
{
struct map *map = maps__find(maps, addr);
struct symbol *result = NULL;
/* Ensure map is loaded before using map->map_ip */
if (map != NULL && map__load(map) >= 0)
result = map__find_symbol(map, map__map_ip(map, addr));
if (mapp)
*mapp = map;
else
map__put(map);
return result;
}
struct maps__find_symbol_by_name_args {
struct map **mapp;
const char *name;
struct symbol *sym;
};
static int maps__find_symbol_by_name_cb(struct map *map, void *data)
{
struct maps__find_symbol_by_name_args *args = data;
args->sym = map__find_symbol_by_name(map, args->name);
if (!args->sym)
return 0;
if (!map__contains_symbol(map, args->sym)) {
args->sym = NULL;
return 0;
}
if (args->mapp != NULL)
*args->mapp = map__get(map);
return 1;
}
struct symbol *maps__find_symbol_by_name(struct maps *maps, const char *name, struct map **mapp)
{
struct maps__find_symbol_by_name_args args = {
.mapp = mapp,
.name = name,
.sym = NULL,
};
maps__for_each_map(maps, maps__find_symbol_by_name_cb, &args);
return args.sym;
}
int maps__find_ams(struct maps *maps, struct addr_map_symbol *ams)
{
if (ams->addr < map__start(ams->ms.map) || ams->addr >= map__end(ams->ms.map)) {
if (maps == NULL)
return -1;
ams->ms.map = maps__find(maps, ams->addr);
if (ams->ms.map == NULL)
return -1;
}
ams->al_addr = map__map_ip(ams->ms.map, ams->addr);
ams->ms.sym = map__find_symbol(ams->ms.map, ams->al_addr);
return ams->ms.sym ? 0 : -1;
}
struct maps__fprintf_args {
FILE *fp;
size_t printed;
};
static int maps__fprintf_cb(struct map *map, void *data)
{
struct maps__fprintf_args *args = data;
args->printed += fprintf(args->fp, "Map:");
args->printed += map__fprintf(map, args->fp);
if (verbose > 2) {
args->printed += dso__fprintf(map__dso(map), args->fp);
args->printed += fprintf(args->fp, "--\n");
}
return 0;
}
size_t maps__fprintf(struct maps *maps, FILE *fp)
{
struct maps__fprintf_args args = {
.fp = fp,
.printed = 0,
};
maps__for_each_map(maps, maps__fprintf_cb, &args);
return args.printed;
}
/*
* Find first map where end > map->start.
* Same as find_vma() in kernel.
*/
static unsigned int first_ending_after(struct maps *maps, const struct map *map)
{
struct map **maps_by_address = maps__maps_by_address(maps);
int low = 0, high = (int)maps__nr_maps(maps) - 1, first = high + 1;
assert(maps__maps_by_address_sorted(maps));
if (low <= high && map__end(maps_by_address[0]) > map__start(map))
return 0;
while (low <= high) {
int mid = (low + high) / 2;
struct map *pos = maps_by_address[mid];
if (map__end(pos) > map__start(map)) {
first = mid;
if (map__start(pos) <= map__start(map)) {
/* Entry overlaps map. */
break;
}
high = mid - 1;
} else
low = mid + 1;
}
return first;
}
/*
* Adds new to maps, if new overlaps existing entries then the existing maps are
* adjusted or removed so that new fits without overlapping any entries.
*/
static int __maps__fixup_overlap_and_insert(struct maps *maps, struct map *new)
{
struct map **maps_by_address;
int err = 0;
FILE *fp = debug_file();
sort_again:
if (!maps__maps_by_address_sorted(maps))
__maps__sort_by_address(maps);
maps_by_address = maps__maps_by_address(maps);
/*
* Iterate through entries where the end of the existing entry is
* greater-than the new map's start.
*/
for (unsigned int i = first_ending_after(maps, new); i < maps__nr_maps(maps); ) {
struct map *pos = maps_by_address[i];
struct map *before = NULL, *after = NULL;
/*
* Stop if current map starts after map->end.
* Maps are ordered by start: next will not overlap for sure.
*/
if (map__start(pos) >= map__end(new))
break;
if (use_browser) {
pr_debug("overlapping maps in %s (disable tui for more info)\n",
map__dso(new)->name);
} else if (verbose >= 2) {
pr_debug("overlapping maps:\n");
map__fprintf(new, fp);
map__fprintf(pos, fp);
}
/*
* Now check if we need to create new maps for areas not
* overlapped by the new map:
*/
if (map__start(new) > map__start(pos)) {
/* Map starts within existing map. Need to shorten the existing map. */
before = map__clone(pos);
if (before == NULL) {
err = -ENOMEM;
goto out_err;
}
map__set_end(before, map__start(new));
if (verbose >= 2 && !use_browser)
map__fprintf(before, fp);
}
if (map__end(new) < map__end(pos)) {
/* The new map isn't as long as the existing map. */
after = map__clone(pos);
if (after == NULL) {
map__zput(before);
err = -ENOMEM;
goto out_err;
}
map__set_start(after, map__end(new));
map__add_pgoff(after, map__end(new) - map__start(pos));
assert(map__map_ip(pos, map__end(new)) ==
map__map_ip(after, map__end(new)));
if (verbose >= 2 && !use_browser)
map__fprintf(after, fp);
}
/*
* If adding one entry, for `before` or `after`, we can replace
* the existing entry. If both `before` and `after` are
* necessary than an insert is needed. If the existing entry
* entirely overlaps the existing entry it can just be removed.
*/
if (before) {
map__put(maps_by_address[i]);
maps_by_address[i] = before;
/* Maps are still ordered, go to next one. */
i++;
if (after) {
__maps__insert(maps, after);
map__put(after);
if (!maps__maps_by_address_sorted(maps)) {
/*
* Sorting broken so invariants don't
* hold, sort and go again.
*/
goto sort_again;
}
/*
* Maps are still ordered, skip after and go to
* next one (terminate loop).
*/
i++;
}
} else if (after) {
map__put(maps_by_address[i]);
maps_by_address[i] = after;
/* Maps are ordered, go to next one. */
i++;
} else {
__maps__remove(maps, pos);
/*
* Maps are ordered but no need to increase `i` as the
* later maps were moved down.
*/
}
check_invariants(maps);
}
/* Add the map. */
__maps__insert(maps, new);
out_err:
return err;
}
int maps__fixup_overlap_and_insert(struct maps *maps, struct map *new)
{
int err;
down_write(maps__lock(maps));
err = __maps__fixup_overlap_and_insert(maps, new);
up_write(maps__lock(maps));
return err;
}
int maps__copy_from(struct maps *dest, struct maps *parent)
{
/* Note, if struct map were immutable then cloning could use ref counts. */
struct map **parent_maps_by_address;
int err = 0;
unsigned int n;
down_write(maps__lock(dest));
down_read(maps__lock(parent));
parent_maps_by_address = maps__maps_by_address(parent);
n = maps__nr_maps(parent);
if (maps__nr_maps(dest) == 0) {
/* No existing mappings so just copy from parent to avoid reallocs in insert. */
unsigned int nr_maps_allocated = RC_CHK_ACCESS(parent)->nr_maps_allocated;
struct map **dest_maps_by_address =
malloc(nr_maps_allocated * sizeof(struct map *));
struct map **dest_maps_by_name = NULL;
if (!dest_maps_by_address)
err = -ENOMEM;
else {
if (maps__maps_by_name(parent)) {
dest_maps_by_name =
malloc(nr_maps_allocated * sizeof(struct map *));
}
RC_CHK_ACCESS(dest)->maps_by_address = dest_maps_by_address;
RC_CHK_ACCESS(dest)->maps_by_name = dest_maps_by_name;
RC_CHK_ACCESS(dest)->nr_maps_allocated = nr_maps_allocated;
}
for (unsigned int i = 0; !err && i < n; i++) {
struct map *pos = parent_maps_by_address[i];
struct map *new = map__clone(pos);
if (!new)
err = -ENOMEM;
else {
err = unwind__prepare_access(dest, new, NULL);
if (!err) {
dest_maps_by_address[i] = new;
if (dest_maps_by_name)
dest_maps_by_name[i] = map__get(new);
RC_CHK_ACCESS(dest)->nr_maps = i + 1;
}
}
if (err)
map__put(new);
}
maps__set_maps_by_address_sorted(dest, maps__maps_by_address_sorted(parent));
if (!err) {
RC_CHK_ACCESS(dest)->last_search_by_name_idx =
RC_CHK_ACCESS(parent)->last_search_by_name_idx;
maps__set_maps_by_name_sorted(dest,
dest_maps_by_name &&
maps__maps_by_name_sorted(parent));
} else {
RC_CHK_ACCESS(dest)->last_search_by_name_idx = 0;
maps__set_maps_by_name_sorted(dest, false);
}
} else {
/* Unexpected copying to a maps containing entries. */
for (unsigned int i = 0; !err && i < n; i++) {
struct map *pos = parent_maps_by_address[i];
struct map *new = map__clone(pos);
if (!new)
err = -ENOMEM;
else {
err = unwind__prepare_access(dest, new, NULL);
if (!err)
err = __maps__insert(dest, new);
}
map__put(new);
}
}
check_invariants(dest);
up_read(maps__lock(parent));
up_write(maps__lock(dest));
return err;
}
static int map__addr_cmp(const void *key, const void *entry)
{
const u64 ip = *(const u64 *)key;
const struct map *map = *(const struct map * const *)entry;
if (ip < map__start(map))
return -1;
if (ip >= map__end(map))
return 1;
return 0;
}
struct map *maps__find(struct maps *maps, u64 ip)
{
struct map *result = NULL;
bool done = false;
/* See locking/sorting note. */
while (!done) {
down_read(maps__lock(maps));
if (maps__maps_by_address_sorted(maps)) {
struct map **mapp =
bsearch(&ip, maps__maps_by_address(maps), maps__nr_maps(maps),
sizeof(*mapp), map__addr_cmp);
if (mapp)
result = map__get(*mapp);
done = true;
}
up_read(maps__lock(maps));
if (!done)
maps__sort_by_address(maps);
}
return result;
}
static int map__strcmp_name(const void *name, const void *b)
{
const struct dso *dso = map__dso(*(const struct map **)b);
return strcmp(name, dso->short_name);
}
struct map *maps__find_by_name(struct maps *maps, const char *name)
{
struct map *result = NULL;
bool done = false;
/* See locking/sorting note. */
while (!done) {
unsigned int i;
down_read(maps__lock(maps));
/* First check last found entry. */
i = RC_CHK_ACCESS(maps)->last_search_by_name_idx;
if (i < maps__nr_maps(maps) && maps__maps_by_name(maps)) {
struct dso *dso = map__dso(maps__maps_by_name(maps)[i]);
if (dso && strcmp(dso->short_name, name) == 0) {
result = map__get(maps__maps_by_name(maps)[i]);
done = true;
}
}
/* Second search sorted array. */
if (!done && maps__maps_by_name_sorted(maps)) {
struct map **mapp =
bsearch(name, maps__maps_by_name(maps), maps__nr_maps(maps),
sizeof(*mapp), map__strcmp_name);
if (mapp) {
result = map__get(*mapp);
i = mapp - maps__maps_by_name(maps);
RC_CHK_ACCESS(maps)->last_search_by_name_idx = i;
}
done = true;
}
up_read(maps__lock(maps));
if (!done) {
/* Sort and retry binary search. */
if (maps__sort_by_name(maps)) {
/*
* Memory allocation failed do linear search
* through address sorted maps.
*/
struct map **maps_by_address;
unsigned int n;
down_read(maps__lock(maps));
maps_by_address = maps__maps_by_address(maps);
n = maps__nr_maps(maps);
for (i = 0; i < n; i++) {
struct map *pos = maps_by_address[i];
struct dso *dso = map__dso(pos);
if (dso && strcmp(dso->short_name, name) == 0) {
result = map__get(pos);
break;
}
}
up_read(maps__lock(maps));
done = true;
}
}
}
return result;
}
struct map *maps__find_next_entry(struct maps *maps, struct map *map)
{
unsigned int i;
struct map *result = NULL;
down_read(maps__lock(maps));
i = maps__by_address_index(maps, map);
if (i < maps__nr_maps(maps))
result = map__get(maps__maps_by_address(maps)[i]);
up_read(maps__lock(maps));
return result;
}
void maps__fixup_end(struct maps *maps)
{
struct map **maps_by_address;
unsigned int n;
down_write(maps__lock(maps));
if (!maps__maps_by_address_sorted(maps))
__maps__sort_by_address(maps);
maps_by_address = maps__maps_by_address(maps);
n = maps__nr_maps(maps);
for (unsigned int i = 1; i < n; i++) {
struct map *prev = maps_by_address[i - 1];
struct map *curr = maps_by_address[i];
if (!map__end(prev) || map__end(prev) > map__start(curr))
map__set_end(prev, map__start(curr));
}
/*
* We still haven't the actual symbols, so guess the
* last map final address.
*/
if (n > 0 && !map__end(maps_by_address[n - 1]))
map__set_end(maps_by_address[n - 1], ~0ULL);
RC_CHK_ACCESS(maps)->ends_broken = false;
check_invariants(maps);
up_write(maps__lock(maps));
}
/*
* Merges map into maps by splitting the new map within the existing map
* regions.
*/
int maps__merge_in(struct maps *kmaps, struct map *new_map)
{
unsigned int first_after_, kmaps__nr_maps;
struct map **kmaps_maps_by_address;
struct map **merged_maps_by_address;
unsigned int merged_nr_maps_allocated;
/* First try under a read lock. */
while (true) {
down_read(maps__lock(kmaps));
if (maps__maps_by_address_sorted(kmaps))
break;
up_read(maps__lock(kmaps));
/* First after binary search requires sorted maps. Sort and try again. */
maps__sort_by_address(kmaps);
}
first_after_ = first_ending_after(kmaps, new_map);
kmaps_maps_by_address = maps__maps_by_address(kmaps);
if (first_after_ >= maps__nr_maps(kmaps) ||
map__start(kmaps_maps_by_address[first_after_]) >= map__end(new_map)) {
/* No overlap so regular insert suffices. */
up_read(maps__lock(kmaps));
return maps__insert(kmaps, new_map);
}
up_read(maps__lock(kmaps));
/* Plain insert with a read-lock failed, try again now with the write lock. */
down_write(maps__lock(kmaps));
if (!maps__maps_by_address_sorted(kmaps))
__maps__sort_by_address(kmaps);
first_after_ = first_ending_after(kmaps, new_map);
kmaps_maps_by_address = maps__maps_by_address(kmaps);
kmaps__nr_maps = maps__nr_maps(kmaps);
if (first_after_ >= kmaps__nr_maps ||
map__start(kmaps_maps_by_address[first_after_]) >= map__end(new_map)) {
/* No overlap so regular insert suffices. */
int ret = __maps__insert(kmaps, new_map);
check_invariants(kmaps);
up_write(maps__lock(kmaps));
return ret;
}
/* Array to merge into, possibly 1 more for the sake of new_map. */
merged_nr_maps_allocated = RC_CHK_ACCESS(kmaps)->nr_maps_allocated;
if (kmaps__nr_maps + 1 == merged_nr_maps_allocated)
merged_nr_maps_allocated++;
merged_maps_by_address = malloc(merged_nr_maps_allocated * sizeof(*merged_maps_by_address));
if (!merged_maps_by_address) {
up_write(maps__lock(kmaps));
return -ENOMEM;
}
maps__set_maps_by_address(kmaps, merged_maps_by_address);
maps__set_maps_by_address_sorted(kmaps, true);
zfree(maps__maps_by_name_addr(kmaps));
maps__set_maps_by_name_sorted(kmaps, true);
maps__set_nr_maps_allocated(kmaps, merged_nr_maps_allocated);
/* Copy entries before the new_map that can't overlap. */
for (unsigned int i = 0; i < first_after_; i++)
merged_maps_by_address[i] = map__get(kmaps_maps_by_address[i]);
maps__set_nr_maps(kmaps, first_after_);
/* Add the new map, it will be split when the later overlapping mappings are added. */
__maps__insert(kmaps, new_map);
/* Insert mappings after new_map, splitting new_map in the process. */
for (unsigned int i = first_after_; i < kmaps__nr_maps; i++)
__maps__fixup_overlap_and_insert(kmaps, kmaps_maps_by_address[i]);
/* Copy the maps from merged into kmaps. */
for (unsigned int i = 0; i < kmaps__nr_maps; i++)
map__zput(kmaps_maps_by_address[i]);
free(kmaps_maps_by_address);
check_invariants(kmaps);
up_write(maps__lock(kmaps));
return 0;
}
void maps__load_first(struct maps *maps)
{
down_read(maps__lock(maps));
if (maps__nr_maps(maps) > 0)
map__load(maps__maps_by_address(maps)[0]);
up_read(maps__lock(maps));
}