mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-17 07:54:54 +08:00
3b5394a3cc
This patch remove the micron_quad_enable() function which force the Quad
SPI mode. However, once this mode is enabled, the Micron memory expect ALL
commands to use the SPI 4-4-4 protocol. Hence a failure does occur when
calling spi_nor_wait_till_ready() right after the update of the Enhanced
Volatile Configuration Register (EVCR) in the micron_quad_enable() as
the SPI controller driver is not aware about the protocol change.
Since there is almost no performance increase using Fast Read 4-4-4
commands instead of Fast Read 1-1-4 commands, we rather keep on using the
Extended SPI mode than enabling the Quad SPI mode.
Let's take the example of the pretty standard use of 8 dummy cycles during
Fast Read operations on 64KB erase sectors:
Fast Read 1-1-4 requires 8 cycles for the command, then 24 cycles for the
3byte address followed by 8 dummy clock cycles and finally 65536*2 cycles
for the read data; so 131112 clock cycles.
On the other hand the Fast Read 4-4-4 would require 2 cycles for the
command, then 6 cycles for the 3byte address followed by 8 dummy clock
cycles and finally 65536*2 cycles for the read data. So 131088 clock
cycles. The theorical bandwidth increase is 0.0%.
Now using Fast Read operations on 512byte pages:
Fast Read 1-1-4 needs 8+24+8+(512*2) = 1064 clock cycles whereas Fast
Read 4-4-4 would requires 2+6+8+(512*2) = 1040 clock cycles. Hence the
theorical bandwidth increase is 2.3%.
Consecutive reads for non sequential pages is not a relevant use case so
The Quad SPI mode is not worth it.
mtd_speedtest seems to confirm these figures.
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com>
Fixes: 548cd3ab54
("mtd: spi-nor: Add quad I/O support for Micron SPI NOR")
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
1378 lines
39 KiB
C
1378 lines
39 KiB
C
/*
|
|
* Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
|
|
* influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
|
|
*
|
|
* Copyright (C) 2005, Intec Automation Inc.
|
|
* Copyright (C) 2014, Freescale Semiconductor, Inc.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/sizes.h>
|
|
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/spi/flash.h>
|
|
#include <linux/mtd/spi-nor.h>
|
|
|
|
/* Define max times to check status register before we give up. */
|
|
|
|
/*
|
|
* For everything but full-chip erase; probably could be much smaller, but kept
|
|
* around for safety for now
|
|
*/
|
|
#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
|
|
|
|
/*
|
|
* For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
|
|
* for larger flash
|
|
*/
|
|
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
|
|
|
|
#define SPI_NOR_MAX_ID_LEN 6
|
|
#define SPI_NOR_MAX_ADDR_WIDTH 4
|
|
|
|
struct flash_info {
|
|
char *name;
|
|
|
|
/*
|
|
* This array stores the ID bytes.
|
|
* The first three bytes are the JEDIC ID.
|
|
* JEDEC ID zero means "no ID" (mostly older chips).
|
|
*/
|
|
u8 id[SPI_NOR_MAX_ID_LEN];
|
|
u8 id_len;
|
|
|
|
/* The size listed here is what works with SPINOR_OP_SE, which isn't
|
|
* necessarily called a "sector" by the vendor.
|
|
*/
|
|
unsigned sector_size;
|
|
u16 n_sectors;
|
|
|
|
u16 page_size;
|
|
u16 addr_width;
|
|
|
|
u16 flags;
|
|
#define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
|
|
#define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
|
|
#define SST_WRITE 0x04 /* use SST byte programming */
|
|
#define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
|
|
#define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
|
|
#define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
|
|
#define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
|
|
#define USE_FSR 0x80 /* use flag status register */
|
|
};
|
|
|
|
#define JEDEC_MFR(info) ((info)->id[0])
|
|
|
|
static const struct flash_info *spi_nor_match_id(const char *name);
|
|
|
|
/*
|
|
* Read the status register, returning its value in the location
|
|
* Return the status register value.
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static int read_sr(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
u8 val;
|
|
|
|
ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
|
|
if (ret < 0) {
|
|
pr_err("error %d reading SR\n", (int) ret);
|
|
return ret;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Read the flag status register, returning its value in the location
|
|
* Return the status register value.
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static int read_fsr(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
u8 val;
|
|
|
|
ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
|
|
if (ret < 0) {
|
|
pr_err("error %d reading FSR\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Read configuration register, returning its value in the
|
|
* location. Return the configuration register value.
|
|
* Returns negative if error occured.
|
|
*/
|
|
static int read_cr(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
u8 val;
|
|
|
|
ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
|
|
if (ret < 0) {
|
|
dev_err(nor->dev, "error %d reading CR\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Dummy Cycle calculation for different type of read.
|
|
* It can be used to support more commands with
|
|
* different dummy cycle requirements.
|
|
*/
|
|
static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
|
|
{
|
|
switch (nor->flash_read) {
|
|
case SPI_NOR_FAST:
|
|
case SPI_NOR_DUAL:
|
|
case SPI_NOR_QUAD:
|
|
return 8;
|
|
case SPI_NOR_NORMAL:
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write status register 1 byte
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static inline int write_sr(struct spi_nor *nor, u8 val)
|
|
{
|
|
nor->cmd_buf[0] = val;
|
|
return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
|
|
}
|
|
|
|
/*
|
|
* Set write enable latch with Write Enable command.
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static inline int write_enable(struct spi_nor *nor)
|
|
{
|
|
return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
|
|
}
|
|
|
|
/*
|
|
* Send write disble instruction to the chip.
|
|
*/
|
|
static inline int write_disable(struct spi_nor *nor)
|
|
{
|
|
return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
|
|
}
|
|
|
|
static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
|
|
{
|
|
return mtd->priv;
|
|
}
|
|
|
|
/* Enable/disable 4-byte addressing mode. */
|
|
static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
|
|
int enable)
|
|
{
|
|
int status;
|
|
bool need_wren = false;
|
|
u8 cmd;
|
|
|
|
switch (JEDEC_MFR(info)) {
|
|
case SNOR_MFR_MICRON:
|
|
/* Some Micron need WREN command; all will accept it */
|
|
need_wren = true;
|
|
case SNOR_MFR_MACRONIX:
|
|
case SNOR_MFR_WINBOND:
|
|
if (need_wren)
|
|
write_enable(nor);
|
|
|
|
cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
|
|
status = nor->write_reg(nor, cmd, NULL, 0);
|
|
if (need_wren)
|
|
write_disable(nor);
|
|
|
|
return status;
|
|
default:
|
|
/* Spansion style */
|
|
nor->cmd_buf[0] = enable << 7;
|
|
return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
|
|
}
|
|
}
|
|
static inline int spi_nor_sr_ready(struct spi_nor *nor)
|
|
{
|
|
int sr = read_sr(nor);
|
|
if (sr < 0)
|
|
return sr;
|
|
else
|
|
return !(sr & SR_WIP);
|
|
}
|
|
|
|
static inline int spi_nor_fsr_ready(struct spi_nor *nor)
|
|
{
|
|
int fsr = read_fsr(nor);
|
|
if (fsr < 0)
|
|
return fsr;
|
|
else
|
|
return fsr & FSR_READY;
|
|
}
|
|
|
|
static int spi_nor_ready(struct spi_nor *nor)
|
|
{
|
|
int sr, fsr;
|
|
sr = spi_nor_sr_ready(nor);
|
|
if (sr < 0)
|
|
return sr;
|
|
fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
|
|
if (fsr < 0)
|
|
return fsr;
|
|
return sr && fsr;
|
|
}
|
|
|
|
/*
|
|
* Service routine to read status register until ready, or timeout occurs.
|
|
* Returns non-zero if error.
|
|
*/
|
|
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
|
|
unsigned long timeout_jiffies)
|
|
{
|
|
unsigned long deadline;
|
|
int timeout = 0, ret;
|
|
|
|
deadline = jiffies + timeout_jiffies;
|
|
|
|
while (!timeout) {
|
|
if (time_after_eq(jiffies, deadline))
|
|
timeout = 1;
|
|
|
|
ret = spi_nor_ready(nor);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret)
|
|
return 0;
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
dev_err(nor->dev, "flash operation timed out\n");
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int spi_nor_wait_till_ready(struct spi_nor *nor)
|
|
{
|
|
return spi_nor_wait_till_ready_with_timeout(nor,
|
|
DEFAULT_READY_WAIT_JIFFIES);
|
|
}
|
|
|
|
/*
|
|
* Erase the whole flash memory
|
|
*
|
|
* Returns 0 if successful, non-zero otherwise.
|
|
*/
|
|
static int erase_chip(struct spi_nor *nor)
|
|
{
|
|
dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
|
|
|
|
return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
|
|
}
|
|
|
|
static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&nor->lock);
|
|
|
|
if (nor->prepare) {
|
|
ret = nor->prepare(nor, ops);
|
|
if (ret) {
|
|
dev_err(nor->dev, "failed in the preparation.\n");
|
|
mutex_unlock(&nor->lock);
|
|
return ret;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
|
|
{
|
|
if (nor->unprepare)
|
|
nor->unprepare(nor, ops);
|
|
mutex_unlock(&nor->lock);
|
|
}
|
|
|
|
/*
|
|
* Initiate the erasure of a single sector
|
|
*/
|
|
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
|
|
{
|
|
u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
|
|
int i;
|
|
|
|
if (nor->erase)
|
|
return nor->erase(nor, addr);
|
|
|
|
/*
|
|
* Default implementation, if driver doesn't have a specialized HW
|
|
* control
|
|
*/
|
|
for (i = nor->addr_width - 1; i >= 0; i--) {
|
|
buf[i] = addr & 0xff;
|
|
addr >>= 8;
|
|
}
|
|
|
|
return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
|
|
}
|
|
|
|
/*
|
|
* Erase an address range on the nor chip. The address range may extend
|
|
* one or more erase sectors. Return an error is there is a problem erasing.
|
|
*/
|
|
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
u32 addr, len;
|
|
uint32_t rem;
|
|
int ret;
|
|
|
|
dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
|
|
(long long)instr->len);
|
|
|
|
div_u64_rem(instr->len, mtd->erasesize, &rem);
|
|
if (rem)
|
|
return -EINVAL;
|
|
|
|
addr = instr->addr;
|
|
len = instr->len;
|
|
|
|
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* whole-chip erase? */
|
|
if (len == mtd->size) {
|
|
unsigned long timeout;
|
|
|
|
write_enable(nor);
|
|
|
|
if (erase_chip(nor)) {
|
|
ret = -EIO;
|
|
goto erase_err;
|
|
}
|
|
|
|
/*
|
|
* Scale the timeout linearly with the size of the flash, with
|
|
* a minimum calibrated to an old 2MB flash. We could try to
|
|
* pull these from CFI/SFDP, but these values should be good
|
|
* enough for now.
|
|
*/
|
|
timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
|
|
CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
|
|
(unsigned long)(mtd->size / SZ_2M));
|
|
ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
|
|
if (ret)
|
|
goto erase_err;
|
|
|
|
/* REVISIT in some cases we could speed up erasing large regions
|
|
* by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
|
|
* to use "small sector erase", but that's not always optimal.
|
|
*/
|
|
|
|
/* "sector"-at-a-time erase */
|
|
} else {
|
|
while (len) {
|
|
write_enable(nor);
|
|
|
|
ret = spi_nor_erase_sector(nor, addr);
|
|
if (ret)
|
|
goto erase_err;
|
|
|
|
addr += mtd->erasesize;
|
|
len -= mtd->erasesize;
|
|
|
|
ret = spi_nor_wait_till_ready(nor);
|
|
if (ret)
|
|
goto erase_err;
|
|
}
|
|
}
|
|
|
|
write_disable(nor);
|
|
|
|
erase_err:
|
|
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
|
|
|
|
instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
|
|
mtd_erase_callback(instr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
|
|
uint64_t *len)
|
|
{
|
|
struct mtd_info *mtd = &nor->mtd;
|
|
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
|
|
int shift = ffs(mask) - 1;
|
|
int pow;
|
|
|
|
if (!(sr & mask)) {
|
|
/* No protection */
|
|
*ofs = 0;
|
|
*len = 0;
|
|
} else {
|
|
pow = ((sr & mask) ^ mask) >> shift;
|
|
*len = mtd->size >> pow;
|
|
*ofs = mtd->size - *len;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return 1 if the entire region is locked, 0 otherwise
|
|
*/
|
|
static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
|
|
u8 sr)
|
|
{
|
|
loff_t lock_offs;
|
|
uint64_t lock_len;
|
|
|
|
stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
|
|
|
|
return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
|
|
}
|
|
|
|
/*
|
|
* Lock a region of the flash. Compatible with ST Micro and similar flash.
|
|
* Supports only the block protection bits BP{0,1,2} in the status register
|
|
* (SR). Does not support these features found in newer SR bitfields:
|
|
* - TB: top/bottom protect - only handle TB=0 (top protect)
|
|
* - SEC: sector/block protect - only handle SEC=0 (block protect)
|
|
* - CMP: complement protect - only support CMP=0 (range is not complemented)
|
|
*
|
|
* Sample table portion for 8MB flash (Winbond w25q64fw):
|
|
*
|
|
* SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
|
|
* --------------------------------------------------------------------------
|
|
* X | X | 0 | 0 | 0 | NONE | NONE
|
|
* 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
|
|
* 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
|
|
* 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
|
|
* 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
|
|
* 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
|
|
* 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
|
|
* X | X | 1 | 1 | 1 | 8 MB | ALL
|
|
*
|
|
* Returns negative on errors, 0 on success.
|
|
*/
|
|
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
|
|
{
|
|
struct mtd_info *mtd = &nor->mtd;
|
|
int status_old, status_new;
|
|
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
|
|
u8 shift = ffs(mask) - 1, pow, val;
|
|
int ret;
|
|
|
|
status_old = read_sr(nor);
|
|
if (status_old < 0)
|
|
return status_old;
|
|
|
|
/* SPI NOR always locks to the end */
|
|
if (ofs + len != mtd->size) {
|
|
/* Does combined region extend to end? */
|
|
if (!stm_is_locked_sr(nor, ofs + len, mtd->size - ofs - len,
|
|
status_old))
|
|
return -EINVAL;
|
|
len = mtd->size - ofs;
|
|
}
|
|
|
|
/*
|
|
* Need smallest pow such that:
|
|
*
|
|
* 1 / (2^pow) <= (len / size)
|
|
*
|
|
* so (assuming power-of-2 size) we do:
|
|
*
|
|
* pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
|
|
*/
|
|
pow = ilog2(mtd->size) - ilog2(len);
|
|
val = mask - (pow << shift);
|
|
if (val & ~mask)
|
|
return -EINVAL;
|
|
/* Don't "lock" with no region! */
|
|
if (!(val & mask))
|
|
return -EINVAL;
|
|
|
|
status_new = (status_old & ~mask) | val;
|
|
|
|
/* Only modify protection if it will not unlock other areas */
|
|
if ((status_new & mask) <= (status_old & mask))
|
|
return -EINVAL;
|
|
|
|
write_enable(nor);
|
|
ret = write_sr(nor, status_new);
|
|
if (ret)
|
|
return ret;
|
|
return spi_nor_wait_till_ready(nor);
|
|
}
|
|
|
|
/*
|
|
* Unlock a region of the flash. See stm_lock() for more info
|
|
*
|
|
* Returns negative on errors, 0 on success.
|
|
*/
|
|
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
|
|
{
|
|
struct mtd_info *mtd = &nor->mtd;
|
|
int status_old, status_new;
|
|
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
|
|
u8 shift = ffs(mask) - 1, pow, val;
|
|
int ret;
|
|
|
|
status_old = read_sr(nor);
|
|
if (status_old < 0)
|
|
return status_old;
|
|
|
|
/* Cannot unlock; would unlock larger region than requested */
|
|
if (stm_is_locked_sr(nor, ofs - mtd->erasesize, mtd->erasesize,
|
|
status_old))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Need largest pow such that:
|
|
*
|
|
* 1 / (2^pow) >= (len / size)
|
|
*
|
|
* so (assuming power-of-2 size) we do:
|
|
*
|
|
* pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
|
|
*/
|
|
pow = ilog2(mtd->size) - order_base_2(mtd->size - (ofs + len));
|
|
if (ofs + len == mtd->size) {
|
|
val = 0; /* fully unlocked */
|
|
} else {
|
|
val = mask - (pow << shift);
|
|
/* Some power-of-two sizes are not supported */
|
|
if (val & ~mask)
|
|
return -EINVAL;
|
|
}
|
|
|
|
status_new = (status_old & ~mask) | val;
|
|
|
|
/* Only modify protection if it will not lock other areas */
|
|
if ((status_new & mask) >= (status_old & mask))
|
|
return -EINVAL;
|
|
|
|
write_enable(nor);
|
|
ret = write_sr(nor, status_new);
|
|
if (ret)
|
|
return ret;
|
|
return spi_nor_wait_till_ready(nor);
|
|
}
|
|
|
|
/*
|
|
* Check if a region of the flash is (completely) locked. See stm_lock() for
|
|
* more info.
|
|
*
|
|
* Returns 1 if entire region is locked, 0 if any portion is unlocked, and
|
|
* negative on errors.
|
|
*/
|
|
static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
|
|
{
|
|
int status;
|
|
|
|
status = read_sr(nor);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
return stm_is_locked_sr(nor, ofs, len, status);
|
|
}
|
|
|
|
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
int ret;
|
|
|
|
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nor->flash_lock(nor, ofs, len);
|
|
|
|
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
|
|
return ret;
|
|
}
|
|
|
|
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
int ret;
|
|
|
|
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nor->flash_unlock(nor, ofs, len);
|
|
|
|
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
|
|
return ret;
|
|
}
|
|
|
|
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
int ret;
|
|
|
|
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nor->flash_is_locked(nor, ofs, len);
|
|
|
|
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
|
|
return ret;
|
|
}
|
|
|
|
/* Used when the "_ext_id" is two bytes at most */
|
|
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
|
|
.id = { \
|
|
((_jedec_id) >> 16) & 0xff, \
|
|
((_jedec_id) >> 8) & 0xff, \
|
|
(_jedec_id) & 0xff, \
|
|
((_ext_id) >> 8) & 0xff, \
|
|
(_ext_id) & 0xff, \
|
|
}, \
|
|
.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
|
|
.sector_size = (_sector_size), \
|
|
.n_sectors = (_n_sectors), \
|
|
.page_size = 256, \
|
|
.flags = (_flags),
|
|
|
|
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
|
|
.id = { \
|
|
((_jedec_id) >> 16) & 0xff, \
|
|
((_jedec_id) >> 8) & 0xff, \
|
|
(_jedec_id) & 0xff, \
|
|
((_ext_id) >> 16) & 0xff, \
|
|
((_ext_id) >> 8) & 0xff, \
|
|
(_ext_id) & 0xff, \
|
|
}, \
|
|
.id_len = 6, \
|
|
.sector_size = (_sector_size), \
|
|
.n_sectors = (_n_sectors), \
|
|
.page_size = 256, \
|
|
.flags = (_flags),
|
|
|
|
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
|
|
.sector_size = (_sector_size), \
|
|
.n_sectors = (_n_sectors), \
|
|
.page_size = (_page_size), \
|
|
.addr_width = (_addr_width), \
|
|
.flags = (_flags),
|
|
|
|
/* NOTE: double check command sets and memory organization when you add
|
|
* more nor chips. This current list focusses on newer chips, which
|
|
* have been converging on command sets which including JEDEC ID.
|
|
*
|
|
* All newly added entries should describe *hardware* and should use SECT_4K
|
|
* (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
|
|
* scenarios excluding small sectors there is config option that can be
|
|
* disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
|
|
* For historical (and compatibility) reasons (before we got above config) some
|
|
* old entries may be missing 4K flag.
|
|
*/
|
|
static const struct flash_info spi_nor_ids[] = {
|
|
/* Atmel -- some are (confusingly) marketed as "DataFlash" */
|
|
{ "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
|
|
{ "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
|
|
|
|
{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
|
|
|
|
{ "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
|
|
{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
|
|
{ "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
|
|
|
|
{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
|
|
|
|
/* EON -- en25xxx */
|
|
{ "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
|
|
{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
|
|
{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
|
|
{ "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
|
|
{ "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
|
|
{ "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
|
|
{ "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) },
|
|
|
|
/* ESMT */
|
|
{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
|
|
|
|
/* Everspin */
|
|
{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
{ "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
|
|
/* Fujitsu */
|
|
{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
|
|
|
|
/* GigaDevice */
|
|
{ "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
|
|
{ "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) },
|
|
|
|
/* Intel/Numonyx -- xxxs33b */
|
|
{ "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
|
|
{ "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
|
|
{ "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
|
|
|
|
/* ISSI */
|
|
{ "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) },
|
|
|
|
/* Macronix */
|
|
{ "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) },
|
|
{ "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
|
|
{ "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
|
|
{ "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
|
|
{ "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
|
|
{ "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
|
|
{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
|
|
{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
|
|
{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
|
|
{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
|
|
{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
|
|
{ "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
|
|
|
|
/* Micron */
|
|
{ "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
|
|
{ "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
|
|
{ "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
|
|
{ "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
|
|
{ "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
|
|
{ "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
|
|
{ "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) },
|
|
{ "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
|
|
{ "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
|
|
{ "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
|
|
|
|
/* PMC */
|
|
{ "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
|
|
{ "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
|
|
{ "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
|
|
|
|
/* Spansion -- single (large) sector size only, at least
|
|
* for the chips listed here (without boot sectors).
|
|
*/
|
|
{ "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
|
|
{ "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
|
|
{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
|
|
{ "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
|
|
{ "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
|
|
{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
|
|
{ "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
|
|
{ "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
|
|
{ "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
|
|
{ "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
|
|
{ "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
|
|
{ "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) },
|
|
{ "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ) },
|
|
|
|
/* SST -- large erase sizes are "overlays", "sectors" are 4K */
|
|
{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
|
|
{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
|
|
{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
|
|
{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
|
|
{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
|
|
{ "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
|
|
{ "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
|
|
{ "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
|
|
{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) },
|
|
{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
|
|
{ "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
|
|
|
|
/* ST Microelectronics -- newer production may have feature updates */
|
|
{ "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
|
|
{ "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
|
|
{ "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
|
|
{ "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
|
|
{ "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
|
|
{ "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
|
|
{ "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
|
|
{ "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
|
|
{ "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
|
|
|
|
{ "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
|
|
{ "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
|
|
{ "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
|
|
{ "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
|
|
{ "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
|
|
{ "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
|
|
{ "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
|
|
{ "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
|
|
{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
|
|
|
|
{ "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
|
|
{ "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
|
|
{ "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
|
|
|
|
{ "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
|
|
{ "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
|
|
{ "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
|
|
|
|
{ "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
|
|
{ "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
|
|
{ "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
|
|
|
|
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
|
|
{ "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) },
|
|
{ "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
|
|
{ "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
|
|
{ "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
|
|
{ "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
|
|
{ "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
|
|
{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
|
|
{ "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
|
|
{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
|
|
{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
|
|
{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
|
|
|
|
/* Catalyst / On Semiconductor -- non-JEDEC */
|
|
{ "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
{ "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
{ },
|
|
};
|
|
|
|
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
|
|
{
|
|
int tmp;
|
|
u8 id[SPI_NOR_MAX_ID_LEN];
|
|
const struct flash_info *info;
|
|
|
|
tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
|
|
if (tmp < 0) {
|
|
dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
|
|
return ERR_PTR(tmp);
|
|
}
|
|
|
|
for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
|
|
info = &spi_nor_ids[tmp];
|
|
if (info->id_len) {
|
|
if (!memcmp(info->id, id, info->id_len))
|
|
return &spi_nor_ids[tmp];
|
|
}
|
|
}
|
|
dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
|
|
id[0], id[1], id[2]);
|
|
return ERR_PTR(-ENODEV);
|
|
}
|
|
|
|
static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
int ret;
|
|
|
|
dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
|
|
|
|
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nor->read(nor, from, len, retlen, buf);
|
|
|
|
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
|
|
return ret;
|
|
}
|
|
|
|
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
size_t actual;
|
|
int ret;
|
|
|
|
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
|
|
|
|
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
write_enable(nor);
|
|
|
|
nor->sst_write_second = false;
|
|
|
|
actual = to % 2;
|
|
/* Start write from odd address. */
|
|
if (actual) {
|
|
nor->program_opcode = SPINOR_OP_BP;
|
|
|
|
/* write one byte. */
|
|
nor->write(nor, to, 1, retlen, buf);
|
|
ret = spi_nor_wait_till_ready(nor);
|
|
if (ret)
|
|
goto time_out;
|
|
}
|
|
to += actual;
|
|
|
|
/* Write out most of the data here. */
|
|
for (; actual < len - 1; actual += 2) {
|
|
nor->program_opcode = SPINOR_OP_AAI_WP;
|
|
|
|
/* write two bytes. */
|
|
nor->write(nor, to, 2, retlen, buf + actual);
|
|
ret = spi_nor_wait_till_ready(nor);
|
|
if (ret)
|
|
goto time_out;
|
|
to += 2;
|
|
nor->sst_write_second = true;
|
|
}
|
|
nor->sst_write_second = false;
|
|
|
|
write_disable(nor);
|
|
ret = spi_nor_wait_till_ready(nor);
|
|
if (ret)
|
|
goto time_out;
|
|
|
|
/* Write out trailing byte if it exists. */
|
|
if (actual != len) {
|
|
write_enable(nor);
|
|
|
|
nor->program_opcode = SPINOR_OP_BP;
|
|
nor->write(nor, to, 1, retlen, buf + actual);
|
|
|
|
ret = spi_nor_wait_till_ready(nor);
|
|
if (ret)
|
|
goto time_out;
|
|
write_disable(nor);
|
|
}
|
|
time_out:
|
|
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Write an address range to the nor chip. Data must be written in
|
|
* FLASH_PAGESIZE chunks. The address range may be any size provided
|
|
* it is within the physical boundaries.
|
|
*/
|
|
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
u32 page_offset, page_size, i;
|
|
int ret;
|
|
|
|
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
|
|
|
|
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
write_enable(nor);
|
|
|
|
page_offset = to & (nor->page_size - 1);
|
|
|
|
/* do all the bytes fit onto one page? */
|
|
if (page_offset + len <= nor->page_size) {
|
|
nor->write(nor, to, len, retlen, buf);
|
|
} else {
|
|
/* the size of data remaining on the first page */
|
|
page_size = nor->page_size - page_offset;
|
|
nor->write(nor, to, page_size, retlen, buf);
|
|
|
|
/* write everything in nor->page_size chunks */
|
|
for (i = page_size; i < len; i += page_size) {
|
|
page_size = len - i;
|
|
if (page_size > nor->page_size)
|
|
page_size = nor->page_size;
|
|
|
|
ret = spi_nor_wait_till_ready(nor);
|
|
if (ret)
|
|
goto write_err;
|
|
|
|
write_enable(nor);
|
|
|
|
nor->write(nor, to + i, page_size, retlen, buf + i);
|
|
}
|
|
}
|
|
|
|
ret = spi_nor_wait_till_ready(nor);
|
|
write_err:
|
|
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
|
|
return ret;
|
|
}
|
|
|
|
static int macronix_quad_enable(struct spi_nor *nor)
|
|
{
|
|
int ret, val;
|
|
|
|
val = read_sr(nor);
|
|
if (val < 0)
|
|
return val;
|
|
write_enable(nor);
|
|
|
|
write_sr(nor, val | SR_QUAD_EN_MX);
|
|
|
|
if (spi_nor_wait_till_ready(nor))
|
|
return 1;
|
|
|
|
ret = read_sr(nor);
|
|
if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
|
|
dev_err(nor->dev, "Macronix Quad bit not set\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write status Register and configuration register with 2 bytes
|
|
* The first byte will be written to the status register, while the
|
|
* second byte will be written to the configuration register.
|
|
* Return negative if error occured.
|
|
*/
|
|
static int write_sr_cr(struct spi_nor *nor, u16 val)
|
|
{
|
|
nor->cmd_buf[0] = val & 0xff;
|
|
nor->cmd_buf[1] = (val >> 8);
|
|
|
|
return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2);
|
|
}
|
|
|
|
static int spansion_quad_enable(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
int quad_en = CR_QUAD_EN_SPAN << 8;
|
|
|
|
write_enable(nor);
|
|
|
|
ret = write_sr_cr(nor, quad_en);
|
|
if (ret < 0) {
|
|
dev_err(nor->dev,
|
|
"error while writing configuration register\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* read back and check it */
|
|
ret = read_cr(nor);
|
|
if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
|
|
dev_err(nor->dev, "Spansion Quad bit not set\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info)
|
|
{
|
|
int status;
|
|
|
|
switch (JEDEC_MFR(info)) {
|
|
case SNOR_MFR_MACRONIX:
|
|
status = macronix_quad_enable(nor);
|
|
if (status) {
|
|
dev_err(nor->dev, "Macronix quad-read not enabled\n");
|
|
return -EINVAL;
|
|
}
|
|
return status;
|
|
case SNOR_MFR_MICRON:
|
|
return 0;
|
|
default:
|
|
status = spansion_quad_enable(nor);
|
|
if (status) {
|
|
dev_err(nor->dev, "Spansion quad-read not enabled\n");
|
|
return -EINVAL;
|
|
}
|
|
return status;
|
|
}
|
|
}
|
|
|
|
static int spi_nor_check(struct spi_nor *nor)
|
|
{
|
|
if (!nor->dev || !nor->read || !nor->write ||
|
|
!nor->read_reg || !nor->write_reg) {
|
|
pr_err("spi-nor: please fill all the necessary fields!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
|
|
{
|
|
const struct flash_info *info = NULL;
|
|
struct device *dev = nor->dev;
|
|
struct mtd_info *mtd = &nor->mtd;
|
|
struct device_node *np = spi_nor_get_flash_node(nor);
|
|
int ret;
|
|
int i;
|
|
|
|
ret = spi_nor_check(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (name)
|
|
info = spi_nor_match_id(name);
|
|
/* Try to auto-detect if chip name wasn't specified or not found */
|
|
if (!info)
|
|
info = spi_nor_read_id(nor);
|
|
if (IS_ERR_OR_NULL(info))
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* If caller has specified name of flash model that can normally be
|
|
* detected using JEDEC, let's verify it.
|
|
*/
|
|
if (name && info->id_len) {
|
|
const struct flash_info *jinfo;
|
|
|
|
jinfo = spi_nor_read_id(nor);
|
|
if (IS_ERR(jinfo)) {
|
|
return PTR_ERR(jinfo);
|
|
} else if (jinfo != info) {
|
|
/*
|
|
* JEDEC knows better, so overwrite platform ID. We
|
|
* can't trust partitions any longer, but we'll let
|
|
* mtd apply them anyway, since some partitions may be
|
|
* marked read-only, and we don't want to lose that
|
|
* information, even if it's not 100% accurate.
|
|
*/
|
|
dev_warn(dev, "found %s, expected %s\n",
|
|
jinfo->name, info->name);
|
|
info = jinfo;
|
|
}
|
|
}
|
|
|
|
mutex_init(&nor->lock);
|
|
|
|
/*
|
|
* Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
|
|
* with the software protection bits set
|
|
*/
|
|
|
|
if (JEDEC_MFR(info) == SNOR_MFR_ATMEL ||
|
|
JEDEC_MFR(info) == SNOR_MFR_INTEL ||
|
|
JEDEC_MFR(info) == SNOR_MFR_SST) {
|
|
write_enable(nor);
|
|
write_sr(nor, 0);
|
|
}
|
|
|
|
if (!mtd->name)
|
|
mtd->name = dev_name(dev);
|
|
mtd->priv = nor;
|
|
mtd->type = MTD_NORFLASH;
|
|
mtd->writesize = 1;
|
|
mtd->flags = MTD_CAP_NORFLASH;
|
|
mtd->size = info->sector_size * info->n_sectors;
|
|
mtd->_erase = spi_nor_erase;
|
|
mtd->_read = spi_nor_read;
|
|
|
|
/* NOR protection support for STmicro/Micron chips and similar */
|
|
if (JEDEC_MFR(info) == SNOR_MFR_MICRON) {
|
|
nor->flash_lock = stm_lock;
|
|
nor->flash_unlock = stm_unlock;
|
|
nor->flash_is_locked = stm_is_locked;
|
|
}
|
|
|
|
if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
|
|
mtd->_lock = spi_nor_lock;
|
|
mtd->_unlock = spi_nor_unlock;
|
|
mtd->_is_locked = spi_nor_is_locked;
|
|
}
|
|
|
|
/* sst nor chips use AAI word program */
|
|
if (info->flags & SST_WRITE)
|
|
mtd->_write = sst_write;
|
|
else
|
|
mtd->_write = spi_nor_write;
|
|
|
|
if (info->flags & USE_FSR)
|
|
nor->flags |= SNOR_F_USE_FSR;
|
|
|
|
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
|
|
/* prefer "small sector" erase if possible */
|
|
if (info->flags & SECT_4K) {
|
|
nor->erase_opcode = SPINOR_OP_BE_4K;
|
|
mtd->erasesize = 4096;
|
|
} else if (info->flags & SECT_4K_PMC) {
|
|
nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
|
|
mtd->erasesize = 4096;
|
|
} else
|
|
#endif
|
|
{
|
|
nor->erase_opcode = SPINOR_OP_SE;
|
|
mtd->erasesize = info->sector_size;
|
|
}
|
|
|
|
if (info->flags & SPI_NOR_NO_ERASE)
|
|
mtd->flags |= MTD_NO_ERASE;
|
|
|
|
mtd->dev.parent = dev;
|
|
nor->page_size = info->page_size;
|
|
mtd->writebufsize = nor->page_size;
|
|
|
|
if (np) {
|
|
/* If we were instantiated by DT, use it */
|
|
if (of_property_read_bool(np, "m25p,fast-read"))
|
|
nor->flash_read = SPI_NOR_FAST;
|
|
else
|
|
nor->flash_read = SPI_NOR_NORMAL;
|
|
} else {
|
|
/* If we weren't instantiated by DT, default to fast-read */
|
|
nor->flash_read = SPI_NOR_FAST;
|
|
}
|
|
|
|
/* Some devices cannot do fast-read, no matter what DT tells us */
|
|
if (info->flags & SPI_NOR_NO_FR)
|
|
nor->flash_read = SPI_NOR_NORMAL;
|
|
|
|
/* Quad/Dual-read mode takes precedence over fast/normal */
|
|
if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
|
|
ret = set_quad_mode(nor, info);
|
|
if (ret) {
|
|
dev_err(dev, "quad mode not supported\n");
|
|
return ret;
|
|
}
|
|
nor->flash_read = SPI_NOR_QUAD;
|
|
} else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
|
|
nor->flash_read = SPI_NOR_DUAL;
|
|
}
|
|
|
|
/* Default commands */
|
|
switch (nor->flash_read) {
|
|
case SPI_NOR_QUAD:
|
|
nor->read_opcode = SPINOR_OP_READ_1_1_4;
|
|
break;
|
|
case SPI_NOR_DUAL:
|
|
nor->read_opcode = SPINOR_OP_READ_1_1_2;
|
|
break;
|
|
case SPI_NOR_FAST:
|
|
nor->read_opcode = SPINOR_OP_READ_FAST;
|
|
break;
|
|
case SPI_NOR_NORMAL:
|
|
nor->read_opcode = SPINOR_OP_READ;
|
|
break;
|
|
default:
|
|
dev_err(dev, "No Read opcode defined\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
nor->program_opcode = SPINOR_OP_PP;
|
|
|
|
if (info->addr_width)
|
|
nor->addr_width = info->addr_width;
|
|
else if (mtd->size > 0x1000000) {
|
|
/* enable 4-byte addressing if the device exceeds 16MiB */
|
|
nor->addr_width = 4;
|
|
if (JEDEC_MFR(info) == SNOR_MFR_SPANSION) {
|
|
/* Dedicated 4-byte command set */
|
|
switch (nor->flash_read) {
|
|
case SPI_NOR_QUAD:
|
|
nor->read_opcode = SPINOR_OP_READ4_1_1_4;
|
|
break;
|
|
case SPI_NOR_DUAL:
|
|
nor->read_opcode = SPINOR_OP_READ4_1_1_2;
|
|
break;
|
|
case SPI_NOR_FAST:
|
|
nor->read_opcode = SPINOR_OP_READ4_FAST;
|
|
break;
|
|
case SPI_NOR_NORMAL:
|
|
nor->read_opcode = SPINOR_OP_READ4;
|
|
break;
|
|
}
|
|
nor->program_opcode = SPINOR_OP_PP_4B;
|
|
/* No small sector erase for 4-byte command set */
|
|
nor->erase_opcode = SPINOR_OP_SE_4B;
|
|
mtd->erasesize = info->sector_size;
|
|
} else
|
|
set_4byte(nor, info, 1);
|
|
} else {
|
|
nor->addr_width = 3;
|
|
}
|
|
|
|
if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
|
|
dev_err(dev, "address width is too large: %u\n",
|
|
nor->addr_width);
|
|
return -EINVAL;
|
|
}
|
|
|
|
nor->read_dummy = spi_nor_read_dummy_cycles(nor);
|
|
|
|
dev_info(dev, "%s (%lld Kbytes)\n", info->name,
|
|
(long long)mtd->size >> 10);
|
|
|
|
dev_dbg(dev,
|
|
"mtd .name = %s, .size = 0x%llx (%lldMiB), "
|
|
".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
|
|
mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
|
|
mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
|
|
|
|
if (mtd->numeraseregions)
|
|
for (i = 0; i < mtd->numeraseregions; i++)
|
|
dev_dbg(dev,
|
|
"mtd.eraseregions[%d] = { .offset = 0x%llx, "
|
|
".erasesize = 0x%.8x (%uKiB), "
|
|
".numblocks = %d }\n",
|
|
i, (long long)mtd->eraseregions[i].offset,
|
|
mtd->eraseregions[i].erasesize,
|
|
mtd->eraseregions[i].erasesize / 1024,
|
|
mtd->eraseregions[i].numblocks);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_nor_scan);
|
|
|
|
static const struct flash_info *spi_nor_match_id(const char *name)
|
|
{
|
|
const struct flash_info *id = spi_nor_ids;
|
|
|
|
while (id->name) {
|
|
if (!strcmp(name, id->name))
|
|
return id;
|
|
id++;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
|
|
MODULE_AUTHOR("Mike Lavender");
|
|
MODULE_DESCRIPTION("framework for SPI NOR");
|