linux/drivers/infiniband/hw/hns/hns_roce_hem.c
Xi Wang 3c873161a0 RDMA/hns: Add support for addressing when hopnum is 0
Currently, WQE and EQE table have already used the mtr interface to config
and access memory by multi-hop addressing when hopnum is from 1 to 3. But
if hopnum is 0, each table need write its own but repetitive logic, and
many duplicate code exists in the mtr interfaces invoke process.

So wraps the public logic as 3 functions: hns_roce_mtr_create(),
hns_roce_mtr_destroy() and hns_roce_mtr_map() to support hopnum ranges from
0 to 3. In addition, makes the mtr interfaces easier to use.

Link: https://lore.kernel.org/r/1586779091-51410-2-git-send-email-liweihang@huawei.com
Signed-off-by: Xi Wang <wangxi11@huawei.com>
Signed-off-by: Weihang Li <liweihang@huawei.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2020-04-22 15:59:53 -03:00

1608 lines
41 KiB
C

/*
* Copyright (c) 2016 Hisilicon Limited.
* Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/platform_device.h>
#include "hns_roce_device.h"
#include "hns_roce_hem.h"
#include "hns_roce_common.h"
#define DMA_ADDR_T_SHIFT 12
#define BT_BA_SHIFT 32
#define HEM_INDEX_BUF BIT(0)
#define HEM_INDEX_L0 BIT(1)
#define HEM_INDEX_L1 BIT(2)
struct hns_roce_hem_index {
u64 buf;
u64 l0;
u64 l1;
u32 inited; /* indicate which index is available */
};
bool hns_roce_check_whether_mhop(struct hns_roce_dev *hr_dev, u32 type)
{
int hop_num = 0;
switch (type) {
case HEM_TYPE_QPC:
hop_num = hr_dev->caps.qpc_hop_num;
break;
case HEM_TYPE_MTPT:
hop_num = hr_dev->caps.mpt_hop_num;
break;
case HEM_TYPE_CQC:
hop_num = hr_dev->caps.cqc_hop_num;
break;
case HEM_TYPE_SRQC:
hop_num = hr_dev->caps.srqc_hop_num;
break;
case HEM_TYPE_SCCC:
hop_num = hr_dev->caps.sccc_hop_num;
break;
case HEM_TYPE_QPC_TIMER:
hop_num = hr_dev->caps.qpc_timer_hop_num;
break;
case HEM_TYPE_CQC_TIMER:
hop_num = hr_dev->caps.cqc_timer_hop_num;
break;
case HEM_TYPE_CQE:
hop_num = hr_dev->caps.cqe_hop_num;
break;
case HEM_TYPE_MTT:
hop_num = hr_dev->caps.mtt_hop_num;
break;
case HEM_TYPE_SRQWQE:
hop_num = hr_dev->caps.srqwqe_hop_num;
break;
case HEM_TYPE_IDX:
hop_num = hr_dev->caps.idx_hop_num;
break;
default:
return false;
}
return hop_num ? true : false;
}
static bool hns_roce_check_hem_null(struct hns_roce_hem **hem, u64 hem_idx,
u32 bt_chunk_num, u64 hem_max_num)
{
u64 start_idx = round_down(hem_idx, bt_chunk_num);
u64 check_max_num = start_idx + bt_chunk_num;
u64 i;
for (i = start_idx; (i < check_max_num) && (i < hem_max_num); i++)
if (i != hem_idx && hem[i])
return false;
return true;
}
static bool hns_roce_check_bt_null(u64 **bt, u64 ba_idx, u32 bt_chunk_num)
{
u64 start_idx = round_down(ba_idx, bt_chunk_num);
int i;
for (i = 0; i < bt_chunk_num; i++)
if (i != ba_idx && bt[start_idx + i])
return false;
return true;
}
static int hns_roce_get_bt_num(u32 table_type, u32 hop_num)
{
if (check_whether_bt_num_3(table_type, hop_num))
return 3;
else if (check_whether_bt_num_2(table_type, hop_num))
return 2;
else if (check_whether_bt_num_1(table_type, hop_num))
return 1;
else
return 0;
}
static int get_hem_table_config(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_mhop *mhop,
u32 type)
{
struct device *dev = hr_dev->dev;
switch (type) {
case HEM_TYPE_QPC:
mhop->buf_chunk_size = 1 << (hr_dev->caps.qpc_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.qpc_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = hr_dev->caps.qpc_bt_num;
mhop->hop_num = hr_dev->caps.qpc_hop_num;
break;
case HEM_TYPE_MTPT:
mhop->buf_chunk_size = 1 << (hr_dev->caps.mpt_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.mpt_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = hr_dev->caps.mpt_bt_num;
mhop->hop_num = hr_dev->caps.mpt_hop_num;
break;
case HEM_TYPE_CQC:
mhop->buf_chunk_size = 1 << (hr_dev->caps.cqc_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.cqc_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = hr_dev->caps.cqc_bt_num;
mhop->hop_num = hr_dev->caps.cqc_hop_num;
break;
case HEM_TYPE_SCCC:
mhop->buf_chunk_size = 1 << (hr_dev->caps.sccc_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.sccc_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = hr_dev->caps.sccc_bt_num;
mhop->hop_num = hr_dev->caps.sccc_hop_num;
break;
case HEM_TYPE_QPC_TIMER:
mhop->buf_chunk_size = 1 << (hr_dev->caps.qpc_timer_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.qpc_timer_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = hr_dev->caps.qpc_timer_bt_num;
mhop->hop_num = hr_dev->caps.qpc_timer_hop_num;
break;
case HEM_TYPE_CQC_TIMER:
mhop->buf_chunk_size = 1 << (hr_dev->caps.cqc_timer_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.cqc_timer_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = hr_dev->caps.cqc_timer_bt_num;
mhop->hop_num = hr_dev->caps.cqc_timer_hop_num;
break;
case HEM_TYPE_SRQC:
mhop->buf_chunk_size = 1 << (hr_dev->caps.srqc_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.srqc_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = hr_dev->caps.srqc_bt_num;
mhop->hop_num = hr_dev->caps.srqc_hop_num;
break;
case HEM_TYPE_MTT:
mhop->buf_chunk_size = 1 << (hr_dev->caps.mtt_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.mtt_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = mhop->bt_chunk_size / BA_BYTE_LEN;
mhop->hop_num = hr_dev->caps.mtt_hop_num;
break;
case HEM_TYPE_CQE:
mhop->buf_chunk_size = 1 << (hr_dev->caps.cqe_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.cqe_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = mhop->bt_chunk_size / BA_BYTE_LEN;
mhop->hop_num = hr_dev->caps.cqe_hop_num;
break;
case HEM_TYPE_SRQWQE:
mhop->buf_chunk_size = 1 << (hr_dev->caps.srqwqe_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.srqwqe_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = mhop->bt_chunk_size / BA_BYTE_LEN;
mhop->hop_num = hr_dev->caps.srqwqe_hop_num;
break;
case HEM_TYPE_IDX:
mhop->buf_chunk_size = 1 << (hr_dev->caps.idx_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.idx_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = mhop->bt_chunk_size / BA_BYTE_LEN;
mhop->hop_num = hr_dev->caps.idx_hop_num;
break;
default:
dev_err(dev, "Table %d not support multi-hop addressing!\n",
type);
return -EINVAL;
}
return 0;
}
int hns_roce_calc_hem_mhop(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table, unsigned long *obj,
struct hns_roce_hem_mhop *mhop)
{
struct device *dev = hr_dev->dev;
u32 chunk_ba_num;
u32 table_idx;
u32 bt_num;
u32 chunk_size;
if (get_hem_table_config(hr_dev, mhop, table->type))
return -EINVAL;
if (!obj)
return 0;
/*
* QPC/MTPT/CQC/SRQC/SCCC alloc hem for buffer pages.
* MTT/CQE alloc hem for bt pages.
*/
bt_num = hns_roce_get_bt_num(table->type, mhop->hop_num);
chunk_ba_num = mhop->bt_chunk_size / BA_BYTE_LEN;
chunk_size = table->type < HEM_TYPE_MTT ? mhop->buf_chunk_size :
mhop->bt_chunk_size;
table_idx = (*obj & (table->num_obj - 1)) /
(chunk_size / table->obj_size);
switch (bt_num) {
case 3:
mhop->l2_idx = table_idx & (chunk_ba_num - 1);
mhop->l1_idx = table_idx / chunk_ba_num & (chunk_ba_num - 1);
mhop->l0_idx = (table_idx / chunk_ba_num) / chunk_ba_num;
break;
case 2:
mhop->l1_idx = table_idx & (chunk_ba_num - 1);
mhop->l0_idx = table_idx / chunk_ba_num;
break;
case 1:
mhop->l0_idx = table_idx;
break;
default:
dev_err(dev, "Table %d not support hop_num = %d!\n",
table->type, mhop->hop_num);
return -EINVAL;
}
if (mhop->l0_idx >= mhop->ba_l0_num)
mhop->l0_idx %= mhop->ba_l0_num;
return 0;
}
static struct hns_roce_hem *hns_roce_alloc_hem(struct hns_roce_dev *hr_dev,
int npages,
unsigned long hem_alloc_size,
gfp_t gfp_mask)
{
struct hns_roce_hem_chunk *chunk = NULL;
struct hns_roce_hem *hem;
struct scatterlist *mem;
int order;
void *buf;
WARN_ON(gfp_mask & __GFP_HIGHMEM);
hem = kmalloc(sizeof(*hem),
gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN));
if (!hem)
return NULL;
hem->refcount = 0;
INIT_LIST_HEAD(&hem->chunk_list);
order = get_order(hem_alloc_size);
while (npages > 0) {
if (!chunk) {
chunk = kmalloc(sizeof(*chunk),
gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN));
if (!chunk)
goto fail;
sg_init_table(chunk->mem, HNS_ROCE_HEM_CHUNK_LEN);
chunk->npages = 0;
chunk->nsg = 0;
memset(chunk->buf, 0, sizeof(chunk->buf));
list_add_tail(&chunk->list, &hem->chunk_list);
}
while (1 << order > npages)
--order;
/*
* Alloc memory one time. If failed, don't alloc small block
* memory, directly return fail.
*/
mem = &chunk->mem[chunk->npages];
buf = dma_alloc_coherent(hr_dev->dev, PAGE_SIZE << order,
&sg_dma_address(mem), gfp_mask);
if (!buf)
goto fail;
chunk->buf[chunk->npages] = buf;
sg_dma_len(mem) = PAGE_SIZE << order;
++chunk->npages;
++chunk->nsg;
npages -= 1 << order;
}
return hem;
fail:
hns_roce_free_hem(hr_dev, hem);
return NULL;
}
void hns_roce_free_hem(struct hns_roce_dev *hr_dev, struct hns_roce_hem *hem)
{
struct hns_roce_hem_chunk *chunk, *tmp;
int i;
if (!hem)
return;
list_for_each_entry_safe(chunk, tmp, &hem->chunk_list, list) {
for (i = 0; i < chunk->npages; ++i)
dma_free_coherent(hr_dev->dev,
sg_dma_len(&chunk->mem[i]),
chunk->buf[i],
sg_dma_address(&chunk->mem[i]));
kfree(chunk);
}
kfree(hem);
}
static int hns_roce_set_hem(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table, unsigned long obj)
{
spinlock_t *lock = &hr_dev->bt_cmd_lock;
struct device *dev = hr_dev->dev;
long end;
unsigned long flags;
struct hns_roce_hem_iter iter;
void __iomem *bt_cmd;
__le32 bt_cmd_val[2];
__le32 bt_cmd_h = 0;
__le32 bt_cmd_l = 0;
u64 bt_ba = 0;
int ret = 0;
/* Find the HEM(Hardware Entry Memory) entry */
unsigned long i = (obj & (table->num_obj - 1)) /
(table->table_chunk_size / table->obj_size);
switch (table->type) {
case HEM_TYPE_QPC:
case HEM_TYPE_MTPT:
case HEM_TYPE_CQC:
case HEM_TYPE_SRQC:
roce_set_field(bt_cmd_h, ROCEE_BT_CMD_H_ROCEE_BT_CMD_MDF_M,
ROCEE_BT_CMD_H_ROCEE_BT_CMD_MDF_S, table->type);
break;
default:
return ret;
}
roce_set_field(bt_cmd_h, ROCEE_BT_CMD_H_ROCEE_BT_CMD_IN_MDF_M,
ROCEE_BT_CMD_H_ROCEE_BT_CMD_IN_MDF_S, obj);
roce_set_bit(bt_cmd_h, ROCEE_BT_CMD_H_ROCEE_BT_CMD_S, 0);
roce_set_bit(bt_cmd_h, ROCEE_BT_CMD_H_ROCEE_BT_CMD_HW_SYNS_S, 1);
/* Currently iter only a chunk */
for (hns_roce_hem_first(table->hem[i], &iter);
!hns_roce_hem_last(&iter); hns_roce_hem_next(&iter)) {
bt_ba = hns_roce_hem_addr(&iter) >> DMA_ADDR_T_SHIFT;
spin_lock_irqsave(lock, flags);
bt_cmd = hr_dev->reg_base + ROCEE_BT_CMD_H_REG;
end = HW_SYNC_TIMEOUT_MSECS;
while (end > 0) {
if (!(readl(bt_cmd) >> BT_CMD_SYNC_SHIFT))
break;
mdelay(HW_SYNC_SLEEP_TIME_INTERVAL);
end -= HW_SYNC_SLEEP_TIME_INTERVAL;
}
if (end <= 0) {
dev_err(dev, "Write bt_cmd err,hw_sync is not zero.\n");
spin_unlock_irqrestore(lock, flags);
return -EBUSY;
}
bt_cmd_l = cpu_to_le32(bt_ba);
roce_set_field(bt_cmd_h, ROCEE_BT_CMD_H_ROCEE_BT_CMD_BA_H_M,
ROCEE_BT_CMD_H_ROCEE_BT_CMD_BA_H_S,
bt_ba >> BT_BA_SHIFT);
bt_cmd_val[0] = bt_cmd_l;
bt_cmd_val[1] = bt_cmd_h;
hns_roce_write64_k(bt_cmd_val,
hr_dev->reg_base + ROCEE_BT_CMD_L_REG);
spin_unlock_irqrestore(lock, flags);
}
return ret;
}
static int calc_hem_config(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table, unsigned long obj,
struct hns_roce_hem_mhop *mhop,
struct hns_roce_hem_index *index)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
unsigned long mhop_obj = obj;
u32 l0_idx, l1_idx, l2_idx;
u32 chunk_ba_num;
u32 bt_num;
int ret;
ret = hns_roce_calc_hem_mhop(hr_dev, table, &mhop_obj, mhop);
if (ret)
return ret;
l0_idx = mhop->l0_idx;
l1_idx = mhop->l1_idx;
l2_idx = mhop->l2_idx;
chunk_ba_num = mhop->bt_chunk_size / BA_BYTE_LEN;
bt_num = hns_roce_get_bt_num(table->type, mhop->hop_num);
switch (bt_num) {
case 3:
index->l1 = l0_idx * chunk_ba_num + l1_idx;
index->l0 = l0_idx;
index->buf = l0_idx * chunk_ba_num * chunk_ba_num +
l1_idx * chunk_ba_num + l2_idx;
break;
case 2:
index->l0 = l0_idx;
index->buf = l0_idx * chunk_ba_num + l1_idx;
break;
case 1:
index->buf = l0_idx;
break;
default:
ibdev_err(ibdev, "Table %d not support mhop.hop_num = %d!\n",
table->type, mhop->hop_num);
return -EINVAL;
}
if (unlikely(index->buf >= table->num_hem)) {
ibdev_err(ibdev, "Table %d exceed hem limt idx %llu,max %lu!\n",
table->type, index->buf, table->num_hem);
return -EINVAL;
}
return 0;
}
static void free_mhop_hem(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table,
struct hns_roce_hem_mhop *mhop,
struct hns_roce_hem_index *index)
{
u32 bt_size = mhop->bt_chunk_size;
struct device *dev = hr_dev->dev;
if (index->inited & HEM_INDEX_BUF) {
hns_roce_free_hem(hr_dev, table->hem[index->buf]);
table->hem[index->buf] = NULL;
}
if (index->inited & HEM_INDEX_L1) {
dma_free_coherent(dev, bt_size, table->bt_l1[index->l1],
table->bt_l1_dma_addr[index->l1]);
table->bt_l1[index->l1] = NULL;
}
if (index->inited & HEM_INDEX_L0) {
dma_free_coherent(dev, bt_size, table->bt_l0[index->l0],
table->bt_l0_dma_addr[index->l0]);
table->bt_l0[index->l0] = NULL;
}
}
static int alloc_mhop_hem(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table,
struct hns_roce_hem_mhop *mhop,
struct hns_roce_hem_index *index)
{
u32 bt_size = mhop->bt_chunk_size;
struct device *dev = hr_dev->dev;
struct hns_roce_hem_iter iter;
gfp_t flag;
u64 bt_ba;
u32 size;
int ret;
/* alloc L1 BA's chunk */
if ((check_whether_bt_num_3(table->type, mhop->hop_num) ||
check_whether_bt_num_2(table->type, mhop->hop_num)) &&
!table->bt_l0[index->l0]) {
table->bt_l0[index->l0] = dma_alloc_coherent(dev, bt_size,
&table->bt_l0_dma_addr[index->l0],
GFP_KERNEL);
if (!table->bt_l0[index->l0]) {
ret = -ENOMEM;
goto out;
}
index->inited |= HEM_INDEX_L0;
}
/* alloc L2 BA's chunk */
if (check_whether_bt_num_3(table->type, mhop->hop_num) &&
!table->bt_l1[index->l1]) {
table->bt_l1[index->l1] = dma_alloc_coherent(dev, bt_size,
&table->bt_l1_dma_addr[index->l1],
GFP_KERNEL);
if (!table->bt_l1[index->l1]) {
ret = -ENOMEM;
goto err_alloc_hem;
}
index->inited |= HEM_INDEX_L1;
*(table->bt_l0[index->l0] + mhop->l1_idx) =
table->bt_l1_dma_addr[index->l1];
}
/*
* alloc buffer space chunk for QPC/MTPT/CQC/SRQC/SCCC.
* alloc bt space chunk for MTT/CQE.
*/
size = table->type < HEM_TYPE_MTT ? mhop->buf_chunk_size : bt_size;
flag = (table->lowmem ? GFP_KERNEL : GFP_HIGHUSER) | __GFP_NOWARN;
table->hem[index->buf] = hns_roce_alloc_hem(hr_dev, size >> PAGE_SHIFT,
size, flag);
if (!table->hem[index->buf]) {
ret = -ENOMEM;
goto err_alloc_hem;
}
index->inited |= HEM_INDEX_BUF;
hns_roce_hem_first(table->hem[index->buf], &iter);
bt_ba = hns_roce_hem_addr(&iter);
if (table->type < HEM_TYPE_MTT) {
if (mhop->hop_num == 2)
*(table->bt_l1[index->l1] + mhop->l2_idx) = bt_ba;
else if (mhop->hop_num == 1)
*(table->bt_l0[index->l0] + mhop->l1_idx) = bt_ba;
} else if (mhop->hop_num == 2) {
*(table->bt_l0[index->l0] + mhop->l1_idx) = bt_ba;
}
return 0;
err_alloc_hem:
free_mhop_hem(hr_dev, table, mhop, index);
out:
return ret;
}
static int set_mhop_hem(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table, unsigned long obj,
struct hns_roce_hem_mhop *mhop,
struct hns_roce_hem_index *index)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
int step_idx;
int ret = 0;
if (index->inited & HEM_INDEX_L0) {
ret = hr_dev->hw->set_hem(hr_dev, table, obj, 0);
if (ret) {
ibdev_err(ibdev, "set HEM step 0 failed!\n");
goto out;
}
}
if (index->inited & HEM_INDEX_L1) {
ret = hr_dev->hw->set_hem(hr_dev, table, obj, 1);
if (ret) {
ibdev_err(ibdev, "set HEM step 1 failed!\n");
goto out;
}
}
if (index->inited & HEM_INDEX_BUF) {
if (mhop->hop_num == HNS_ROCE_HOP_NUM_0)
step_idx = 0;
else
step_idx = mhop->hop_num;
ret = hr_dev->hw->set_hem(hr_dev, table, obj, step_idx);
if (ret)
ibdev_err(ibdev, "set HEM step last failed!\n");
}
out:
return ret;
}
static int hns_roce_table_mhop_get(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table,
unsigned long obj)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
struct hns_roce_hem_index index = {};
struct hns_roce_hem_mhop mhop = {};
int ret;
ret = calc_hem_config(hr_dev, table, obj, &mhop, &index);
if (ret) {
ibdev_err(ibdev, "calc hem config failed!\n");
return ret;
}
mutex_lock(&table->mutex);
if (table->hem[index.buf]) {
++table->hem[index.buf]->refcount;
goto out;
}
ret = alloc_mhop_hem(hr_dev, table, &mhop, &index);
if (ret) {
ibdev_err(ibdev, "alloc mhop hem failed!\n");
goto out;
}
/* set HEM base address to hardware */
if (table->type < HEM_TYPE_MTT) {
ret = set_mhop_hem(hr_dev, table, obj, &mhop, &index);
if (ret) {
ibdev_err(ibdev, "set HEM address to HW failed!\n");
goto err_alloc;
}
}
++table->hem[index.buf]->refcount;
goto out;
err_alloc:
free_mhop_hem(hr_dev, table, &mhop, &index);
out:
mutex_unlock(&table->mutex);
return ret;
}
int hns_roce_table_get(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table, unsigned long obj)
{
struct device *dev = hr_dev->dev;
int ret = 0;
unsigned long i;
if (hns_roce_check_whether_mhop(hr_dev, table->type))
return hns_roce_table_mhop_get(hr_dev, table, obj);
i = (obj & (table->num_obj - 1)) / (table->table_chunk_size /
table->obj_size);
mutex_lock(&table->mutex);
if (table->hem[i]) {
++table->hem[i]->refcount;
goto out;
}
table->hem[i] = hns_roce_alloc_hem(hr_dev,
table->table_chunk_size >> PAGE_SHIFT,
table->table_chunk_size,
(table->lowmem ? GFP_KERNEL :
GFP_HIGHUSER) | __GFP_NOWARN);
if (!table->hem[i]) {
ret = -ENOMEM;
goto out;
}
/* Set HEM base address(128K/page, pa) to Hardware */
if (hns_roce_set_hem(hr_dev, table, obj)) {
hns_roce_free_hem(hr_dev, table->hem[i]);
table->hem[i] = NULL;
ret = -ENODEV;
dev_err(dev, "set HEM base address to HW failed.\n");
goto out;
}
++table->hem[i]->refcount;
out:
mutex_unlock(&table->mutex);
return ret;
}
static void clear_mhop_hem(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table, unsigned long obj,
struct hns_roce_hem_mhop *mhop,
struct hns_roce_hem_index *index)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
u32 hop_num = mhop->hop_num;
u32 chunk_ba_num;
int step_idx;
index->inited = HEM_INDEX_BUF;
chunk_ba_num = mhop->bt_chunk_size / BA_BYTE_LEN;
if (check_whether_bt_num_2(table->type, hop_num)) {
if (hns_roce_check_hem_null(table->hem, index->buf,
chunk_ba_num, table->num_hem))
index->inited |= HEM_INDEX_L0;
} else if (check_whether_bt_num_3(table->type, hop_num)) {
if (hns_roce_check_hem_null(table->hem, index->buf,
chunk_ba_num, table->num_hem)) {
index->inited |= HEM_INDEX_L1;
if (hns_roce_check_bt_null(table->bt_l1, index->l1,
chunk_ba_num))
index->inited |= HEM_INDEX_L0;
}
}
if (table->type < HEM_TYPE_MTT) {
if (hop_num == HNS_ROCE_HOP_NUM_0)
step_idx = 0;
else
step_idx = hop_num;
if (hr_dev->hw->clear_hem(hr_dev, table, obj, step_idx))
ibdev_warn(ibdev, "Clear hop%d HEM failed.\n", hop_num);
if (index->inited & HEM_INDEX_L1)
if (hr_dev->hw->clear_hem(hr_dev, table, obj, 1))
ibdev_warn(ibdev, "Clear HEM step 1 failed.\n");
if (index->inited & HEM_INDEX_L0)
if (hr_dev->hw->clear_hem(hr_dev, table, obj, 0))
ibdev_warn(ibdev, "Clear HEM step 0 failed.\n");
}
}
static void hns_roce_table_mhop_put(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table,
unsigned long obj,
int check_refcount)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
struct hns_roce_hem_index index = {};
struct hns_roce_hem_mhop mhop = {};
int ret;
ret = calc_hem_config(hr_dev, table, obj, &mhop, &index);
if (ret) {
ibdev_err(ibdev, "calc hem config failed!\n");
return;
}
mutex_lock(&table->mutex);
if (check_refcount && (--table->hem[index.buf]->refcount > 0)) {
mutex_unlock(&table->mutex);
return;
}
clear_mhop_hem(hr_dev, table, obj, &mhop, &index);
free_mhop_hem(hr_dev, table, &mhop, &index);
mutex_unlock(&table->mutex);
}
void hns_roce_table_put(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table, unsigned long obj)
{
struct device *dev = hr_dev->dev;
unsigned long i;
if (hns_roce_check_whether_mhop(hr_dev, table->type)) {
hns_roce_table_mhop_put(hr_dev, table, obj, 1);
return;
}
i = (obj & (table->num_obj - 1)) /
(table->table_chunk_size / table->obj_size);
mutex_lock(&table->mutex);
if (--table->hem[i]->refcount == 0) {
/* Clear HEM base address */
if (hr_dev->hw->clear_hem(hr_dev, table, obj, 0))
dev_warn(dev, "Clear HEM base address failed.\n");
hns_roce_free_hem(hr_dev, table->hem[i]);
table->hem[i] = NULL;
}
mutex_unlock(&table->mutex);
}
void *hns_roce_table_find(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table,
unsigned long obj, dma_addr_t *dma_handle)
{
struct hns_roce_hem_chunk *chunk;
struct hns_roce_hem_mhop mhop;
struct hns_roce_hem *hem;
void *addr = NULL;
unsigned long mhop_obj = obj;
unsigned long obj_per_chunk;
unsigned long idx_offset;
int offset, dma_offset;
int length;
int i, j;
u32 hem_idx = 0;
if (!table->lowmem)
return NULL;
mutex_lock(&table->mutex);
if (!hns_roce_check_whether_mhop(hr_dev, table->type)) {
obj_per_chunk = table->table_chunk_size / table->obj_size;
hem = table->hem[(obj & (table->num_obj - 1)) / obj_per_chunk];
idx_offset = (obj & (table->num_obj - 1)) % obj_per_chunk;
dma_offset = offset = idx_offset * table->obj_size;
} else {
u32 seg_size = 64; /* 8 bytes per BA and 8 BA per segment */
if (hns_roce_calc_hem_mhop(hr_dev, table, &mhop_obj, &mhop))
goto out;
/* mtt mhop */
i = mhop.l0_idx;
j = mhop.l1_idx;
if (mhop.hop_num == 2)
hem_idx = i * (mhop.bt_chunk_size / BA_BYTE_LEN) + j;
else if (mhop.hop_num == 1 ||
mhop.hop_num == HNS_ROCE_HOP_NUM_0)
hem_idx = i;
hem = table->hem[hem_idx];
dma_offset = offset = (obj & (table->num_obj - 1)) * seg_size %
mhop.bt_chunk_size;
if (mhop.hop_num == 2)
dma_offset = offset = 0;
}
if (!hem)
goto out;
list_for_each_entry(chunk, &hem->chunk_list, list) {
for (i = 0; i < chunk->npages; ++i) {
length = sg_dma_len(&chunk->mem[i]);
if (dma_handle && dma_offset >= 0) {
if (length > (u32)dma_offset)
*dma_handle = sg_dma_address(
&chunk->mem[i]) + dma_offset;
dma_offset -= length;
}
if (length > (u32)offset) {
addr = chunk->buf[i] + offset;
goto out;
}
offset -= length;
}
}
out:
mutex_unlock(&table->mutex);
return addr;
}
int hns_roce_table_get_range(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table,
unsigned long start, unsigned long end)
{
struct hns_roce_hem_mhop mhop;
unsigned long inc = table->table_chunk_size / table->obj_size;
unsigned long i = 0;
int ret;
if (hns_roce_check_whether_mhop(hr_dev, table->type)) {
ret = hns_roce_calc_hem_mhop(hr_dev, table, NULL, &mhop);
if (ret)
goto fail;
inc = mhop.bt_chunk_size / table->obj_size;
}
/* Allocate MTT entry memory according to chunk(128K) */
for (i = start; i <= end; i += inc) {
ret = hns_roce_table_get(hr_dev, table, i);
if (ret)
goto fail;
}
return 0;
fail:
while (i > start) {
i -= inc;
hns_roce_table_put(hr_dev, table, i);
}
return ret;
}
void hns_roce_table_put_range(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table,
unsigned long start, unsigned long end)
{
struct hns_roce_hem_mhop mhop;
unsigned long inc = table->table_chunk_size / table->obj_size;
unsigned long i;
if (hns_roce_check_whether_mhop(hr_dev, table->type)) {
if (hns_roce_calc_hem_mhop(hr_dev, table, NULL, &mhop))
return;
inc = mhop.bt_chunk_size / table->obj_size;
}
for (i = start; i <= end; i += inc)
hns_roce_table_put(hr_dev, table, i);
}
int hns_roce_init_hem_table(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table, u32 type,
unsigned long obj_size, unsigned long nobj,
int use_lowmem)
{
unsigned long obj_per_chunk;
unsigned long num_hem;
if (!hns_roce_check_whether_mhop(hr_dev, type)) {
table->table_chunk_size = hr_dev->caps.chunk_sz;
obj_per_chunk = table->table_chunk_size / obj_size;
num_hem = (nobj + obj_per_chunk - 1) / obj_per_chunk;
table->hem = kcalloc(num_hem, sizeof(*table->hem), GFP_KERNEL);
if (!table->hem)
return -ENOMEM;
} else {
struct hns_roce_hem_mhop mhop = {};
unsigned long buf_chunk_size;
unsigned long bt_chunk_size;
unsigned long bt_chunk_num;
unsigned long num_bt_l0 = 0;
u32 hop_num;
if (get_hem_table_config(hr_dev, &mhop, type))
return -EINVAL;
buf_chunk_size = mhop.buf_chunk_size;
bt_chunk_size = mhop.bt_chunk_size;
num_bt_l0 = mhop.ba_l0_num;
hop_num = mhop.hop_num;
obj_per_chunk = buf_chunk_size / obj_size;
num_hem = (nobj + obj_per_chunk - 1) / obj_per_chunk;
bt_chunk_num = bt_chunk_size / BA_BYTE_LEN;
if (type >= HEM_TYPE_MTT)
num_bt_l0 = bt_chunk_num;
table->hem = kcalloc(num_hem, sizeof(*table->hem),
GFP_KERNEL);
if (!table->hem)
goto err_kcalloc_hem_buf;
if (check_whether_bt_num_3(type, hop_num)) {
unsigned long num_bt_l1;
num_bt_l1 = (num_hem + bt_chunk_num - 1) /
bt_chunk_num;
table->bt_l1 = kcalloc(num_bt_l1,
sizeof(*table->bt_l1),
GFP_KERNEL);
if (!table->bt_l1)
goto err_kcalloc_bt_l1;
table->bt_l1_dma_addr = kcalloc(num_bt_l1,
sizeof(*table->bt_l1_dma_addr),
GFP_KERNEL);
if (!table->bt_l1_dma_addr)
goto err_kcalloc_l1_dma;
}
if (check_whether_bt_num_2(type, hop_num) ||
check_whether_bt_num_3(type, hop_num)) {
table->bt_l0 = kcalloc(num_bt_l0, sizeof(*table->bt_l0),
GFP_KERNEL);
if (!table->bt_l0)
goto err_kcalloc_bt_l0;
table->bt_l0_dma_addr = kcalloc(num_bt_l0,
sizeof(*table->bt_l0_dma_addr),
GFP_KERNEL);
if (!table->bt_l0_dma_addr)
goto err_kcalloc_l0_dma;
}
}
table->type = type;
table->num_hem = num_hem;
table->num_obj = nobj;
table->obj_size = obj_size;
table->lowmem = use_lowmem;
mutex_init(&table->mutex);
return 0;
err_kcalloc_l0_dma:
kfree(table->bt_l0);
table->bt_l0 = NULL;
err_kcalloc_bt_l0:
kfree(table->bt_l1_dma_addr);
table->bt_l1_dma_addr = NULL;
err_kcalloc_l1_dma:
kfree(table->bt_l1);
table->bt_l1 = NULL;
err_kcalloc_bt_l1:
kfree(table->hem);
table->hem = NULL;
err_kcalloc_hem_buf:
return -ENOMEM;
}
static void hns_roce_cleanup_mhop_hem_table(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table)
{
struct hns_roce_hem_mhop mhop;
u32 buf_chunk_size;
int i;
u64 obj;
if (hns_roce_calc_hem_mhop(hr_dev, table, NULL, &mhop))
return;
buf_chunk_size = table->type < HEM_TYPE_MTT ? mhop.buf_chunk_size :
mhop.bt_chunk_size;
for (i = 0; i < table->num_hem; ++i) {
obj = i * buf_chunk_size / table->obj_size;
if (table->hem[i])
hns_roce_table_mhop_put(hr_dev, table, obj, 0);
}
kfree(table->hem);
table->hem = NULL;
kfree(table->bt_l1);
table->bt_l1 = NULL;
kfree(table->bt_l1_dma_addr);
table->bt_l1_dma_addr = NULL;
kfree(table->bt_l0);
table->bt_l0 = NULL;
kfree(table->bt_l0_dma_addr);
table->bt_l0_dma_addr = NULL;
}
void hns_roce_cleanup_hem_table(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table)
{
struct device *dev = hr_dev->dev;
unsigned long i;
if (hns_roce_check_whether_mhop(hr_dev, table->type)) {
hns_roce_cleanup_mhop_hem_table(hr_dev, table);
return;
}
for (i = 0; i < table->num_hem; ++i)
if (table->hem[i]) {
if (hr_dev->hw->clear_hem(hr_dev, table,
i * table->table_chunk_size / table->obj_size, 0))
dev_err(dev, "Clear HEM base address failed.\n");
hns_roce_free_hem(hr_dev, table->hem[i]);
}
kfree(table->hem);
}
void hns_roce_cleanup_hem(struct hns_roce_dev *hr_dev)
{
if ((hr_dev->caps.num_idx_segs))
hns_roce_cleanup_hem_table(hr_dev,
&hr_dev->mr_table.mtt_idx_table);
if (hr_dev->caps.num_srqwqe_segs)
hns_roce_cleanup_hem_table(hr_dev,
&hr_dev->mr_table.mtt_srqwqe_table);
if (hr_dev->caps.srqc_entry_sz)
hns_roce_cleanup_hem_table(hr_dev,
&hr_dev->srq_table.table);
hns_roce_cleanup_hem_table(hr_dev, &hr_dev->cq_table.table);
if (hr_dev->caps.qpc_timer_entry_sz)
hns_roce_cleanup_hem_table(hr_dev,
&hr_dev->qpc_timer_table);
if (hr_dev->caps.cqc_timer_entry_sz)
hns_roce_cleanup_hem_table(hr_dev,
&hr_dev->cqc_timer_table);
if (hr_dev->caps.sccc_entry_sz)
hns_roce_cleanup_hem_table(hr_dev,
&hr_dev->qp_table.sccc_table);
if (hr_dev->caps.trrl_entry_sz)
hns_roce_cleanup_hem_table(hr_dev,
&hr_dev->qp_table.trrl_table);
hns_roce_cleanup_hem_table(hr_dev, &hr_dev->qp_table.irrl_table);
hns_roce_cleanup_hem_table(hr_dev, &hr_dev->qp_table.qp_table);
hns_roce_cleanup_hem_table(hr_dev, &hr_dev->mr_table.mtpt_table);
if (hns_roce_check_whether_mhop(hr_dev, HEM_TYPE_CQE))
hns_roce_cleanup_hem_table(hr_dev,
&hr_dev->mr_table.mtt_cqe_table);
hns_roce_cleanup_hem_table(hr_dev, &hr_dev->mr_table.mtt_table);
}
struct roce_hem_item {
struct list_head list; /* link all hems in the same bt level */
struct list_head sibling; /* link all hems in last hop for mtt */
void *addr;
dma_addr_t dma_addr;
size_t count; /* max ba numbers */
int start; /* start buf offset in this hem */
int end; /* end buf offset in this hem */
};
static struct roce_hem_item *hem_list_alloc_item(struct hns_roce_dev *hr_dev,
int start, int end,
int count, bool exist_bt,
int bt_level)
{
struct roce_hem_item *hem;
hem = kzalloc(sizeof(*hem), GFP_KERNEL);
if (!hem)
return NULL;
if (exist_bt) {
hem->addr = dma_alloc_coherent(hr_dev->dev,
count * BA_BYTE_LEN,
&hem->dma_addr, GFP_KERNEL);
if (!hem->addr) {
kfree(hem);
return NULL;
}
}
hem->count = count;
hem->start = start;
hem->end = end;
INIT_LIST_HEAD(&hem->list);
INIT_LIST_HEAD(&hem->sibling);
return hem;
}
static void hem_list_free_item(struct hns_roce_dev *hr_dev,
struct roce_hem_item *hem, bool exist_bt)
{
if (exist_bt)
dma_free_coherent(hr_dev->dev, hem->count * BA_BYTE_LEN,
hem->addr, hem->dma_addr);
kfree(hem);
}
static void hem_list_free_all(struct hns_roce_dev *hr_dev,
struct list_head *head, bool exist_bt)
{
struct roce_hem_item *hem, *temp_hem;
list_for_each_entry_safe(hem, temp_hem, head, list) {
list_del(&hem->list);
hem_list_free_item(hr_dev, hem, exist_bt);
}
}
static void hem_list_link_bt(struct hns_roce_dev *hr_dev, void *base_addr,
u64 table_addr)
{
*(u64 *)(base_addr) = table_addr;
}
/* assign L0 table address to hem from root bt */
static void hem_list_assign_bt(struct hns_roce_dev *hr_dev,
struct roce_hem_item *hem, void *cpu_addr,
u64 phy_addr)
{
hem->addr = cpu_addr;
hem->dma_addr = (dma_addr_t)phy_addr;
}
static inline bool hem_list_page_is_in_range(struct roce_hem_item *hem,
int offset)
{
return (hem->start <= offset && offset <= hem->end);
}
static struct roce_hem_item *hem_list_search_item(struct list_head *ba_list,
int page_offset)
{
struct roce_hem_item *hem, *temp_hem;
struct roce_hem_item *found = NULL;
list_for_each_entry_safe(hem, temp_hem, ba_list, list) {
if (hem_list_page_is_in_range(hem, page_offset)) {
found = hem;
break;
}
}
return found;
}
static bool hem_list_is_bottom_bt(int hopnum, int bt_level)
{
/*
* hopnum base address table levels
* 0 L0(buf)
* 1 L0 -> buf
* 2 L0 -> L1 -> buf
* 3 L0 -> L1 -> L2 -> buf
*/
return bt_level >= (hopnum ? hopnum - 1 : hopnum);
}
/**
* calc base address entries num
* @hopnum: num of mutihop addressing
* @bt_level: base address table level
* @unit: ba entries per bt page
*/
static u32 hem_list_calc_ba_range(int hopnum, int bt_level, int unit)
{
u32 step;
int max;
int i;
if (hopnum <= bt_level)
return 0;
/*
* hopnum bt_level range
* 1 0 unit
* ------------
* 2 0 unit * unit
* 2 1 unit
* ------------
* 3 0 unit * unit * unit
* 3 1 unit * unit
* 3 2 unit
*/
step = 1;
max = hopnum - bt_level;
for (i = 0; i < max; i++)
step = step * unit;
return step;
}
/**
* calc the root ba entries which could cover all regions
* @regions: buf region array
* @region_cnt: array size of @regions
* @unit: ba entries per bt page
*/
int hns_roce_hem_list_calc_root_ba(const struct hns_roce_buf_region *regions,
int region_cnt, int unit)
{
struct hns_roce_buf_region *r;
int total = 0;
int step;
int i;
for (i = 0; i < region_cnt; i++) {
r = (struct hns_roce_buf_region *)&regions[i];
if (r->hopnum > 1) {
step = hem_list_calc_ba_range(r->hopnum, 1, unit);
if (step > 0)
total += (r->count + step - 1) / step;
} else {
total += r->count;
}
}
return total;
}
static int hem_list_alloc_mid_bt(struct hns_roce_dev *hr_dev,
const struct hns_roce_buf_region *r, int unit,
int offset, struct list_head *mid_bt,
struct list_head *btm_bt)
{
struct roce_hem_item *hem_ptrs[HNS_ROCE_MAX_BT_LEVEL] = { NULL };
struct list_head temp_list[HNS_ROCE_MAX_BT_LEVEL];
struct roce_hem_item *cur, *pre;
const int hopnum = r->hopnum;
int start_aligned;
int distance;
int ret = 0;
int max_ofs;
int level;
u32 step;
int end;
if (hopnum <= 1)
return 0;
if (hopnum > HNS_ROCE_MAX_BT_LEVEL) {
dev_err(hr_dev->dev, "invalid hopnum %d!\n", hopnum);
return -EINVAL;
}
if (offset < r->offset) {
dev_err(hr_dev->dev, "invalid offset %d,min %d!\n",
offset, r->offset);
return -EINVAL;
}
distance = offset - r->offset;
max_ofs = r->offset + r->count - 1;
for (level = 0; level < hopnum; level++)
INIT_LIST_HEAD(&temp_list[level]);
/* config L1 bt to last bt and link them to corresponding parent */
for (level = 1; level < hopnum; level++) {
cur = hem_list_search_item(&mid_bt[level], offset);
if (cur) {
hem_ptrs[level] = cur;
continue;
}
step = hem_list_calc_ba_range(hopnum, level, unit);
if (step < 1) {
ret = -EINVAL;
goto err_exit;
}
start_aligned = (distance / step) * step + r->offset;
end = min_t(int, start_aligned + step - 1, max_ofs);
cur = hem_list_alloc_item(hr_dev, start_aligned, end, unit,
true, level);
if (!cur) {
ret = -ENOMEM;
goto err_exit;
}
hem_ptrs[level] = cur;
list_add(&cur->list, &temp_list[level]);
if (hem_list_is_bottom_bt(hopnum, level))
list_add(&cur->sibling, &temp_list[0]);
/* link bt to parent bt */
if (level > 1) {
pre = hem_ptrs[level - 1];
step = (cur->start - pre->start) / step * BA_BYTE_LEN;
hem_list_link_bt(hr_dev, pre->addr + step,
cur->dma_addr);
}
}
list_splice(&temp_list[0], btm_bt);
for (level = 1; level < hopnum; level++)
list_splice(&temp_list[level], &mid_bt[level]);
return 0;
err_exit:
for (level = 1; level < hopnum; level++)
hem_list_free_all(hr_dev, &temp_list[level], true);
return ret;
}
static int hem_list_alloc_root_bt(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_list *hem_list, int unit,
const struct hns_roce_buf_region *regions,
int region_cnt)
{
struct roce_hem_item *hem, *temp_hem, *root_hem;
struct list_head temp_list[HNS_ROCE_MAX_BT_REGION];
const struct hns_roce_buf_region *r;
struct list_head temp_root;
struct list_head temp_btm;
void *cpu_base;
u64 phy_base;
int ret = 0;
int ba_num;
int offset;
int total;
int step;
int i;
r = &regions[0];
root_hem = hem_list_search_item(&hem_list->root_bt, r->offset);
if (root_hem)
return 0;
ba_num = hns_roce_hem_list_calc_root_ba(regions, region_cnt, unit);
if (ba_num < 1)
return -ENOMEM;
INIT_LIST_HEAD(&temp_root);
offset = r->offset;
/* indicate to last region */
r = &regions[region_cnt - 1];
root_hem = hem_list_alloc_item(hr_dev, offset, r->offset + r->count - 1,
ba_num, true, 0);
if (!root_hem)
return -ENOMEM;
list_add(&root_hem->list, &temp_root);
hem_list->root_ba = root_hem->dma_addr;
INIT_LIST_HEAD(&temp_btm);
for (i = 0; i < region_cnt; i++)
INIT_LIST_HEAD(&temp_list[i]);
total = 0;
for (i = 0; i < region_cnt && total < ba_num; i++) {
r = &regions[i];
if (!r->count)
continue;
/* all regions's mid[x][0] shared the root_bt's trunk */
cpu_base = root_hem->addr + total * BA_BYTE_LEN;
phy_base = root_hem->dma_addr + total * BA_BYTE_LEN;
/* if hopnum is 0 or 1, cut a new fake hem from the root bt
* which's address share to all regions.
*/
if (hem_list_is_bottom_bt(r->hopnum, 0)) {
hem = hem_list_alloc_item(hr_dev, r->offset,
r->offset + r->count - 1,
r->count, false, 0);
if (!hem) {
ret = -ENOMEM;
goto err_exit;
}
hem_list_assign_bt(hr_dev, hem, cpu_base, phy_base);
list_add(&hem->list, &temp_list[i]);
list_add(&hem->sibling, &temp_btm);
total += r->count;
} else {
step = hem_list_calc_ba_range(r->hopnum, 1, unit);
if (step < 1) {
ret = -EINVAL;
goto err_exit;
}
/* if exist mid bt, link L1 to L0 */
list_for_each_entry_safe(hem, temp_hem,
&hem_list->mid_bt[i][1], list) {
offset = (hem->start - r->offset) / step *
BA_BYTE_LEN;
hem_list_link_bt(hr_dev, cpu_base + offset,
hem->dma_addr);
total++;
}
}
}
list_splice(&temp_btm, &hem_list->btm_bt);
list_splice(&temp_root, &hem_list->root_bt);
for (i = 0; i < region_cnt; i++)
list_splice(&temp_list[i], &hem_list->mid_bt[i][0]);
return 0;
err_exit:
for (i = 0; i < region_cnt; i++)
hem_list_free_all(hr_dev, &temp_list[i], false);
hem_list_free_all(hr_dev, &temp_root, true);
return ret;
}
/* construct the base address table and link them by address hop config */
int hns_roce_hem_list_request(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_list *hem_list,
const struct hns_roce_buf_region *regions,
int region_cnt, int bt_pg_shift)
{
const struct hns_roce_buf_region *r;
int ofs, end;
int ret = 0;
int unit;
int i;
if (region_cnt > HNS_ROCE_MAX_BT_REGION) {
dev_err(hr_dev->dev, "invalid region region_cnt %d!\n",
region_cnt);
return -EINVAL;
}
unit = (1 << bt_pg_shift) / BA_BYTE_LEN;
for (i = 0; i < region_cnt; i++) {
r = &regions[i];
if (!r->count)
continue;
end = r->offset + r->count;
for (ofs = r->offset; ofs < end; ofs += unit) {
ret = hem_list_alloc_mid_bt(hr_dev, r, unit, ofs,
hem_list->mid_bt[i],
&hem_list->btm_bt);
if (ret) {
dev_err(hr_dev->dev,
"alloc hem trunk fail ret=%d!\n", ret);
goto err_alloc;
}
}
}
ret = hem_list_alloc_root_bt(hr_dev, hem_list, unit, regions,
region_cnt);
if (ret)
dev_err(hr_dev->dev, "alloc hem root fail ret=%d!\n", ret);
else
return 0;
err_alloc:
hns_roce_hem_list_release(hr_dev, hem_list);
return ret;
}
void hns_roce_hem_list_release(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_list *hem_list)
{
int i, j;
for (i = 0; i < HNS_ROCE_MAX_BT_REGION; i++)
for (j = 0; j < HNS_ROCE_MAX_BT_LEVEL; j++)
hem_list_free_all(hr_dev, &hem_list->mid_bt[i][j],
j != 0);
hem_list_free_all(hr_dev, &hem_list->root_bt, true);
INIT_LIST_HEAD(&hem_list->btm_bt);
hem_list->root_ba = 0;
}
void hns_roce_hem_list_init(struct hns_roce_hem_list *hem_list)
{
int i, j;
INIT_LIST_HEAD(&hem_list->root_bt);
INIT_LIST_HEAD(&hem_list->btm_bt);
for (i = 0; i < HNS_ROCE_MAX_BT_REGION; i++)
for (j = 0; j < HNS_ROCE_MAX_BT_LEVEL; j++)
INIT_LIST_HEAD(&hem_list->mid_bt[i][j]);
}
void *hns_roce_hem_list_find_mtt(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_list *hem_list,
int offset, int *mtt_cnt, u64 *phy_addr)
{
struct list_head *head = &hem_list->btm_bt;
struct roce_hem_item *hem, *temp_hem;
void *cpu_base = NULL;
u64 phy_base = 0;
int nr = 0;
list_for_each_entry_safe(hem, temp_hem, head, sibling) {
if (hem_list_page_is_in_range(hem, offset)) {
nr = offset - hem->start;
cpu_base = hem->addr + nr * BA_BYTE_LEN;
phy_base = hem->dma_addr + nr * BA_BYTE_LEN;
nr = hem->end + 1 - offset;
break;
}
}
if (mtt_cnt)
*mtt_cnt = nr;
if (phy_addr)
*phy_addr = phy_base;
return cpu_base;
}