linux/fs/xattr.c
Christian Brauner 3b4c7bc017
xattr: use rbtree for simple_xattrs
A while ago Vasily reported that it is possible to set a large number of
xattrs on inodes of filesystems that make use of the simple xattr
infrastructure. This includes all kernfs-based filesystems that support
xattrs (e.g., cgroupfs and tmpfs). Both cgroupfs and tmpfs can be
mounted by unprivileged users in unprivileged containers and root in an
unprivileged container can set an unrestricted number of security.*
xattrs and privileged users can also set unlimited trusted.* xattrs. As
there are apparently users that have a fairly large number of xattrs we
should scale a bit better. Other xattrs such as user.* are restricted
for kernfs-based instances to a fairly limited number.

Using a simple linked list protected by a spinlock used for set, get,
and list operations doesn't scale well if users use a lot of xattrs even
if it's not a crazy number. There's no need to bring in the big guns
like rhashtables or rw semaphores for this. An rbtree with a rwlock, or
limited rcu semanics and seqlock is enough.

It scales within the constraints we are working in. By far the most
common operation is getting an xattr. Setting xattrs should be a
moderately rare operation. And listxattr() often only happens when
copying xattrs between files or together with the contents to a new
file. Holding a lock across listxattr() is unproblematic because it
doesn't list the values of xattrs. It can only be used to list the names
of all xattrs set on a file. And the number of xattr names that can be
listed with listxattr() is limited to XATTR_LIST_MAX aka 65536 bytes. If
a larger buffer is passed then vfs_listxattr() caps it to XATTR_LIST_MAX
and if more xattr names are found it will return -E2BIG. In short, the
maximum amount of memory that can be retrieved via listxattr() is
limited.

Of course, the API is broken as documented on xattr(7) already. In the
future we might want to address this but for now this is the world we
live in and have lived for a long time. But it does indeed mean that
once an application goes over XATTR_LIST_MAX limit of xattrs set on an
inode it isn't possible to copy the file and include its xattrs in the
copy unless the caller knows all xattrs or limits the copy of the xattrs
to important ones it knows by name (At least for tmpfs, and kernfs-based
filesystems. Other filesystems might provide ways of achieving this.).

Bonus of this port to rbtree+rwlock is that we shrink the memory
consumption for users of the simple xattr infrastructure.

Also add proper kernel documentation to all the functions.
A big thanks to Paul for his comments.

Cc: Vasily Averin <vvs@openvz.org>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2022-11-12 10:49:26 +01:00

1373 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
File: fs/xattr.c
Extended attribute handling.
Copyright (C) 2001 by Andreas Gruenbacher <a.gruenbacher@computer.org>
Copyright (C) 2001 SGI - Silicon Graphics, Inc <linux-xfs@oss.sgi.com>
Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
*/
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/xattr.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/security.h>
#include <linux/evm.h>
#include <linux/syscalls.h>
#include <linux/export.h>
#include <linux/fsnotify.h>
#include <linux/audit.h>
#include <linux/vmalloc.h>
#include <linux/posix_acl_xattr.h>
#include <linux/uaccess.h>
#include "internal.h"
static const char *
strcmp_prefix(const char *a, const char *a_prefix)
{
while (*a_prefix && *a == *a_prefix) {
a++;
a_prefix++;
}
return *a_prefix ? NULL : a;
}
/*
* In order to implement different sets of xattr operations for each xattr
* prefix, a filesystem should create a null-terminated array of struct
* xattr_handler (one for each prefix) and hang a pointer to it off of the
* s_xattr field of the superblock.
*/
#define for_each_xattr_handler(handlers, handler) \
if (handlers) \
for ((handler) = *(handlers)++; \
(handler) != NULL; \
(handler) = *(handlers)++)
/*
* Find the xattr_handler with the matching prefix.
*/
static const struct xattr_handler *
xattr_resolve_name(struct inode *inode, const char **name)
{
const struct xattr_handler **handlers = inode->i_sb->s_xattr;
const struct xattr_handler *handler;
if (!(inode->i_opflags & IOP_XATTR)) {
if (unlikely(is_bad_inode(inode)))
return ERR_PTR(-EIO);
return ERR_PTR(-EOPNOTSUPP);
}
for_each_xattr_handler(handlers, handler) {
const char *n;
n = strcmp_prefix(*name, xattr_prefix(handler));
if (n) {
if (!handler->prefix ^ !*n) {
if (*n)
continue;
return ERR_PTR(-EINVAL);
}
*name = n;
return handler;
}
}
return ERR_PTR(-EOPNOTSUPP);
}
/*
* Check permissions for extended attribute access. This is a bit complicated
* because different namespaces have very different rules.
*/
static int
xattr_permission(struct user_namespace *mnt_userns, struct inode *inode,
const char *name, int mask)
{
/*
* We can never set or remove an extended attribute on a read-only
* filesystem or on an immutable / append-only inode.
*/
if (mask & MAY_WRITE) {
if (IS_IMMUTABLE(inode) || IS_APPEND(inode))
return -EPERM;
/*
* Updating an xattr will likely cause i_uid and i_gid
* to be writen back improperly if their true value is
* unknown to the vfs.
*/
if (HAS_UNMAPPED_ID(mnt_userns, inode))
return -EPERM;
}
/*
* No restriction for security.* and system.* from the VFS. Decision
* on these is left to the underlying filesystem / security module.
*/
if (!strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN) ||
!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
return 0;
/*
* The trusted.* namespace can only be accessed by privileged users.
*/
if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN)) {
if (!capable(CAP_SYS_ADMIN))
return (mask & MAY_WRITE) ? -EPERM : -ENODATA;
return 0;
}
/*
* In the user.* namespace, only regular files and directories can have
* extended attributes. For sticky directories, only the owner and
* privileged users can write attributes.
*/
if (!strncmp(name, XATTR_USER_PREFIX, XATTR_USER_PREFIX_LEN)) {
if (!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
return (mask & MAY_WRITE) ? -EPERM : -ENODATA;
if (S_ISDIR(inode->i_mode) && (inode->i_mode & S_ISVTX) &&
(mask & MAY_WRITE) &&
!inode_owner_or_capable(mnt_userns, inode))
return -EPERM;
}
return inode_permission(mnt_userns, inode, mask);
}
/*
* Look for any handler that deals with the specified namespace.
*/
int
xattr_supported_namespace(struct inode *inode, const char *prefix)
{
const struct xattr_handler **handlers = inode->i_sb->s_xattr;
const struct xattr_handler *handler;
size_t preflen;
if (!(inode->i_opflags & IOP_XATTR)) {
if (unlikely(is_bad_inode(inode)))
return -EIO;
return -EOPNOTSUPP;
}
preflen = strlen(prefix);
for_each_xattr_handler(handlers, handler) {
if (!strncmp(xattr_prefix(handler), prefix, preflen))
return 0;
}
return -EOPNOTSUPP;
}
EXPORT_SYMBOL(xattr_supported_namespace);
int
__vfs_setxattr(struct user_namespace *mnt_userns, struct dentry *dentry,
struct inode *inode, const char *name, const void *value,
size_t size, int flags)
{
const struct xattr_handler *handler;
handler = xattr_resolve_name(inode, &name);
if (IS_ERR(handler))
return PTR_ERR(handler);
if (!handler->set)
return -EOPNOTSUPP;
if (size == 0)
value = ""; /* empty EA, do not remove */
return handler->set(handler, mnt_userns, dentry, inode, name, value,
size, flags);
}
EXPORT_SYMBOL(__vfs_setxattr);
/**
* __vfs_setxattr_noperm - perform setxattr operation without performing
* permission checks.
*
* @mnt_userns: user namespace of the mount the inode was found from
* @dentry: object to perform setxattr on
* @name: xattr name to set
* @value: value to set @name to
* @size: size of @value
* @flags: flags to pass into filesystem operations
*
* returns the result of the internal setxattr or setsecurity operations.
*
* This function requires the caller to lock the inode's i_mutex before it
* is executed. It also assumes that the caller will make the appropriate
* permission checks.
*/
int __vfs_setxattr_noperm(struct user_namespace *mnt_userns,
struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
struct inode *inode = dentry->d_inode;
int error = -EAGAIN;
int issec = !strncmp(name, XATTR_SECURITY_PREFIX,
XATTR_SECURITY_PREFIX_LEN);
if (issec)
inode->i_flags &= ~S_NOSEC;
if (inode->i_opflags & IOP_XATTR) {
error = __vfs_setxattr(mnt_userns, dentry, inode, name, value,
size, flags);
if (!error) {
fsnotify_xattr(dentry);
security_inode_post_setxattr(dentry, name, value,
size, flags);
}
} else {
if (unlikely(is_bad_inode(inode)))
return -EIO;
}
if (error == -EAGAIN) {
error = -EOPNOTSUPP;
if (issec) {
const char *suffix = name + XATTR_SECURITY_PREFIX_LEN;
error = security_inode_setsecurity(inode, suffix, value,
size, flags);
if (!error)
fsnotify_xattr(dentry);
}
}
return error;
}
/**
* __vfs_setxattr_locked - set an extended attribute while holding the inode
* lock
*
* @mnt_userns: user namespace of the mount of the target inode
* @dentry: object to perform setxattr on
* @name: xattr name to set
* @value: value to set @name to
* @size: size of @value
* @flags: flags to pass into filesystem operations
* @delegated_inode: on return, will contain an inode pointer that
* a delegation was broken on, NULL if none.
*/
int
__vfs_setxattr_locked(struct user_namespace *mnt_userns, struct dentry *dentry,
const char *name, const void *value, size_t size,
int flags, struct inode **delegated_inode)
{
struct inode *inode = dentry->d_inode;
int error;
error = xattr_permission(mnt_userns, inode, name, MAY_WRITE);
if (error)
return error;
error = security_inode_setxattr(mnt_userns, dentry, name, value, size,
flags);
if (error)
goto out;
error = try_break_deleg(inode, delegated_inode);
if (error)
goto out;
error = __vfs_setxattr_noperm(mnt_userns, dentry, name, value,
size, flags);
out:
return error;
}
EXPORT_SYMBOL_GPL(__vfs_setxattr_locked);
static inline bool is_posix_acl_xattr(const char *name)
{
return (strcmp(name, XATTR_NAME_POSIX_ACL_ACCESS) == 0) ||
(strcmp(name, XATTR_NAME_POSIX_ACL_DEFAULT) == 0);
}
int
vfs_setxattr(struct user_namespace *mnt_userns, struct dentry *dentry,
const char *name, const void *value, size_t size, int flags)
{
struct inode *inode = dentry->d_inode;
struct inode *delegated_inode = NULL;
const void *orig_value = value;
int error;
if (size && strcmp(name, XATTR_NAME_CAPS) == 0) {
error = cap_convert_nscap(mnt_userns, dentry, &value, size);
if (error < 0)
return error;
size = error;
}
retry_deleg:
inode_lock(inode);
error = __vfs_setxattr_locked(mnt_userns, dentry, name, value, size,
flags, &delegated_inode);
inode_unlock(inode);
if (delegated_inode) {
error = break_deleg_wait(&delegated_inode);
if (!error)
goto retry_deleg;
}
if (value != orig_value)
kfree(value);
return error;
}
EXPORT_SYMBOL_GPL(vfs_setxattr);
static ssize_t
xattr_getsecurity(struct user_namespace *mnt_userns, struct inode *inode,
const char *name, void *value, size_t size)
{
void *buffer = NULL;
ssize_t len;
if (!value || !size) {
len = security_inode_getsecurity(mnt_userns, inode, name,
&buffer, false);
goto out_noalloc;
}
len = security_inode_getsecurity(mnt_userns, inode, name, &buffer,
true);
if (len < 0)
return len;
if (size < len) {
len = -ERANGE;
goto out;
}
memcpy(value, buffer, len);
out:
kfree(buffer);
out_noalloc:
return len;
}
/*
* vfs_getxattr_alloc - allocate memory, if necessary, before calling getxattr
*
* Allocate memory, if not already allocated, or re-allocate correct size,
* before retrieving the extended attribute.
*
* Returns the result of alloc, if failed, or the getxattr operation.
*/
ssize_t
vfs_getxattr_alloc(struct user_namespace *mnt_userns, struct dentry *dentry,
const char *name, char **xattr_value, size_t xattr_size,
gfp_t flags)
{
const struct xattr_handler *handler;
struct inode *inode = dentry->d_inode;
char *value = *xattr_value;
int error;
error = xattr_permission(mnt_userns, inode, name, MAY_READ);
if (error)
return error;
handler = xattr_resolve_name(inode, &name);
if (IS_ERR(handler))
return PTR_ERR(handler);
if (!handler->get)
return -EOPNOTSUPP;
error = handler->get(handler, dentry, inode, name, NULL, 0);
if (error < 0)
return error;
if (!value || (error > xattr_size)) {
value = krealloc(*xattr_value, error + 1, flags);
if (!value)
return -ENOMEM;
memset(value, 0, error + 1);
}
error = handler->get(handler, dentry, inode, name, value, error);
*xattr_value = value;
return error;
}
ssize_t
__vfs_getxattr(struct dentry *dentry, struct inode *inode, const char *name,
void *value, size_t size)
{
const struct xattr_handler *handler;
handler = xattr_resolve_name(inode, &name);
if (IS_ERR(handler))
return PTR_ERR(handler);
if (!handler->get)
return -EOPNOTSUPP;
return handler->get(handler, dentry, inode, name, value, size);
}
EXPORT_SYMBOL(__vfs_getxattr);
ssize_t
vfs_getxattr(struct user_namespace *mnt_userns, struct dentry *dentry,
const char *name, void *value, size_t size)
{
struct inode *inode = dentry->d_inode;
int error;
error = xattr_permission(mnt_userns, inode, name, MAY_READ);
if (error)
return error;
error = security_inode_getxattr(dentry, name);
if (error)
return error;
if (!strncmp(name, XATTR_SECURITY_PREFIX,
XATTR_SECURITY_PREFIX_LEN)) {
const char *suffix = name + XATTR_SECURITY_PREFIX_LEN;
int ret = xattr_getsecurity(mnt_userns, inode, suffix, value,
size);
/*
* Only overwrite the return value if a security module
* is actually active.
*/
if (ret == -EOPNOTSUPP)
goto nolsm;
return ret;
}
nolsm:
error = __vfs_getxattr(dentry, inode, name, value, size);
if (error > 0 && is_posix_acl_xattr(name))
posix_acl_getxattr_idmapped_mnt(mnt_userns, inode, value, size);
return error;
}
EXPORT_SYMBOL_GPL(vfs_getxattr);
ssize_t
vfs_listxattr(struct dentry *dentry, char *list, size_t size)
{
struct inode *inode = d_inode(dentry);
ssize_t error;
error = security_inode_listxattr(dentry);
if (error)
return error;
if (inode->i_op->listxattr && (inode->i_opflags & IOP_XATTR)) {
error = inode->i_op->listxattr(dentry, list, size);
} else {
error = security_inode_listsecurity(inode, list, size);
if (size && error > size)
error = -ERANGE;
}
return error;
}
EXPORT_SYMBOL_GPL(vfs_listxattr);
int
__vfs_removexattr(struct user_namespace *mnt_userns, struct dentry *dentry,
const char *name)
{
struct inode *inode = d_inode(dentry);
const struct xattr_handler *handler;
handler = xattr_resolve_name(inode, &name);
if (IS_ERR(handler))
return PTR_ERR(handler);
if (!handler->set)
return -EOPNOTSUPP;
return handler->set(handler, mnt_userns, dentry, inode, name, NULL, 0,
XATTR_REPLACE);
}
EXPORT_SYMBOL(__vfs_removexattr);
/**
* __vfs_removexattr_locked - set an extended attribute while holding the inode
* lock
*
* @mnt_userns: user namespace of the mount of the target inode
* @dentry: object to perform setxattr on
* @name: name of xattr to remove
* @delegated_inode: on return, will contain an inode pointer that
* a delegation was broken on, NULL if none.
*/
int
__vfs_removexattr_locked(struct user_namespace *mnt_userns,
struct dentry *dentry, const char *name,
struct inode **delegated_inode)
{
struct inode *inode = dentry->d_inode;
int error;
error = xattr_permission(mnt_userns, inode, name, MAY_WRITE);
if (error)
return error;
error = security_inode_removexattr(mnt_userns, dentry, name);
if (error)
goto out;
error = try_break_deleg(inode, delegated_inode);
if (error)
goto out;
error = __vfs_removexattr(mnt_userns, dentry, name);
if (!error) {
fsnotify_xattr(dentry);
evm_inode_post_removexattr(dentry, name);
}
out:
return error;
}
EXPORT_SYMBOL_GPL(__vfs_removexattr_locked);
int
vfs_removexattr(struct user_namespace *mnt_userns, struct dentry *dentry,
const char *name)
{
struct inode *inode = dentry->d_inode;
struct inode *delegated_inode = NULL;
int error;
retry_deleg:
inode_lock(inode);
error = __vfs_removexattr_locked(mnt_userns, dentry,
name, &delegated_inode);
inode_unlock(inode);
if (delegated_inode) {
error = break_deleg_wait(&delegated_inode);
if (!error)
goto retry_deleg;
}
return error;
}
EXPORT_SYMBOL_GPL(vfs_removexattr);
/*
* Extended attribute SET operations
*/
int setxattr_copy(const char __user *name, struct xattr_ctx *ctx)
{
int error;
if (ctx->flags & ~(XATTR_CREATE|XATTR_REPLACE))
return -EINVAL;
error = strncpy_from_user(ctx->kname->name, name,
sizeof(ctx->kname->name));
if (error == 0 || error == sizeof(ctx->kname->name))
return -ERANGE;
if (error < 0)
return error;
error = 0;
if (ctx->size) {
if (ctx->size > XATTR_SIZE_MAX)
return -E2BIG;
ctx->kvalue = vmemdup_user(ctx->cvalue, ctx->size);
if (IS_ERR(ctx->kvalue)) {
error = PTR_ERR(ctx->kvalue);
ctx->kvalue = NULL;
}
}
return error;
}
static void setxattr_convert(struct user_namespace *mnt_userns,
struct dentry *d, struct xattr_ctx *ctx)
{
if (ctx->size && is_posix_acl_xattr(ctx->kname->name))
posix_acl_fix_xattr_from_user(ctx->kvalue, ctx->size);
}
int do_setxattr(struct user_namespace *mnt_userns, struct dentry *dentry,
struct xattr_ctx *ctx)
{
setxattr_convert(mnt_userns, dentry, ctx);
return vfs_setxattr(mnt_userns, dentry, ctx->kname->name,
ctx->kvalue, ctx->size, ctx->flags);
}
static long
setxattr(struct user_namespace *mnt_userns, struct dentry *d,
const char __user *name, const void __user *value, size_t size,
int flags)
{
struct xattr_name kname;
struct xattr_ctx ctx = {
.cvalue = value,
.kvalue = NULL,
.size = size,
.kname = &kname,
.flags = flags,
};
int error;
error = setxattr_copy(name, &ctx);
if (error)
return error;
error = do_setxattr(mnt_userns, d, &ctx);
kvfree(ctx.kvalue);
return error;
}
static int path_setxattr(const char __user *pathname,
const char __user *name, const void __user *value,
size_t size, int flags, unsigned int lookup_flags)
{
struct path path;
int error;
retry:
error = user_path_at(AT_FDCWD, pathname, lookup_flags, &path);
if (error)
return error;
error = mnt_want_write(path.mnt);
if (!error) {
error = setxattr(mnt_user_ns(path.mnt), path.dentry, name,
value, size, flags);
mnt_drop_write(path.mnt);
}
path_put(&path);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
return error;
}
SYSCALL_DEFINE5(setxattr, const char __user *, pathname,
const char __user *, name, const void __user *, value,
size_t, size, int, flags)
{
return path_setxattr(pathname, name, value, size, flags, LOOKUP_FOLLOW);
}
SYSCALL_DEFINE5(lsetxattr, const char __user *, pathname,
const char __user *, name, const void __user *, value,
size_t, size, int, flags)
{
return path_setxattr(pathname, name, value, size, flags, 0);
}
SYSCALL_DEFINE5(fsetxattr, int, fd, const char __user *, name,
const void __user *,value, size_t, size, int, flags)
{
struct fd f = fdget(fd);
int error = -EBADF;
if (!f.file)
return error;
audit_file(f.file);
error = mnt_want_write_file(f.file);
if (!error) {
error = setxattr(file_mnt_user_ns(f.file),
f.file->f_path.dentry, name,
value, size, flags);
mnt_drop_write_file(f.file);
}
fdput(f);
return error;
}
/*
* Extended attribute GET operations
*/
ssize_t
do_getxattr(struct user_namespace *mnt_userns, struct dentry *d,
struct xattr_ctx *ctx)
{
ssize_t error;
char *kname = ctx->kname->name;
if (ctx->size) {
if (ctx->size > XATTR_SIZE_MAX)
ctx->size = XATTR_SIZE_MAX;
ctx->kvalue = kvzalloc(ctx->size, GFP_KERNEL);
if (!ctx->kvalue)
return -ENOMEM;
}
error = vfs_getxattr(mnt_userns, d, kname, ctx->kvalue, ctx->size);
if (error > 0) {
if (is_posix_acl_xattr(kname))
posix_acl_fix_xattr_to_user(ctx->kvalue, error);
if (ctx->size && copy_to_user(ctx->value, ctx->kvalue, error))
error = -EFAULT;
} else if (error == -ERANGE && ctx->size >= XATTR_SIZE_MAX) {
/* The file system tried to returned a value bigger
than XATTR_SIZE_MAX bytes. Not possible. */
error = -E2BIG;
}
return error;
}
static ssize_t
getxattr(struct user_namespace *mnt_userns, struct dentry *d,
const char __user *name, void __user *value, size_t size)
{
ssize_t error;
struct xattr_name kname;
struct xattr_ctx ctx = {
.value = value,
.kvalue = NULL,
.size = size,
.kname = &kname,
.flags = 0,
};
error = strncpy_from_user(kname.name, name, sizeof(kname.name));
if (error == 0 || error == sizeof(kname.name))
error = -ERANGE;
if (error < 0)
return error;
error = do_getxattr(mnt_userns, d, &ctx);
kvfree(ctx.kvalue);
return error;
}
static ssize_t path_getxattr(const char __user *pathname,
const char __user *name, void __user *value,
size_t size, unsigned int lookup_flags)
{
struct path path;
ssize_t error;
retry:
error = user_path_at(AT_FDCWD, pathname, lookup_flags, &path);
if (error)
return error;
error = getxattr(mnt_user_ns(path.mnt), path.dentry, name, value, size);
path_put(&path);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
return error;
}
SYSCALL_DEFINE4(getxattr, const char __user *, pathname,
const char __user *, name, void __user *, value, size_t, size)
{
return path_getxattr(pathname, name, value, size, LOOKUP_FOLLOW);
}
SYSCALL_DEFINE4(lgetxattr, const char __user *, pathname,
const char __user *, name, void __user *, value, size_t, size)
{
return path_getxattr(pathname, name, value, size, 0);
}
SYSCALL_DEFINE4(fgetxattr, int, fd, const char __user *, name,
void __user *, value, size_t, size)
{
struct fd f = fdget(fd);
ssize_t error = -EBADF;
if (!f.file)
return error;
audit_file(f.file);
error = getxattr(file_mnt_user_ns(f.file), f.file->f_path.dentry,
name, value, size);
fdput(f);
return error;
}
/*
* Extended attribute LIST operations
*/
static ssize_t
listxattr(struct dentry *d, char __user *list, size_t size)
{
ssize_t error;
char *klist = NULL;
if (size) {
if (size > XATTR_LIST_MAX)
size = XATTR_LIST_MAX;
klist = kvmalloc(size, GFP_KERNEL);
if (!klist)
return -ENOMEM;
}
error = vfs_listxattr(d, klist, size);
if (error > 0) {
if (size && copy_to_user(list, klist, error))
error = -EFAULT;
} else if (error == -ERANGE && size >= XATTR_LIST_MAX) {
/* The file system tried to returned a list bigger
than XATTR_LIST_MAX bytes. Not possible. */
error = -E2BIG;
}
kvfree(klist);
return error;
}
static ssize_t path_listxattr(const char __user *pathname, char __user *list,
size_t size, unsigned int lookup_flags)
{
struct path path;
ssize_t error;
retry:
error = user_path_at(AT_FDCWD, pathname, lookup_flags, &path);
if (error)
return error;
error = listxattr(path.dentry, list, size);
path_put(&path);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
return error;
}
SYSCALL_DEFINE3(listxattr, const char __user *, pathname, char __user *, list,
size_t, size)
{
return path_listxattr(pathname, list, size, LOOKUP_FOLLOW);
}
SYSCALL_DEFINE3(llistxattr, const char __user *, pathname, char __user *, list,
size_t, size)
{
return path_listxattr(pathname, list, size, 0);
}
SYSCALL_DEFINE3(flistxattr, int, fd, char __user *, list, size_t, size)
{
struct fd f = fdget(fd);
ssize_t error = -EBADF;
if (!f.file)
return error;
audit_file(f.file);
error = listxattr(f.file->f_path.dentry, list, size);
fdput(f);
return error;
}
/*
* Extended attribute REMOVE operations
*/
static long
removexattr(struct user_namespace *mnt_userns, struct dentry *d,
const char __user *name)
{
int error;
char kname[XATTR_NAME_MAX + 1];
error = strncpy_from_user(kname, name, sizeof(kname));
if (error == 0 || error == sizeof(kname))
error = -ERANGE;
if (error < 0)
return error;
return vfs_removexattr(mnt_userns, d, kname);
}
static int path_removexattr(const char __user *pathname,
const char __user *name, unsigned int lookup_flags)
{
struct path path;
int error;
retry:
error = user_path_at(AT_FDCWD, pathname, lookup_flags, &path);
if (error)
return error;
error = mnt_want_write(path.mnt);
if (!error) {
error = removexattr(mnt_user_ns(path.mnt), path.dentry, name);
mnt_drop_write(path.mnt);
}
path_put(&path);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
return error;
}
SYSCALL_DEFINE2(removexattr, const char __user *, pathname,
const char __user *, name)
{
return path_removexattr(pathname, name, LOOKUP_FOLLOW);
}
SYSCALL_DEFINE2(lremovexattr, const char __user *, pathname,
const char __user *, name)
{
return path_removexattr(pathname, name, 0);
}
SYSCALL_DEFINE2(fremovexattr, int, fd, const char __user *, name)
{
struct fd f = fdget(fd);
int error = -EBADF;
if (!f.file)
return error;
audit_file(f.file);
error = mnt_want_write_file(f.file);
if (!error) {
error = removexattr(file_mnt_user_ns(f.file),
f.file->f_path.dentry, name);
mnt_drop_write_file(f.file);
}
fdput(f);
return error;
}
/*
* Combine the results of the list() operation from every xattr_handler in the
* list.
*/
ssize_t
generic_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size)
{
const struct xattr_handler *handler, **handlers = dentry->d_sb->s_xattr;
unsigned int size = 0;
if (!buffer) {
for_each_xattr_handler(handlers, handler) {
if (!handler->name ||
(handler->list && !handler->list(dentry)))
continue;
size += strlen(handler->name) + 1;
}
} else {
char *buf = buffer;
size_t len;
for_each_xattr_handler(handlers, handler) {
if (!handler->name ||
(handler->list && !handler->list(dentry)))
continue;
len = strlen(handler->name);
if (len + 1 > buffer_size)
return -ERANGE;
memcpy(buf, handler->name, len + 1);
buf += len + 1;
buffer_size -= len + 1;
}
size = buf - buffer;
}
return size;
}
EXPORT_SYMBOL(generic_listxattr);
/**
* xattr_full_name - Compute full attribute name from suffix
*
* @handler: handler of the xattr_handler operation
* @name: name passed to the xattr_handler operation
*
* The get and set xattr handler operations are called with the remainder of
* the attribute name after skipping the handler's prefix: for example, "foo"
* is passed to the get operation of a handler with prefix "user." to get
* attribute "user.foo". The full name is still "there" in the name though.
*
* Note: the list xattr handler operation when called from the vfs is passed a
* NULL name; some file systems use this operation internally, with varying
* semantics.
*/
const char *xattr_full_name(const struct xattr_handler *handler,
const char *name)
{
size_t prefix_len = strlen(xattr_prefix(handler));
return name - prefix_len;
}
EXPORT_SYMBOL(xattr_full_name);
/**
* free_simple_xattr - free an xattr object
* @xattr: the xattr object
*
* Free the xattr object. Can handle @xattr being NULL.
*/
static inline void free_simple_xattr(struct simple_xattr *xattr)
{
if (xattr)
kfree(xattr->name);
kvfree(xattr);
}
/**
* simple_xattr_alloc - allocate new xattr object
* @value: value of the xattr object
* @size: size of @value
*
* Allocate a new xattr object and initialize respective members. The caller is
* responsible for handling the name of the xattr.
*
* Return: On success a new xattr object is returned. On failure NULL is
* returned.
*/
struct simple_xattr *simple_xattr_alloc(const void *value, size_t size)
{
struct simple_xattr *new_xattr;
size_t len;
/* wrap around? */
len = sizeof(*new_xattr) + size;
if (len < sizeof(*new_xattr))
return NULL;
new_xattr = kvmalloc(len, GFP_KERNEL);
if (!new_xattr)
return NULL;
new_xattr->size = size;
memcpy(new_xattr->value, value, size);
return new_xattr;
}
/**
* rbtree_simple_xattr_cmp - compare xattr name with current rbtree xattr entry
* @key: xattr name
* @node: current node
*
* Compare the xattr name with the xattr name attached to @node in the rbtree.
*
* Return: Negative value if continuing left, positive if continuing right, 0
* if the xattr attached to @node matches @key.
*/
static int rbtree_simple_xattr_cmp(const void *key, const struct rb_node *node)
{
const char *xattr_name = key;
const struct simple_xattr *xattr;
xattr = rb_entry(node, struct simple_xattr, rb_node);
return strcmp(xattr->name, xattr_name);
}
/**
* rbtree_simple_xattr_node_cmp - compare two xattr rbtree nodes
* @new_node: new node
* @node: current node
*
* Compare the xattr attached to @new_node with the xattr attached to @node.
*
* Return: Negative value if continuing left, positive if continuing right, 0
* if the xattr attached to @new_node matches the xattr attached to @node.
*/
static int rbtree_simple_xattr_node_cmp(struct rb_node *new_node,
const struct rb_node *node)
{
struct simple_xattr *xattr;
xattr = rb_entry(new_node, struct simple_xattr, rb_node);
return rbtree_simple_xattr_cmp(xattr->name, node);
}
/**
* simple_xattr_get - get an xattr object
* @xattrs: the header of the xattr object
* @name: the name of the xattr to retrieve
* @buffer: the buffer to store the value into
* @size: the size of @buffer
*
* Try to find and retrieve the xattr object associated with @name.
* If @buffer is provided store the value of @xattr in @buffer
* otherwise just return the length. The size of @buffer is limited
* to XATTR_SIZE_MAX which currently is 65536.
*
* Return: On success the length of the xattr value is returned. On error a
* negative error code is returned.
*/
int simple_xattr_get(struct simple_xattrs *xattrs, const char *name,
void *buffer, size_t size)
{
struct simple_xattr *xattr = NULL;
struct rb_node *rbp;
int ret = -ENODATA;
read_lock(&xattrs->lock);
rbp = rb_find(name, &xattrs->rb_root, rbtree_simple_xattr_cmp);
if (rbp) {
xattr = rb_entry(rbp, struct simple_xattr, rb_node);
ret = xattr->size;
if (buffer) {
if (size < xattr->size)
ret = -ERANGE;
else
memcpy(buffer, xattr->value, xattr->size);
}
}
read_unlock(&xattrs->lock);
return ret;
}
/**
* simple_xattr_set - set an xattr object
* @xattrs: the header of the xattr object
* @name: the name of the xattr to retrieve
* @value: the value to store along the xattr
* @size: the size of @value
* @flags: the flags determining how to set the xattr
* @removed_size: the size of the removed xattr
*
* Set a new xattr object.
* If @value is passed a new xattr object will be allocated. If XATTR_REPLACE
* is specified in @flags a matching xattr object for @name must already exist.
* If it does it will be replaced with the new xattr object. If it doesn't we
* fail. If XATTR_CREATE is specified and a matching xattr does already exist
* we fail. If it doesn't we create a new xattr. If @flags is zero we simply
* insert the new xattr replacing any existing one.
*
* If @value is empty and a matching xattr object is found we delete it if
* XATTR_REPLACE is specified in @flags or @flags is zero.
*
* If @value is empty and no matching xattr object for @name is found we do
* nothing if XATTR_CREATE is specified in @flags or @flags is zero. For
* XATTR_REPLACE we fail as mentioned above.
*
* Return: On success zero and on error a negative error code is returned.
*/
int simple_xattr_set(struct simple_xattrs *xattrs, const char *name,
const void *value, size_t size, int flags,
ssize_t *removed_size)
{
struct simple_xattr *xattr = NULL, *new_xattr = NULL;
struct rb_node *parent = NULL, **rbp;
int err = 0, ret;
if (removed_size)
*removed_size = -1;
/* value == NULL means remove */
if (value) {
new_xattr = simple_xattr_alloc(value, size);
if (!new_xattr)
return -ENOMEM;
new_xattr->name = kstrdup(name, GFP_KERNEL);
if (!new_xattr->name) {
free_simple_xattr(new_xattr);
return -ENOMEM;
}
}
write_lock(&xattrs->lock);
rbp = &xattrs->rb_root.rb_node;
while (*rbp) {
parent = *rbp;
ret = rbtree_simple_xattr_cmp(name, *rbp);
if (ret < 0)
rbp = &(*rbp)->rb_left;
else if (ret > 0)
rbp = &(*rbp)->rb_right;
else
xattr = rb_entry(*rbp, struct simple_xattr, rb_node);
if (xattr)
break;
}
if (xattr) {
/* Fail if XATTR_CREATE is requested and the xattr exists. */
if (flags & XATTR_CREATE) {
err = -EEXIST;
goto out_unlock;
}
if (new_xattr)
rb_replace_node(&xattr->rb_node, &new_xattr->rb_node,
&xattrs->rb_root);
else
rb_erase(&xattr->rb_node, &xattrs->rb_root);
if (!err && removed_size)
*removed_size = xattr->size;
} else {
/* Fail if XATTR_REPLACE is requested but no xattr is found. */
if (flags & XATTR_REPLACE) {
err = -ENODATA;
goto out_unlock;
}
/*
* If XATTR_CREATE or no flags are specified together with a
* new value simply insert it.
*/
if (new_xattr) {
rb_link_node(&new_xattr->rb_node, parent, rbp);
rb_insert_color(&new_xattr->rb_node, &xattrs->rb_root);
}
/*
* If XATTR_CREATE or no flags are specified and neither an
* old or new xattr exist then we don't need to do anything.
*/
}
out_unlock:
write_unlock(&xattrs->lock);
if (err)
free_simple_xattr(new_xattr);
else
free_simple_xattr(xattr);
return err;
}
static bool xattr_is_trusted(const char *name)
{
return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
}
static int xattr_list_one(char **buffer, ssize_t *remaining_size,
const char *name)
{
size_t len = strlen(name) + 1;
if (*buffer) {
if (*remaining_size < len)
return -ERANGE;
memcpy(*buffer, name, len);
*buffer += len;
}
*remaining_size -= len;
return 0;
}
/**
* simple_xattr_list - list all xattr objects
* @inode: inode from which to get the xattrs
* @xattrs: the header of the xattr object
* @buffer: the buffer to store all xattrs into
* @size: the size of @buffer
*
* List all xattrs associated with @inode. If @buffer is NULL we returned
* the required size of the buffer. If @buffer is provided we store the
* xattrs value into it provided it is big enough.
*
* Note, the number of xattr names that can be listed with listxattr(2) is
* limited to XATTR_LIST_MAX aka 65536 bytes. If a larger buffer is passed
* then vfs_listxattr() caps it to XATTR_LIST_MAX and if more xattr names
* are found it will return -E2BIG.
*
* Return: On success the required size or the size of the copied xattrs is
* returned. On error a negative error code is returned.
*/
ssize_t simple_xattr_list(struct inode *inode, struct simple_xattrs *xattrs,
char *buffer, size_t size)
{
bool trusted = capable(CAP_SYS_ADMIN);
struct simple_xattr *xattr;
struct rb_node *rbp;
ssize_t remaining_size = size;
int err = 0;
#ifdef CONFIG_FS_POSIX_ACL
if (IS_POSIXACL(inode)) {
if (inode->i_acl) {
err = xattr_list_one(&buffer, &remaining_size,
XATTR_NAME_POSIX_ACL_ACCESS);
if (err)
return err;
}
if (inode->i_default_acl) {
err = xattr_list_one(&buffer, &remaining_size,
XATTR_NAME_POSIX_ACL_DEFAULT);
if (err)
return err;
}
}
#endif
read_lock(&xattrs->lock);
for (rbp = rb_first(&xattrs->rb_root); rbp; rbp = rb_next(rbp)) {
xattr = rb_entry(rbp, struct simple_xattr, rb_node);
/* skip "trusted." attributes for unprivileged callers */
if (!trusted && xattr_is_trusted(xattr->name))
continue;
err = xattr_list_one(&buffer, &remaining_size, xattr->name);
if (err)
break;
}
read_unlock(&xattrs->lock);
return err ? err : size - remaining_size;
}
/**
* rbtree_simple_xattr_less - compare two xattr rbtree nodes
* @new_node: new node
* @node: current node
*
* Compare the xattr attached to @new_node with the xattr attached to @node.
* Note that this function technically tolerates duplicate entries.
*
* Return: True if insertion point in the rbtree is found.
*/
static bool rbtree_simple_xattr_less(struct rb_node *new_node,
const struct rb_node *node)
{
return rbtree_simple_xattr_node_cmp(new_node, node) < 0;
}
/**
* simple_xattr_add - add xattr objects
* @xattrs: the header of the xattr object
* @new_xattr: the xattr object to add
*
* Add an xattr object to @xattrs. This assumes no replacement or removal
* of matching xattrs is wanted. Should only be called during inode
* initialization when a few distinct initial xattrs are supposed to be set.
*/
void simple_xattr_add(struct simple_xattrs *xattrs,
struct simple_xattr *new_xattr)
{
write_lock(&xattrs->lock);
rb_add(&new_xattr->rb_node, &xattrs->rb_root, rbtree_simple_xattr_less);
write_unlock(&xattrs->lock);
}
/**
* simple_xattrs_init - initialize new xattr header
* @xattrs: header to initialize
*
* Initialize relevant fields of a an xattr header.
*/
void simple_xattrs_init(struct simple_xattrs *xattrs)
{
xattrs->rb_root = RB_ROOT;
rwlock_init(&xattrs->lock);
}
/**
* simple_xattrs_free - free xattrs
* @xattrs: xattr header whose xattrs to destroy
*
* Destroy all xattrs in @xattr. When this is called no one can hold a
* reference to any of the xattrs anymore.
*/
void simple_xattrs_free(struct simple_xattrs *xattrs)
{
struct rb_node *rbp;
rbp = rb_first(&xattrs->rb_root);
while (rbp) {
struct simple_xattr *xattr;
struct rb_node *rbp_next;
rbp_next = rb_next(rbp);
xattr = rb_entry(rbp, struct simple_xattr, rb_node);
rb_erase(&xattr->rb_node, &xattrs->rb_root);
free_simple_xattr(xattr);
rbp = rbp_next;
}
}