mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-23 11:04:44 +08:00
749b61dab3
The bcache driver has always accepted arbitrarily large bios and split them internally. Now that every driver must accept arbitrarily large bios this code isn't nessecary anymore. Cc: linux-bcache@vger.kernel.org Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> [dpark: add more description in commit message] Signed-off-by: Dongsu Park <dpark@posteo.net> Signed-off-by: Ming Lin <ming.l@ssi.samsung.com> Signed-off-by: Jens Axboe <axboe@fb.com>
514 lines
12 KiB
C
514 lines
12 KiB
C
/*
|
|
* background writeback - scan btree for dirty data and write it to the backing
|
|
* device
|
|
*
|
|
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
|
|
* Copyright 2012 Google, Inc.
|
|
*/
|
|
|
|
#include "bcache.h"
|
|
#include "btree.h"
|
|
#include "debug.h"
|
|
#include "writeback.h"
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/kthread.h>
|
|
#include <trace/events/bcache.h>
|
|
|
|
/* Rate limiting */
|
|
|
|
static void __update_writeback_rate(struct cached_dev *dc)
|
|
{
|
|
struct cache_set *c = dc->disk.c;
|
|
uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
|
|
uint64_t cache_dirty_target =
|
|
div_u64(cache_sectors * dc->writeback_percent, 100);
|
|
|
|
int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
|
|
c->cached_dev_sectors);
|
|
|
|
/* PD controller */
|
|
|
|
int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
|
|
int64_t derivative = dirty - dc->disk.sectors_dirty_last;
|
|
int64_t proportional = dirty - target;
|
|
int64_t change;
|
|
|
|
dc->disk.sectors_dirty_last = dirty;
|
|
|
|
/* Scale to sectors per second */
|
|
|
|
proportional *= dc->writeback_rate_update_seconds;
|
|
proportional = div_s64(proportional, dc->writeback_rate_p_term_inverse);
|
|
|
|
derivative = div_s64(derivative, dc->writeback_rate_update_seconds);
|
|
|
|
derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
|
|
(dc->writeback_rate_d_term /
|
|
dc->writeback_rate_update_seconds) ?: 1, 0);
|
|
|
|
derivative *= dc->writeback_rate_d_term;
|
|
derivative = div_s64(derivative, dc->writeback_rate_p_term_inverse);
|
|
|
|
change = proportional + derivative;
|
|
|
|
/* Don't increase writeback rate if the device isn't keeping up */
|
|
if (change > 0 &&
|
|
time_after64(local_clock(),
|
|
dc->writeback_rate.next + NSEC_PER_MSEC))
|
|
change = 0;
|
|
|
|
dc->writeback_rate.rate =
|
|
clamp_t(int64_t, (int64_t) dc->writeback_rate.rate + change,
|
|
1, NSEC_PER_MSEC);
|
|
|
|
dc->writeback_rate_proportional = proportional;
|
|
dc->writeback_rate_derivative = derivative;
|
|
dc->writeback_rate_change = change;
|
|
dc->writeback_rate_target = target;
|
|
}
|
|
|
|
static void update_writeback_rate(struct work_struct *work)
|
|
{
|
|
struct cached_dev *dc = container_of(to_delayed_work(work),
|
|
struct cached_dev,
|
|
writeback_rate_update);
|
|
|
|
down_read(&dc->writeback_lock);
|
|
|
|
if (atomic_read(&dc->has_dirty) &&
|
|
dc->writeback_percent)
|
|
__update_writeback_rate(dc);
|
|
|
|
up_read(&dc->writeback_lock);
|
|
|
|
schedule_delayed_work(&dc->writeback_rate_update,
|
|
dc->writeback_rate_update_seconds * HZ);
|
|
}
|
|
|
|
static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
|
|
{
|
|
if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
|
|
!dc->writeback_percent)
|
|
return 0;
|
|
|
|
return bch_next_delay(&dc->writeback_rate, sectors);
|
|
}
|
|
|
|
struct dirty_io {
|
|
struct closure cl;
|
|
struct cached_dev *dc;
|
|
struct bio bio;
|
|
};
|
|
|
|
static void dirty_init(struct keybuf_key *w)
|
|
{
|
|
struct dirty_io *io = w->private;
|
|
struct bio *bio = &io->bio;
|
|
|
|
bio_init(bio);
|
|
if (!io->dc->writeback_percent)
|
|
bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
|
|
|
|
bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
|
|
bio->bi_max_vecs = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
|
|
bio->bi_private = w;
|
|
bio->bi_io_vec = bio->bi_inline_vecs;
|
|
bch_bio_map(bio, NULL);
|
|
}
|
|
|
|
static void dirty_io_destructor(struct closure *cl)
|
|
{
|
|
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
|
|
kfree(io);
|
|
}
|
|
|
|
static void write_dirty_finish(struct closure *cl)
|
|
{
|
|
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
|
|
struct keybuf_key *w = io->bio.bi_private;
|
|
struct cached_dev *dc = io->dc;
|
|
struct bio_vec *bv;
|
|
int i;
|
|
|
|
bio_for_each_segment_all(bv, &io->bio, i)
|
|
__free_page(bv->bv_page);
|
|
|
|
/* This is kind of a dumb way of signalling errors. */
|
|
if (KEY_DIRTY(&w->key)) {
|
|
int ret;
|
|
unsigned i;
|
|
struct keylist keys;
|
|
|
|
bch_keylist_init(&keys);
|
|
|
|
bkey_copy(keys.top, &w->key);
|
|
SET_KEY_DIRTY(keys.top, false);
|
|
bch_keylist_push(&keys);
|
|
|
|
for (i = 0; i < KEY_PTRS(&w->key); i++)
|
|
atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
|
|
|
|
ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
|
|
|
|
if (ret)
|
|
trace_bcache_writeback_collision(&w->key);
|
|
|
|
atomic_long_inc(ret
|
|
? &dc->disk.c->writeback_keys_failed
|
|
: &dc->disk.c->writeback_keys_done);
|
|
}
|
|
|
|
bch_keybuf_del(&dc->writeback_keys, w);
|
|
up(&dc->in_flight);
|
|
|
|
closure_return_with_destructor(cl, dirty_io_destructor);
|
|
}
|
|
|
|
static void dirty_endio(struct bio *bio)
|
|
{
|
|
struct keybuf_key *w = bio->bi_private;
|
|
struct dirty_io *io = w->private;
|
|
|
|
if (bio->bi_error)
|
|
SET_KEY_DIRTY(&w->key, false);
|
|
|
|
closure_put(&io->cl);
|
|
}
|
|
|
|
static void write_dirty(struct closure *cl)
|
|
{
|
|
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
|
|
struct keybuf_key *w = io->bio.bi_private;
|
|
|
|
dirty_init(w);
|
|
io->bio.bi_rw = WRITE;
|
|
io->bio.bi_iter.bi_sector = KEY_START(&w->key);
|
|
io->bio.bi_bdev = io->dc->bdev;
|
|
io->bio.bi_end_io = dirty_endio;
|
|
|
|
closure_bio_submit(&io->bio, cl);
|
|
|
|
continue_at(cl, write_dirty_finish, system_wq);
|
|
}
|
|
|
|
static void read_dirty_endio(struct bio *bio)
|
|
{
|
|
struct keybuf_key *w = bio->bi_private;
|
|
struct dirty_io *io = w->private;
|
|
|
|
bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
|
|
bio->bi_error, "reading dirty data from cache");
|
|
|
|
dirty_endio(bio);
|
|
}
|
|
|
|
static void read_dirty_submit(struct closure *cl)
|
|
{
|
|
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
|
|
|
|
closure_bio_submit(&io->bio, cl);
|
|
|
|
continue_at(cl, write_dirty, system_wq);
|
|
}
|
|
|
|
static void read_dirty(struct cached_dev *dc)
|
|
{
|
|
unsigned delay = 0;
|
|
struct keybuf_key *w;
|
|
struct dirty_io *io;
|
|
struct closure cl;
|
|
|
|
closure_init_stack(&cl);
|
|
|
|
/*
|
|
* XXX: if we error, background writeback just spins. Should use some
|
|
* mempools.
|
|
*/
|
|
|
|
while (!kthread_should_stop()) {
|
|
try_to_freeze();
|
|
|
|
w = bch_keybuf_next(&dc->writeback_keys);
|
|
if (!w)
|
|
break;
|
|
|
|
BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
|
|
|
|
if (KEY_START(&w->key) != dc->last_read ||
|
|
jiffies_to_msecs(delay) > 50)
|
|
while (!kthread_should_stop() && delay)
|
|
delay = schedule_timeout_interruptible(delay);
|
|
|
|
dc->last_read = KEY_OFFSET(&w->key);
|
|
|
|
io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
|
|
* DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
|
|
GFP_KERNEL);
|
|
if (!io)
|
|
goto err;
|
|
|
|
w->private = io;
|
|
io->dc = dc;
|
|
|
|
dirty_init(w);
|
|
io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
|
|
io->bio.bi_bdev = PTR_CACHE(dc->disk.c,
|
|
&w->key, 0)->bdev;
|
|
io->bio.bi_rw = READ;
|
|
io->bio.bi_end_io = read_dirty_endio;
|
|
|
|
if (bio_alloc_pages(&io->bio, GFP_KERNEL))
|
|
goto err_free;
|
|
|
|
trace_bcache_writeback(&w->key);
|
|
|
|
down(&dc->in_flight);
|
|
closure_call(&io->cl, read_dirty_submit, NULL, &cl);
|
|
|
|
delay = writeback_delay(dc, KEY_SIZE(&w->key));
|
|
}
|
|
|
|
if (0) {
|
|
err_free:
|
|
kfree(w->private);
|
|
err:
|
|
bch_keybuf_del(&dc->writeback_keys, w);
|
|
}
|
|
|
|
/*
|
|
* Wait for outstanding writeback IOs to finish (and keybuf slots to be
|
|
* freed) before refilling again
|
|
*/
|
|
closure_sync(&cl);
|
|
}
|
|
|
|
/* Scan for dirty data */
|
|
|
|
void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
|
|
uint64_t offset, int nr_sectors)
|
|
{
|
|
struct bcache_device *d = c->devices[inode];
|
|
unsigned stripe_offset, stripe, sectors_dirty;
|
|
|
|
if (!d)
|
|
return;
|
|
|
|
stripe = offset_to_stripe(d, offset);
|
|
stripe_offset = offset & (d->stripe_size - 1);
|
|
|
|
while (nr_sectors) {
|
|
int s = min_t(unsigned, abs(nr_sectors),
|
|
d->stripe_size - stripe_offset);
|
|
|
|
if (nr_sectors < 0)
|
|
s = -s;
|
|
|
|
if (stripe >= d->nr_stripes)
|
|
return;
|
|
|
|
sectors_dirty = atomic_add_return(s,
|
|
d->stripe_sectors_dirty + stripe);
|
|
if (sectors_dirty == d->stripe_size)
|
|
set_bit(stripe, d->full_dirty_stripes);
|
|
else
|
|
clear_bit(stripe, d->full_dirty_stripes);
|
|
|
|
nr_sectors -= s;
|
|
stripe_offset = 0;
|
|
stripe++;
|
|
}
|
|
}
|
|
|
|
static bool dirty_pred(struct keybuf *buf, struct bkey *k)
|
|
{
|
|
return KEY_DIRTY(k);
|
|
}
|
|
|
|
static void refill_full_stripes(struct cached_dev *dc)
|
|
{
|
|
struct keybuf *buf = &dc->writeback_keys;
|
|
unsigned start_stripe, stripe, next_stripe;
|
|
bool wrapped = false;
|
|
|
|
stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
|
|
|
|
if (stripe >= dc->disk.nr_stripes)
|
|
stripe = 0;
|
|
|
|
start_stripe = stripe;
|
|
|
|
while (1) {
|
|
stripe = find_next_bit(dc->disk.full_dirty_stripes,
|
|
dc->disk.nr_stripes, stripe);
|
|
|
|
if (stripe == dc->disk.nr_stripes)
|
|
goto next;
|
|
|
|
next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
|
|
dc->disk.nr_stripes, stripe);
|
|
|
|
buf->last_scanned = KEY(dc->disk.id,
|
|
stripe * dc->disk.stripe_size, 0);
|
|
|
|
bch_refill_keybuf(dc->disk.c, buf,
|
|
&KEY(dc->disk.id,
|
|
next_stripe * dc->disk.stripe_size, 0),
|
|
dirty_pred);
|
|
|
|
if (array_freelist_empty(&buf->freelist))
|
|
return;
|
|
|
|
stripe = next_stripe;
|
|
next:
|
|
if (wrapped && stripe > start_stripe)
|
|
return;
|
|
|
|
if (stripe == dc->disk.nr_stripes) {
|
|
stripe = 0;
|
|
wrapped = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool refill_dirty(struct cached_dev *dc)
|
|
{
|
|
struct keybuf *buf = &dc->writeback_keys;
|
|
struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
|
|
bool searched_from_start = false;
|
|
|
|
if (dc->partial_stripes_expensive) {
|
|
refill_full_stripes(dc);
|
|
if (array_freelist_empty(&buf->freelist))
|
|
return false;
|
|
}
|
|
|
|
if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
|
|
buf->last_scanned = KEY(dc->disk.id, 0, 0);
|
|
searched_from_start = true;
|
|
}
|
|
|
|
bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
|
|
|
|
return bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start;
|
|
}
|
|
|
|
static int bch_writeback_thread(void *arg)
|
|
{
|
|
struct cached_dev *dc = arg;
|
|
bool searched_full_index;
|
|
|
|
while (!kthread_should_stop()) {
|
|
down_write(&dc->writeback_lock);
|
|
if (!atomic_read(&dc->has_dirty) ||
|
|
(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
|
|
!dc->writeback_running)) {
|
|
up_write(&dc->writeback_lock);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
if (kthread_should_stop())
|
|
return 0;
|
|
|
|
try_to_freeze();
|
|
schedule();
|
|
continue;
|
|
}
|
|
|
|
searched_full_index = refill_dirty(dc);
|
|
|
|
if (searched_full_index &&
|
|
RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
|
|
atomic_set(&dc->has_dirty, 0);
|
|
cached_dev_put(dc);
|
|
SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
|
|
bch_write_bdev_super(dc, NULL);
|
|
}
|
|
|
|
up_write(&dc->writeback_lock);
|
|
|
|
bch_ratelimit_reset(&dc->writeback_rate);
|
|
read_dirty(dc);
|
|
|
|
if (searched_full_index) {
|
|
unsigned delay = dc->writeback_delay * HZ;
|
|
|
|
while (delay &&
|
|
!kthread_should_stop() &&
|
|
!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
|
|
delay = schedule_timeout_interruptible(delay);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Init */
|
|
|
|
struct sectors_dirty_init {
|
|
struct btree_op op;
|
|
unsigned inode;
|
|
};
|
|
|
|
static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
|
|
struct bkey *k)
|
|
{
|
|
struct sectors_dirty_init *op = container_of(_op,
|
|
struct sectors_dirty_init, op);
|
|
if (KEY_INODE(k) > op->inode)
|
|
return MAP_DONE;
|
|
|
|
if (KEY_DIRTY(k))
|
|
bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
|
|
KEY_START(k), KEY_SIZE(k));
|
|
|
|
return MAP_CONTINUE;
|
|
}
|
|
|
|
void bch_sectors_dirty_init(struct cached_dev *dc)
|
|
{
|
|
struct sectors_dirty_init op;
|
|
|
|
bch_btree_op_init(&op.op, -1);
|
|
op.inode = dc->disk.id;
|
|
|
|
bch_btree_map_keys(&op.op, dc->disk.c, &KEY(op.inode, 0, 0),
|
|
sectors_dirty_init_fn, 0);
|
|
|
|
dc->disk.sectors_dirty_last = bcache_dev_sectors_dirty(&dc->disk);
|
|
}
|
|
|
|
void bch_cached_dev_writeback_init(struct cached_dev *dc)
|
|
{
|
|
sema_init(&dc->in_flight, 64);
|
|
init_rwsem(&dc->writeback_lock);
|
|
bch_keybuf_init(&dc->writeback_keys);
|
|
|
|
dc->writeback_metadata = true;
|
|
dc->writeback_running = true;
|
|
dc->writeback_percent = 10;
|
|
dc->writeback_delay = 30;
|
|
dc->writeback_rate.rate = 1024;
|
|
|
|
dc->writeback_rate_update_seconds = 5;
|
|
dc->writeback_rate_d_term = 30;
|
|
dc->writeback_rate_p_term_inverse = 6000;
|
|
|
|
INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
|
|
}
|
|
|
|
int bch_cached_dev_writeback_start(struct cached_dev *dc)
|
|
{
|
|
dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
|
|
"bcache_writeback");
|
|
if (IS_ERR(dc->writeback_thread))
|
|
return PTR_ERR(dc->writeback_thread);
|
|
|
|
schedule_delayed_work(&dc->writeback_rate_update,
|
|
dc->writeback_rate_update_seconds * HZ);
|
|
|
|
bch_writeback_queue(dc);
|
|
|
|
return 0;
|
|
}
|