linux/kernel/bpf/core.c
Daniel Borkmann e9d8afa90b bpf: consolidate bpf_prog_put{, _rcu} dismantle paths
We currently have duplicated cleanup code in bpf_prog_put() and
bpf_prog_put_rcu() cleanup paths. Back then we decided that it was
not worth it to make it a common helper called by both, but with
the recent addition of resource charging, we could have avoided
the fix in commit ac00737f4e ("bpf: Need to call bpf_prog_uncharge_memlock
from bpf_prog_put") if we would have had only a single, common path.
We can simplify it further by assigning aux->prog only once during
allocation time.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-02 22:48:39 -05:00

800 lines
20 KiB
C

/*
* Linux Socket Filter - Kernel level socket filtering
*
* Based on the design of the Berkeley Packet Filter. The new
* internal format has been designed by PLUMgrid:
*
* Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
*
* Authors:
*
* Jay Schulist <jschlst@samba.org>
* Alexei Starovoitov <ast@plumgrid.com>
* Daniel Borkmann <dborkman@redhat.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Andi Kleen - Fix a few bad bugs and races.
* Kris Katterjohn - Added many additional checks in bpf_check_classic()
*/
#include <linux/filter.h>
#include <linux/skbuff.h>
#include <linux/vmalloc.h>
#include <linux/random.h>
#include <linux/moduleloader.h>
#include <linux/bpf.h>
#include <asm/unaligned.h>
/* Registers */
#define BPF_R0 regs[BPF_REG_0]
#define BPF_R1 regs[BPF_REG_1]
#define BPF_R2 regs[BPF_REG_2]
#define BPF_R3 regs[BPF_REG_3]
#define BPF_R4 regs[BPF_REG_4]
#define BPF_R5 regs[BPF_REG_5]
#define BPF_R6 regs[BPF_REG_6]
#define BPF_R7 regs[BPF_REG_7]
#define BPF_R8 regs[BPF_REG_8]
#define BPF_R9 regs[BPF_REG_9]
#define BPF_R10 regs[BPF_REG_10]
/* Named registers */
#define DST regs[insn->dst_reg]
#define SRC regs[insn->src_reg]
#define FP regs[BPF_REG_FP]
#define ARG1 regs[BPF_REG_ARG1]
#define CTX regs[BPF_REG_CTX]
#define IMM insn->imm
/* No hurry in this branch
*
* Exported for the bpf jit load helper.
*/
void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
{
u8 *ptr = NULL;
if (k >= SKF_NET_OFF)
ptr = skb_network_header(skb) + k - SKF_NET_OFF;
else if (k >= SKF_LL_OFF)
ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
return ptr;
return NULL;
}
struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
{
gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
gfp_extra_flags;
struct bpf_prog_aux *aux;
struct bpf_prog *fp;
size = round_up(size, PAGE_SIZE);
fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
if (fp == NULL)
return NULL;
kmemcheck_annotate_bitfield(fp, meta);
aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
if (aux == NULL) {
vfree(fp);
return NULL;
}
fp->pages = size / PAGE_SIZE;
fp->aux = aux;
fp->aux->prog = fp;
return fp;
}
EXPORT_SYMBOL_GPL(bpf_prog_alloc);
struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
gfp_t gfp_extra_flags)
{
gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
gfp_extra_flags;
struct bpf_prog *fp;
BUG_ON(fp_old == NULL);
size = round_up(size, PAGE_SIZE);
if (size <= fp_old->pages * PAGE_SIZE)
return fp_old;
fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
if (fp != NULL) {
kmemcheck_annotate_bitfield(fp, meta);
memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
fp->pages = size / PAGE_SIZE;
fp->aux->prog = fp;
/* We keep fp->aux from fp_old around in the new
* reallocated structure.
*/
fp_old->aux = NULL;
__bpf_prog_free(fp_old);
}
return fp;
}
EXPORT_SYMBOL_GPL(bpf_prog_realloc);
void __bpf_prog_free(struct bpf_prog *fp)
{
kfree(fp->aux);
vfree(fp);
}
EXPORT_SYMBOL_GPL(__bpf_prog_free);
#ifdef CONFIG_BPF_JIT
struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
unsigned int alignment,
bpf_jit_fill_hole_t bpf_fill_ill_insns)
{
struct bpf_binary_header *hdr;
unsigned int size, hole, start;
/* Most of BPF filters are really small, but if some of them
* fill a page, allow at least 128 extra bytes to insert a
* random section of illegal instructions.
*/
size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
hdr = module_alloc(size);
if (hdr == NULL)
return NULL;
/* Fill space with illegal/arch-dep instructions. */
bpf_fill_ill_insns(hdr, size);
hdr->pages = size / PAGE_SIZE;
hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
PAGE_SIZE - sizeof(*hdr));
start = (prandom_u32() % hole) & ~(alignment - 1);
/* Leave a random number of instructions before BPF code. */
*image_ptr = &hdr->image[start];
return hdr;
}
void bpf_jit_binary_free(struct bpf_binary_header *hdr)
{
module_memfree(hdr);
}
#endif /* CONFIG_BPF_JIT */
/* Base function for offset calculation. Needs to go into .text section,
* therefore keeping it non-static as well; will also be used by JITs
* anyway later on, so do not let the compiler omit it.
*/
noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
return 0;
}
EXPORT_SYMBOL_GPL(__bpf_call_base);
/**
* __bpf_prog_run - run eBPF program on a given context
* @ctx: is the data we are operating on
* @insn: is the array of eBPF instructions
*
* Decode and execute eBPF instructions.
*/
static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
{
u64 stack[MAX_BPF_STACK / sizeof(u64)];
u64 regs[MAX_BPF_REG], tmp;
static const void *jumptable[256] = {
[0 ... 255] = &&default_label,
/* Now overwrite non-defaults ... */
/* 32 bit ALU operations */
[BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
[BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
[BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
[BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
[BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
[BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
[BPF_ALU | BPF_OR | BPF_X] = &&ALU_OR_X,
[BPF_ALU | BPF_OR | BPF_K] = &&ALU_OR_K,
[BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
[BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
[BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
[BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
[BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
[BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
[BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
[BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
[BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
[BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
[BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
[BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
[BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
[BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
[BPF_ALU | BPF_NEG] = &&ALU_NEG,
[BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
[BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
/* 64 bit ALU operations */
[BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
[BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
[BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
[BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
[BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
[BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
[BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
[BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
[BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
[BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
[BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
[BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
[BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
[BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
[BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
[BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
[BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
[BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
[BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
[BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
[BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
[BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
[BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
[BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
[BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
/* Call instruction */
[BPF_JMP | BPF_CALL] = &&JMP_CALL,
[BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
/* Jumps */
[BPF_JMP | BPF_JA] = &&JMP_JA,
[BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
[BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
[BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
[BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
[BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
[BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
[BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
[BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
[BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
[BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
[BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
[BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
[BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
[BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
/* Program return */
[BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
/* Store instructions */
[BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
[BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
[BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
[BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
[BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
[BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
[BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
[BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
[BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
[BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
/* Load instructions */
[BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
[BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
[BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
[BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
[BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
[BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
[BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
[BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
[BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
[BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
[BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
};
u32 tail_call_cnt = 0;
void *ptr;
int off;
#define CONT ({ insn++; goto select_insn; })
#define CONT_JMP ({ insn++; goto select_insn; })
FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
ARG1 = (u64) (unsigned long) ctx;
/* Registers used in classic BPF programs need to be reset first. */
regs[BPF_REG_A] = 0;
regs[BPF_REG_X] = 0;
select_insn:
goto *jumptable[insn->code];
/* ALU */
#define ALU(OPCODE, OP) \
ALU64_##OPCODE##_X: \
DST = DST OP SRC; \
CONT; \
ALU_##OPCODE##_X: \
DST = (u32) DST OP (u32) SRC; \
CONT; \
ALU64_##OPCODE##_K: \
DST = DST OP IMM; \
CONT; \
ALU_##OPCODE##_K: \
DST = (u32) DST OP (u32) IMM; \
CONT;
ALU(ADD, +)
ALU(SUB, -)
ALU(AND, &)
ALU(OR, |)
ALU(LSH, <<)
ALU(RSH, >>)
ALU(XOR, ^)
ALU(MUL, *)
#undef ALU
ALU_NEG:
DST = (u32) -DST;
CONT;
ALU64_NEG:
DST = -DST;
CONT;
ALU_MOV_X:
DST = (u32) SRC;
CONT;
ALU_MOV_K:
DST = (u32) IMM;
CONT;
ALU64_MOV_X:
DST = SRC;
CONT;
ALU64_MOV_K:
DST = IMM;
CONT;
LD_IMM_DW:
DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
insn++;
CONT;
ALU64_ARSH_X:
(*(s64 *) &DST) >>= SRC;
CONT;
ALU64_ARSH_K:
(*(s64 *) &DST) >>= IMM;
CONT;
ALU64_MOD_X:
if (unlikely(SRC == 0))
return 0;
div64_u64_rem(DST, SRC, &tmp);
DST = tmp;
CONT;
ALU_MOD_X:
if (unlikely(SRC == 0))
return 0;
tmp = (u32) DST;
DST = do_div(tmp, (u32) SRC);
CONT;
ALU64_MOD_K:
div64_u64_rem(DST, IMM, &tmp);
DST = tmp;
CONT;
ALU_MOD_K:
tmp = (u32) DST;
DST = do_div(tmp, (u32) IMM);
CONT;
ALU64_DIV_X:
if (unlikely(SRC == 0))
return 0;
DST = div64_u64(DST, SRC);
CONT;
ALU_DIV_X:
if (unlikely(SRC == 0))
return 0;
tmp = (u32) DST;
do_div(tmp, (u32) SRC);
DST = (u32) tmp;
CONT;
ALU64_DIV_K:
DST = div64_u64(DST, IMM);
CONT;
ALU_DIV_K:
tmp = (u32) DST;
do_div(tmp, (u32) IMM);
DST = (u32) tmp;
CONT;
ALU_END_TO_BE:
switch (IMM) {
case 16:
DST = (__force u16) cpu_to_be16(DST);
break;
case 32:
DST = (__force u32) cpu_to_be32(DST);
break;
case 64:
DST = (__force u64) cpu_to_be64(DST);
break;
}
CONT;
ALU_END_TO_LE:
switch (IMM) {
case 16:
DST = (__force u16) cpu_to_le16(DST);
break;
case 32:
DST = (__force u32) cpu_to_le32(DST);
break;
case 64:
DST = (__force u64) cpu_to_le64(DST);
break;
}
CONT;
/* CALL */
JMP_CALL:
/* Function call scratches BPF_R1-BPF_R5 registers,
* preserves BPF_R6-BPF_R9, and stores return value
* into BPF_R0.
*/
BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
BPF_R4, BPF_R5);
CONT;
JMP_TAIL_CALL: {
struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
struct bpf_array *array = container_of(map, struct bpf_array, map);
struct bpf_prog *prog;
u64 index = BPF_R3;
if (unlikely(index >= array->map.max_entries))
goto out;
if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
goto out;
tail_call_cnt++;
prog = READ_ONCE(array->ptrs[index]);
if (unlikely(!prog))
goto out;
/* ARG1 at this point is guaranteed to point to CTX from
* the verifier side due to the fact that the tail call is
* handeled like a helper, that is, bpf_tail_call_proto,
* where arg1_type is ARG_PTR_TO_CTX.
*/
insn = prog->insnsi;
goto select_insn;
out:
CONT;
}
/* JMP */
JMP_JA:
insn += insn->off;
CONT;
JMP_JEQ_X:
if (DST == SRC) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JEQ_K:
if (DST == IMM) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JNE_X:
if (DST != SRC) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JNE_K:
if (DST != IMM) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JGT_X:
if (DST > SRC) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JGT_K:
if (DST > IMM) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JGE_X:
if (DST >= SRC) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JGE_K:
if (DST >= IMM) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JSGT_X:
if (((s64) DST) > ((s64) SRC)) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JSGT_K:
if (((s64) DST) > ((s64) IMM)) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JSGE_X:
if (((s64) DST) >= ((s64) SRC)) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JSGE_K:
if (((s64) DST) >= ((s64) IMM)) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JSET_X:
if (DST & SRC) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_JSET_K:
if (DST & IMM) {
insn += insn->off;
CONT_JMP;
}
CONT;
JMP_EXIT:
return BPF_R0;
/* STX and ST and LDX*/
#define LDST(SIZEOP, SIZE) \
STX_MEM_##SIZEOP: \
*(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
CONT; \
ST_MEM_##SIZEOP: \
*(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
CONT; \
LDX_MEM_##SIZEOP: \
DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
CONT;
LDST(B, u8)
LDST(H, u16)
LDST(W, u32)
LDST(DW, u64)
#undef LDST
STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
atomic_add((u32) SRC, (atomic_t *)(unsigned long)
(DST + insn->off));
CONT;
STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
(DST + insn->off));
CONT;
LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
off = IMM;
load_word:
/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
* only appearing in the programs where ctx ==
* skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
* == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
* internal BPF verifier will check that BPF_R6 ==
* ctx.
*
* BPF_ABS and BPF_IND are wrappers of function calls,
* so they scratch BPF_R1-BPF_R5 registers, preserve
* BPF_R6-BPF_R9, and store return value into BPF_R0.
*
* Implicit input:
* ctx == skb == BPF_R6 == CTX
*
* Explicit input:
* SRC == any register
* IMM == 32-bit immediate
*
* Output:
* BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
*/
ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
if (likely(ptr != NULL)) {
BPF_R0 = get_unaligned_be32(ptr);
CONT;
}
return 0;
LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
off = IMM;
load_half:
ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
if (likely(ptr != NULL)) {
BPF_R0 = get_unaligned_be16(ptr);
CONT;
}
return 0;
LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
off = IMM;
load_byte:
ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
if (likely(ptr != NULL)) {
BPF_R0 = *(u8 *)ptr;
CONT;
}
return 0;
LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
off = IMM + SRC;
goto load_word;
LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
off = IMM + SRC;
goto load_half;
LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
off = IMM + SRC;
goto load_byte;
default_label:
/* If we ever reach this, we have a bug somewhere. */
WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
return 0;
}
bool bpf_prog_array_compatible(struct bpf_array *array,
const struct bpf_prog *fp)
{
if (!array->owner_prog_type) {
/* There's no owner yet where we could check for
* compatibility.
*/
array->owner_prog_type = fp->type;
array->owner_jited = fp->jited;
return true;
}
return array->owner_prog_type == fp->type &&
array->owner_jited == fp->jited;
}
static int bpf_check_tail_call(const struct bpf_prog *fp)
{
struct bpf_prog_aux *aux = fp->aux;
int i;
for (i = 0; i < aux->used_map_cnt; i++) {
struct bpf_map *map = aux->used_maps[i];
struct bpf_array *array;
if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
continue;
array = container_of(map, struct bpf_array, map);
if (!bpf_prog_array_compatible(array, fp))
return -EINVAL;
}
return 0;
}
/**
* bpf_prog_select_runtime - select exec runtime for BPF program
* @fp: bpf_prog populated with internal BPF program
*
* Try to JIT eBPF program, if JIT is not available, use interpreter.
* The BPF program will be executed via BPF_PROG_RUN() macro.
*/
int bpf_prog_select_runtime(struct bpf_prog *fp)
{
fp->bpf_func = (void *) __bpf_prog_run;
bpf_int_jit_compile(fp);
bpf_prog_lock_ro(fp);
/* The tail call compatibility check can only be done at
* this late stage as we need to determine, if we deal
* with JITed or non JITed program concatenations and not
* all eBPF JITs might immediately support all features.
*/
return bpf_check_tail_call(fp);
}
EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
static void bpf_prog_free_deferred(struct work_struct *work)
{
struct bpf_prog_aux *aux;
aux = container_of(work, struct bpf_prog_aux, work);
bpf_jit_free(aux->prog);
}
/* Free internal BPF program */
void bpf_prog_free(struct bpf_prog *fp)
{
struct bpf_prog_aux *aux = fp->aux;
INIT_WORK(&aux->work, bpf_prog_free_deferred);
schedule_work(&aux->work);
}
EXPORT_SYMBOL_GPL(bpf_prog_free);
/* RNG for unpriviledged user space with separated state from prandom_u32(). */
static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
void bpf_user_rnd_init_once(void)
{
prandom_init_once(&bpf_user_rnd_state);
}
u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
/* Should someone ever have the rather unwise idea to use some
* of the registers passed into this function, then note that
* this function is called from native eBPF and classic-to-eBPF
* transformations. Register assignments from both sides are
* different, f.e. classic always sets fn(ctx, A, X) here.
*/
struct rnd_state *state;
u32 res;
state = &get_cpu_var(bpf_user_rnd_state);
res = prandom_u32_state(state);
put_cpu_var(state);
return res;
}
/* Weak definitions of helper functions in case we don't have bpf syscall. */
const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
const struct bpf_func_proto bpf_map_update_elem_proto __weak;
const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
const struct bpf_func_proto bpf_get_current_comm_proto __weak;
const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
{
return NULL;
}
/* Always built-in helper functions. */
const struct bpf_func_proto bpf_tail_call_proto = {
.func = NULL,
.gpl_only = false,
.ret_type = RET_VOID,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
};
/* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
void __weak bpf_int_jit_compile(struct bpf_prog *prog)
{
}
/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
* skb_copy_bits(), so provide a weak definition of it for NET-less config.
*/
int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
int len)
{
return -EFAULT;
}