linux/drivers/media/rc/ir-rcmm-decoder.c
YueHaibing 3c73b8a40d media: rc: remove unused including <linux/version.h>
Remove including <linux/version.h> that don't need it.

Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Sean Young <sean@mess.org>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
2019-03-19 16:45:25 -04:00

254 lines
5.2 KiB
C

// SPDX-License-Identifier: GPL-2.0+
// ir-rcmm-decoder.c - A decoder for the RCMM IR protocol
//
// Copyright (C) 2018 by Patrick Lerda <patrick9876@free.fr>
#include "rc-core-priv.h"
#include <linux/module.h>
#define RCMM_UNIT 166667 /* nanosecs */
#define RCMM_PREFIX_PULSE 416666 /* 166666.666666666*2.5 */
#define RCMM_PULSE_0 277777 /* 166666.666666666*(1+2/3) */
#define RCMM_PULSE_1 444444 /* 166666.666666666*(2+2/3) */
#define RCMM_PULSE_2 611111 /* 166666.666666666*(3+2/3) */
#define RCMM_PULSE_3 777778 /* 166666.666666666*(4+2/3) */
enum rcmm_state {
STATE_INACTIVE,
STATE_LOW,
STATE_BUMP,
STATE_VALUE,
STATE_FINISHED,
};
static bool rcmm_mode(const struct rcmm_dec *data)
{
return !((0x000c0000 & data->bits) == 0x000c0000);
}
static int rcmm_miscmode(struct rc_dev *dev, struct rcmm_dec *data)
{
switch (data->count) {
case 24:
if (dev->enabled_protocols & RC_PROTO_BIT_RCMM24) {
rc_keydown(dev, RC_PROTO_RCMM24, data->bits, 0);
data->state = STATE_INACTIVE;
return 0;
}
return -1;
case 12:
if (dev->enabled_protocols & RC_PROTO_BIT_RCMM12) {
rc_keydown(dev, RC_PROTO_RCMM12, data->bits, 0);
data->state = STATE_INACTIVE;
return 0;
}
return -1;
}
return -1;
}
/**
* ir_rcmm_decode() - Decode one RCMM pulse or space
* @dev: the struct rc_dev descriptor of the device
* @ev: the struct ir_raw_event descriptor of the pulse/space
*
* This function returns -EINVAL if the pulse violates the state machine
*/
static int ir_rcmm_decode(struct rc_dev *dev, struct ir_raw_event ev)
{
struct rcmm_dec *data = &dev->raw->rcmm;
u32 scancode;
u8 toggle;
int value;
if (!(dev->enabled_protocols & (RC_PROTO_BIT_RCMM32 |
RC_PROTO_BIT_RCMM24 |
RC_PROTO_BIT_RCMM12)))
return 0;
if (!is_timing_event(ev)) {
if (ev.reset)
data->state = STATE_INACTIVE;
return 0;
}
switch (data->state) {
case STATE_INACTIVE:
if (!ev.pulse)
break;
if (!eq_margin(ev.duration, RCMM_PREFIX_PULSE, RCMM_UNIT / 2))
break;
data->state = STATE_LOW;
data->count = 0;
data->bits = 0;
return 0;
case STATE_LOW:
if (ev.pulse)
break;
if (!eq_margin(ev.duration, RCMM_PULSE_0, RCMM_UNIT / 2))
break;
data->state = STATE_BUMP;
return 0;
case STATE_BUMP:
if (!ev.pulse)
break;
if (!eq_margin(ev.duration, RCMM_UNIT, RCMM_UNIT / 2))
break;
data->state = STATE_VALUE;
return 0;
case STATE_VALUE:
if (ev.pulse)
break;
if (eq_margin(ev.duration, RCMM_PULSE_0, RCMM_UNIT / 2))
value = 0;
else if (eq_margin(ev.duration, RCMM_PULSE_1, RCMM_UNIT / 2))
value = 1;
else if (eq_margin(ev.duration, RCMM_PULSE_2, RCMM_UNIT / 2))
value = 2;
else if (eq_margin(ev.duration, RCMM_PULSE_3, RCMM_UNIT / 2))
value = 3;
else
value = -1;
if (value == -1) {
if (!rcmm_miscmode(dev, data))
return 0;
break;
}
data->bits <<= 2;
data->bits |= value;
data->count += 2;
if (data->count < 32)
data->state = STATE_BUMP;
else
data->state = STATE_FINISHED;
return 0;
case STATE_FINISHED:
if (!ev.pulse)
break;
if (!eq_margin(ev.duration, RCMM_UNIT, RCMM_UNIT / 2))
break;
if (rcmm_mode(data)) {
toggle = !!(0x8000 & data->bits);
scancode = data->bits & ~0x8000;
} else {
toggle = 0;
scancode = data->bits;
}
if (dev->enabled_protocols & RC_PROTO_BIT_RCMM32) {
rc_keydown(dev, RC_PROTO_RCMM32, scancode, toggle);
data->state = STATE_INACTIVE;
return 0;
}
break;
}
data->state = STATE_INACTIVE;
return -EINVAL;
}
static const int rcmmspace[] = {
RCMM_PULSE_0,
RCMM_PULSE_1,
RCMM_PULSE_2,
RCMM_PULSE_3,
};
static int ir_rcmm_rawencoder(struct ir_raw_event **ev, unsigned int max,
unsigned int n, u32 data)
{
int i;
int ret;
ret = ir_raw_gen_pulse_space(ev, &max, RCMM_PREFIX_PULSE, RCMM_PULSE_0);
if (ret)
return ret;
for (i = n - 2; i >= 0; i -= 2) {
const unsigned int space = rcmmspace[(data >> i) & 3];
ret = ir_raw_gen_pulse_space(ev, &max, RCMM_UNIT, space);
if (ret)
return ret;
}
return ir_raw_gen_pulse_space(ev, &max, RCMM_UNIT, RCMM_PULSE_3 * 2);
}
static int ir_rcmm_encode(enum rc_proto protocol, u32 scancode,
struct ir_raw_event *events, unsigned int max)
{
struct ir_raw_event *e = events;
int ret;
switch (protocol) {
case RC_PROTO_RCMM32:
ret = ir_rcmm_rawencoder(&e, max, 32, scancode);
break;
case RC_PROTO_RCMM24:
ret = ir_rcmm_rawencoder(&e, max, 24, scancode);
break;
case RC_PROTO_RCMM12:
ret = ir_rcmm_rawencoder(&e, max, 12, scancode);
break;
default:
ret = -EINVAL;
}
if (ret < 0)
return ret;
return e - events;
}
static struct ir_raw_handler rcmm_handler = {
.protocols = RC_PROTO_BIT_RCMM32 |
RC_PROTO_BIT_RCMM24 |
RC_PROTO_BIT_RCMM12,
.decode = ir_rcmm_decode,
.encode = ir_rcmm_encode,
.carrier = 36000,
.min_timeout = RCMM_PULSE_3 + RCMM_UNIT,
};
static int __init ir_rcmm_decode_init(void)
{
ir_raw_handler_register(&rcmm_handler);
pr_info("IR RCMM protocol handler initialized\n");
return 0;
}
static void __exit ir_rcmm_decode_exit(void)
{
ir_raw_handler_unregister(&rcmm_handler);
}
module_init(ir_rcmm_decode_init);
module_exit(ir_rcmm_decode_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Patrick Lerda");
MODULE_DESCRIPTION("RCMM IR protocol decoder");