linux/drivers/gpu/drm/i915/i915_sysfs.c
Ben Widawsky 3ccfd19dea drm/i915: Do remaps for all contexts
On both Ivybridge and Haswell, row remapping information is saved and
restored with context. This means, we never actually properly supported
the l3 remapping because our sysfs interface is asynchronous (and not
tied to any context), and the known faulty HW would be reused by the
next context to run.

Not that due to the asynchronous nature of the sysfs entry, there is no
point modifying the registers for the existing context. Instead we set a
flag for all contexts to load the correct remapping information on the
next run. Interested clients can use debugfs to determine whether or not
the row has been remapped.

One could propose at this point that we just do the remapping in the
kernel. I guess since we have to maintain the sysfs interface anyway,
I'm not sure how useful it is, and I do like keeping the policy in
userspace; (it wasn't my original decision to make the
interface the way it is, so I'm not attached).

v2: Force a context switch when we have a remap on the next switch.
(Ville)
Don't let userspace use the interface with disabled contexts.

v3: Don't force a context switch, just let it nop
Improper context slice remap initialization, 1<<1 instead of 1<<i, but I
rewrote it to avoid a second round of confusion.
Error print moved to error path (All Ville)
Added a comment on why the slice remap initialization happens.

CC: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-09-19 20:39:56 +02:00

568 lines
16 KiB
C

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Ben Widawsky <ben@bwidawsk.net>
*
*/
#include <linux/device.h>
#include <linux/module.h>
#include <linux/stat.h>
#include <linux/sysfs.h>
#include "intel_drv.h"
#include "i915_drv.h"
#ifdef CONFIG_PM
static u32 calc_residency(struct drm_device *dev, const u32 reg)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u64 raw_time; /* 32b value may overflow during fixed point math */
if (!intel_enable_rc6(dev))
return 0;
raw_time = I915_READ(reg) * 128ULL;
return DIV_ROUND_UP_ULL(raw_time, 100000);
}
static ssize_t
show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
{
struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev));
}
static ssize_t
show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
{
struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6);
return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
}
static ssize_t
show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
{
struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p);
return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
}
static ssize_t
show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
{
struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp);
return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
}
static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
static struct attribute *rc6_attrs[] = {
&dev_attr_rc6_enable.attr,
&dev_attr_rc6_residency_ms.attr,
&dev_attr_rc6p_residency_ms.attr,
&dev_attr_rc6pp_residency_ms.attr,
NULL
};
static struct attribute_group rc6_attr_group = {
.name = power_group_name,
.attrs = rc6_attrs
};
#endif
static int l3_access_valid(struct drm_device *dev, loff_t offset)
{
if (!HAS_L3_GPU_CACHE(dev))
return -EPERM;
if (offset % 4 != 0)
return -EINVAL;
if (offset >= GEN7_L3LOG_SIZE)
return -ENXIO;
return 0;
}
static ssize_t
i915_l3_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t offset, size_t count)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct drm_minor *dminor = container_of(dev, struct drm_minor, kdev);
struct drm_device *drm_dev = dminor->dev;
struct drm_i915_private *dev_priv = drm_dev->dev_private;
int slice = (int)(uintptr_t)attr->private;
int ret;
count = round_down(count, 4);
ret = l3_access_valid(drm_dev, offset);
if (ret)
return ret;
count = min_t(int, GEN7_L3LOG_SIZE-offset, count);
ret = i915_mutex_lock_interruptible(drm_dev);
if (ret)
return ret;
if (dev_priv->l3_parity.remap_info[slice])
memcpy(buf,
dev_priv->l3_parity.remap_info[slice] + (offset/4),
count);
else
memset(buf, 0, count);
mutex_unlock(&drm_dev->struct_mutex);
return count;
}
static ssize_t
i915_l3_write(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t offset, size_t count)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct drm_minor *dminor = container_of(dev, struct drm_minor, kdev);
struct drm_device *drm_dev = dminor->dev;
struct drm_i915_private *dev_priv = drm_dev->dev_private;
struct i915_hw_context *ctx;
u32 *temp = NULL; /* Just here to make handling failures easy */
int slice = (int)(uintptr_t)attr->private;
int ret;
ret = l3_access_valid(drm_dev, offset);
if (ret)
return ret;
if (dev_priv->hw_contexts_disabled)
return -ENXIO;
ret = i915_mutex_lock_interruptible(drm_dev);
if (ret)
return ret;
if (!dev_priv->l3_parity.remap_info[slice]) {
temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
if (!temp) {
mutex_unlock(&drm_dev->struct_mutex);
return -ENOMEM;
}
}
ret = i915_gpu_idle(drm_dev);
if (ret) {
kfree(temp);
mutex_unlock(&drm_dev->struct_mutex);
return ret;
}
/* TODO: Ideally we really want a GPU reset here to make sure errors
* aren't propagated. Since I cannot find a stable way to reset the GPU
* at this point it is left as a TODO.
*/
if (temp)
dev_priv->l3_parity.remap_info[slice] = temp;
memcpy(dev_priv->l3_parity.remap_info[slice] + (offset/4), buf, count);
/* NB: We defer the remapping until we switch to the context */
list_for_each_entry(ctx, &dev_priv->context_list, link)
ctx->remap_slice |= (1<<slice);
mutex_unlock(&drm_dev->struct_mutex);
return count;
}
static struct bin_attribute dpf_attrs = {
.attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
.size = GEN7_L3LOG_SIZE,
.read = i915_l3_read,
.write = i915_l3_write,
.mmap = NULL,
.private = (void *)0
};
static struct bin_attribute dpf_attrs_1 = {
.attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)},
.size = GEN7_L3LOG_SIZE,
.read = i915_l3_read,
.write = i915_l3_write,
.mmap = NULL,
.private = (void *)1
};
static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
struct device_attribute *attr, char *buf)
{
struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
struct drm_device *dev = minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
mutex_lock(&dev_priv->rps.hw_lock);
if (IS_VALLEYVIEW(dev_priv->dev)) {
u32 freq;
freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
ret = vlv_gpu_freq(dev_priv->mem_freq, (freq >> 8) & 0xff);
} else {
ret = dev_priv->rps.cur_delay * GT_FREQUENCY_MULTIPLIER;
}
mutex_unlock(&dev_priv->rps.hw_lock);
return snprintf(buf, PAGE_SIZE, "%d\n", ret);
}
static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev,
struct device_attribute *attr, char *buf)
{
struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
struct drm_device *dev = minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
return snprintf(buf, PAGE_SIZE, "%d\n",
vlv_gpu_freq(dev_priv->mem_freq,
dev_priv->rps.rpe_delay));
}
static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
{
struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
struct drm_device *dev = minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
mutex_lock(&dev_priv->rps.hw_lock);
if (IS_VALLEYVIEW(dev_priv->dev))
ret = vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.max_delay);
else
ret = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER;
mutex_unlock(&dev_priv->rps.hw_lock);
return snprintf(buf, PAGE_SIZE, "%d\n", ret);
}
static ssize_t gt_max_freq_mhz_store(struct device *kdev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
struct drm_device *dev = minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, rp_state_cap, hw_max, hw_min, non_oc_max;
ssize_t ret;
ret = kstrtou32(buf, 0, &val);
if (ret)
return ret;
mutex_lock(&dev_priv->rps.hw_lock);
if (IS_VALLEYVIEW(dev_priv->dev)) {
val = vlv_freq_opcode(dev_priv->mem_freq, val);
hw_max = valleyview_rps_max_freq(dev_priv);
hw_min = valleyview_rps_min_freq(dev_priv);
non_oc_max = hw_max;
} else {
val /= GT_FREQUENCY_MULTIPLIER;
rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
hw_max = dev_priv->rps.hw_max;
non_oc_max = (rp_state_cap & 0xff);
hw_min = ((rp_state_cap & 0xff0000) >> 16);
}
if (val < hw_min || val > hw_max ||
val < dev_priv->rps.min_delay) {
mutex_unlock(&dev_priv->rps.hw_lock);
return -EINVAL;
}
if (val > non_oc_max)
DRM_DEBUG("User requested overclocking to %d\n",
val * GT_FREQUENCY_MULTIPLIER);
if (dev_priv->rps.cur_delay > val) {
if (IS_VALLEYVIEW(dev_priv->dev))
valleyview_set_rps(dev_priv->dev, val);
else
gen6_set_rps(dev_priv->dev, val);
}
dev_priv->rps.max_delay = val;
mutex_unlock(&dev_priv->rps.hw_lock);
return count;
}
static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
{
struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
struct drm_device *dev = minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
mutex_lock(&dev_priv->rps.hw_lock);
if (IS_VALLEYVIEW(dev_priv->dev))
ret = vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.min_delay);
else
ret = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER;
mutex_unlock(&dev_priv->rps.hw_lock);
return snprintf(buf, PAGE_SIZE, "%d\n", ret);
}
static ssize_t gt_min_freq_mhz_store(struct device *kdev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
struct drm_device *dev = minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, rp_state_cap, hw_max, hw_min;
ssize_t ret;
ret = kstrtou32(buf, 0, &val);
if (ret)
return ret;
mutex_lock(&dev_priv->rps.hw_lock);
if (IS_VALLEYVIEW(dev)) {
val = vlv_freq_opcode(dev_priv->mem_freq, val);
hw_max = valleyview_rps_max_freq(dev_priv);
hw_min = valleyview_rps_min_freq(dev_priv);
} else {
val /= GT_FREQUENCY_MULTIPLIER;
rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
hw_max = dev_priv->rps.hw_max;
hw_min = ((rp_state_cap & 0xff0000) >> 16);
}
if (val < hw_min || val > hw_max || val > dev_priv->rps.max_delay) {
mutex_unlock(&dev_priv->rps.hw_lock);
return -EINVAL;
}
if (dev_priv->rps.cur_delay < val) {
if (IS_VALLEYVIEW(dev))
valleyview_set_rps(dev, val);
else
gen6_set_rps(dev_priv->dev, val);
}
dev_priv->rps.min_delay = val;
mutex_unlock(&dev_priv->rps.hw_lock);
return count;
}
static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL);
static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
/* For now we have a static number of RP states */
static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
{
struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
struct drm_device *dev = minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, rp_state_cap;
ssize_t ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
mutex_unlock(&dev->struct_mutex);
if (attr == &dev_attr_gt_RP0_freq_mhz) {
val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER;
} else if (attr == &dev_attr_gt_RP1_freq_mhz) {
val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER;
} else if (attr == &dev_attr_gt_RPn_freq_mhz) {
val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER;
} else {
BUG();
}
return snprintf(buf, PAGE_SIZE, "%d\n", val);
}
static const struct attribute *gen6_attrs[] = {
&dev_attr_gt_cur_freq_mhz.attr,
&dev_attr_gt_max_freq_mhz.attr,
&dev_attr_gt_min_freq_mhz.attr,
&dev_attr_gt_RP0_freq_mhz.attr,
&dev_attr_gt_RP1_freq_mhz.attr,
&dev_attr_gt_RPn_freq_mhz.attr,
NULL,
};
static const struct attribute *vlv_attrs[] = {
&dev_attr_gt_cur_freq_mhz.attr,
&dev_attr_gt_max_freq_mhz.attr,
&dev_attr_gt_min_freq_mhz.attr,
&dev_attr_vlv_rpe_freq_mhz.attr,
NULL,
};
static ssize_t error_state_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t off, size_t count)
{
struct device *kdev = container_of(kobj, struct device, kobj);
struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
struct drm_device *dev = minor->dev;
struct i915_error_state_file_priv error_priv;
struct drm_i915_error_state_buf error_str;
ssize_t ret_count = 0;
int ret;
memset(&error_priv, 0, sizeof(error_priv));
ret = i915_error_state_buf_init(&error_str, count, off);
if (ret)
return ret;
error_priv.dev = dev;
i915_error_state_get(dev, &error_priv);
ret = i915_error_state_to_str(&error_str, &error_priv);
if (ret)
goto out;
ret_count = count < error_str.bytes ? count : error_str.bytes;
memcpy(buf, error_str.buf, ret_count);
out:
i915_error_state_put(&error_priv);
i915_error_state_buf_release(&error_str);
return ret ?: ret_count;
}
static ssize_t error_state_write(struct file *file, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t off, size_t count)
{
struct device *kdev = container_of(kobj, struct device, kobj);
struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
struct drm_device *dev = minor->dev;
int ret;
DRM_DEBUG_DRIVER("Resetting error state\n");
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
i915_destroy_error_state(dev);
mutex_unlock(&dev->struct_mutex);
return count;
}
static struct bin_attribute error_state_attr = {
.attr.name = "error",
.attr.mode = S_IRUSR | S_IWUSR,
.size = 0,
.read = error_state_read,
.write = error_state_write,
};
void i915_setup_sysfs(struct drm_device *dev)
{
int ret;
#ifdef CONFIG_PM
if (INTEL_INFO(dev)->gen >= 6) {
ret = sysfs_merge_group(&dev->primary->kdev.kobj,
&rc6_attr_group);
if (ret)
DRM_ERROR("RC6 residency sysfs setup failed\n");
}
#endif
if (HAS_L3_GPU_CACHE(dev)) {
ret = device_create_bin_file(&dev->primary->kdev, &dpf_attrs);
if (ret)
DRM_ERROR("l3 parity sysfs setup failed\n");
if (NUM_L3_SLICES(dev) > 1) {
ret = device_create_bin_file(&dev->primary->kdev,
&dpf_attrs_1);
if (ret)
DRM_ERROR("l3 parity slice 1 setup failed\n");
}
}
ret = 0;
if (IS_VALLEYVIEW(dev))
ret = sysfs_create_files(&dev->primary->kdev.kobj, vlv_attrs);
else if (INTEL_INFO(dev)->gen >= 6)
ret = sysfs_create_files(&dev->primary->kdev.kobj, gen6_attrs);
if (ret)
DRM_ERROR("RPS sysfs setup failed\n");
ret = sysfs_create_bin_file(&dev->primary->kdev.kobj,
&error_state_attr);
if (ret)
DRM_ERROR("error_state sysfs setup failed\n");
}
void i915_teardown_sysfs(struct drm_device *dev)
{
sysfs_remove_bin_file(&dev->primary->kdev.kobj, &error_state_attr);
if (IS_VALLEYVIEW(dev))
sysfs_remove_files(&dev->primary->kdev.kobj, vlv_attrs);
else
sysfs_remove_files(&dev->primary->kdev.kobj, gen6_attrs);
device_remove_bin_file(&dev->primary->kdev, &dpf_attrs_1);
device_remove_bin_file(&dev->primary->kdev, &dpf_attrs);
#ifdef CONFIG_PM
sysfs_unmerge_group(&dev->primary->kdev.kobj, &rc6_attr_group);
#endif
}