linux/drivers/net/ipa/ipa_mem.c
Alex Elder 5157d6bfca net: ipa: define two new memory regions
IPA v5.0 uses two memory regions not previously used.  Define them
and treat them as valid only for IPA v5.0.

Signed-off-by: Alex Elder <elder@linaro.org>
Reviewed-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-01-31 21:45:52 -08:00

683 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2019-2023 Linaro Ltd.
*/
#include <linux/types.h>
#include <linux/bitfield.h>
#include <linux/bug.h>
#include <linux/dma-mapping.h>
#include <linux/iommu.h>
#include <linux/io.h>
#include <linux/soc/qcom/smem.h>
#include "ipa.h"
#include "ipa_reg.h"
#include "ipa_data.h"
#include "ipa_cmd.h"
#include "ipa_mem.h"
#include "ipa_table.h"
#include "gsi_trans.h"
/* "Canary" value placed between memory regions to detect overflow */
#define IPA_MEM_CANARY_VAL cpu_to_le32(0xdeadbeef)
/* SMEM host id representing the modem. */
#define QCOM_SMEM_HOST_MODEM 1
const struct ipa_mem *ipa_mem_find(struct ipa *ipa, enum ipa_mem_id mem_id)
{
u32 i;
for (i = 0; i < ipa->mem_count; i++) {
const struct ipa_mem *mem = &ipa->mem[i];
if (mem->id == mem_id)
return mem;
}
return NULL;
}
/* Add an immediate command to a transaction that zeroes a memory region */
static void
ipa_mem_zero_region_add(struct gsi_trans *trans, enum ipa_mem_id mem_id)
{
struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi);
const struct ipa_mem *mem = ipa_mem_find(ipa, mem_id);
dma_addr_t addr = ipa->zero_addr;
if (!mem->size)
return;
ipa_cmd_dma_shared_mem_add(trans, mem->offset, mem->size, addr, true);
}
/**
* ipa_mem_setup() - Set up IPA AP and modem shared memory areas
* @ipa: IPA pointer
*
* Set up the shared memory regions in IPA local memory. This involves
* zero-filling memory regions, and in the case of header memory, telling
* the IPA where it's located.
*
* This function performs the initial setup of this memory. If the modem
* crashes, its regions are re-zeroed in ipa_mem_zero_modem().
*
* The AP informs the modem where its portions of memory are located
* in a QMI exchange that occurs at modem startup.
*
* There is no need for a matching ipa_mem_teardown() function.
*
* Return: 0 if successful, or a negative error code
*/
int ipa_mem_setup(struct ipa *ipa)
{
dma_addr_t addr = ipa->zero_addr;
const struct ipa_reg *reg;
const struct ipa_mem *mem;
struct gsi_trans *trans;
u32 offset;
u16 size;
u32 val;
/* Get a transaction to define the header memory region and to zero
* the processing context and modem memory regions.
*/
trans = ipa_cmd_trans_alloc(ipa, 4);
if (!trans) {
dev_err(&ipa->pdev->dev, "no transaction for memory setup\n");
return -EBUSY;
}
/* Initialize IPA-local header memory. The AP header region, if
* present, is contiguous with and follows the modem header region,
* and they are initialized together.
*/
mem = ipa_mem_find(ipa, IPA_MEM_MODEM_HEADER);
offset = mem->offset;
size = mem->size;
mem = ipa_mem_find(ipa, IPA_MEM_AP_HEADER);
if (mem)
size += mem->size;
ipa_cmd_hdr_init_local_add(trans, offset, size, addr);
ipa_mem_zero_region_add(trans, IPA_MEM_MODEM_PROC_CTX);
ipa_mem_zero_region_add(trans, IPA_MEM_AP_PROC_CTX);
ipa_mem_zero_region_add(trans, IPA_MEM_MODEM);
gsi_trans_commit_wait(trans);
/* Tell the hardware where the processing context area is located */
mem = ipa_mem_find(ipa, IPA_MEM_MODEM_PROC_CTX);
offset = ipa->mem_offset + mem->offset;
reg = ipa_reg(ipa, LOCAL_PKT_PROC_CNTXT);
val = ipa_reg_encode(reg, IPA_BASE_ADDR, offset);
iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
return 0;
}
/* Is the given memory region ID is valid for the current IPA version? */
static bool ipa_mem_id_valid(struct ipa *ipa, enum ipa_mem_id mem_id)
{
enum ipa_version version = ipa->version;
switch (mem_id) {
case IPA_MEM_UC_SHARED:
case IPA_MEM_UC_INFO:
case IPA_MEM_V4_FILTER_HASHED:
case IPA_MEM_V4_FILTER:
case IPA_MEM_V6_FILTER_HASHED:
case IPA_MEM_V6_FILTER:
case IPA_MEM_V4_ROUTE_HASHED:
case IPA_MEM_V4_ROUTE:
case IPA_MEM_V6_ROUTE_HASHED:
case IPA_MEM_V6_ROUTE:
case IPA_MEM_MODEM_HEADER:
case IPA_MEM_AP_HEADER:
case IPA_MEM_MODEM_PROC_CTX:
case IPA_MEM_AP_PROC_CTX:
case IPA_MEM_MODEM:
case IPA_MEM_UC_EVENT_RING:
case IPA_MEM_PDN_CONFIG:
case IPA_MEM_STATS_QUOTA_MODEM:
case IPA_MEM_STATS_QUOTA_AP:
case IPA_MEM_END_MARKER: /* pseudo region */
break;
case IPA_MEM_STATS_TETHERING:
case IPA_MEM_STATS_DROP:
if (version < IPA_VERSION_4_0)
return false;
break;
case IPA_MEM_STATS_V4_FILTER:
case IPA_MEM_STATS_V6_FILTER:
case IPA_MEM_STATS_V4_ROUTE:
case IPA_MEM_STATS_V6_ROUTE:
if (version < IPA_VERSION_4_0 || version > IPA_VERSION_4_2)
return false;
break;
case IPA_MEM_AP_V4_FILTER:
case IPA_MEM_AP_V6_FILTER:
if (version != IPA_VERSION_5_0)
return false;
break;
case IPA_MEM_NAT_TABLE:
case IPA_MEM_STATS_FILTER_ROUTE:
if (version < IPA_VERSION_4_5)
return false;
break;
default:
return false;
}
return true;
}
/* Must the given memory region be present in the configuration? */
static bool ipa_mem_id_required(struct ipa *ipa, enum ipa_mem_id mem_id)
{
switch (mem_id) {
case IPA_MEM_UC_SHARED:
case IPA_MEM_UC_INFO:
case IPA_MEM_V4_FILTER_HASHED:
case IPA_MEM_V4_FILTER:
case IPA_MEM_V6_FILTER_HASHED:
case IPA_MEM_V6_FILTER:
case IPA_MEM_V4_ROUTE_HASHED:
case IPA_MEM_V4_ROUTE:
case IPA_MEM_V6_ROUTE_HASHED:
case IPA_MEM_V6_ROUTE:
case IPA_MEM_MODEM_HEADER:
case IPA_MEM_MODEM_PROC_CTX:
case IPA_MEM_AP_PROC_CTX:
case IPA_MEM_MODEM:
return true;
case IPA_MEM_PDN_CONFIG:
case IPA_MEM_STATS_QUOTA_MODEM:
return ipa->version >= IPA_VERSION_4_0;
case IPA_MEM_STATS_TETHERING:
return ipa->version >= IPA_VERSION_4_0 &&
ipa->version != IPA_VERSION_5_0;
default:
return false; /* Anything else is optional */
}
}
static bool ipa_mem_valid_one(struct ipa *ipa, const struct ipa_mem *mem)
{
struct device *dev = &ipa->pdev->dev;
enum ipa_mem_id mem_id = mem->id;
u16 size_multiple;
/* Make sure the memory region is valid for this version of IPA */
if (!ipa_mem_id_valid(ipa, mem_id)) {
dev_err(dev, "region id %u not valid\n", mem_id);
return false;
}
if (!mem->size && !mem->canary_count) {
dev_err(dev, "empty memory region %u\n", mem_id);
return false;
}
/* Other than modem memory, sizes must be a multiple of 8 */
size_multiple = mem_id == IPA_MEM_MODEM ? 4 : 8;
if (mem->size % size_multiple)
dev_err(dev, "region %u size not a multiple of %u bytes\n",
mem_id, size_multiple);
else if (mem->offset % 8)
dev_err(dev, "region %u offset not 8-byte aligned\n", mem_id);
else if (mem->offset < mem->canary_count * sizeof(__le32))
dev_err(dev, "region %u offset too small for %hu canaries\n",
mem_id, mem->canary_count);
else if (mem_id == IPA_MEM_END_MARKER && mem->size)
dev_err(dev, "non-zero end marker region size\n");
else
return true;
return false;
}
/* Verify each defined memory region is valid. */
static bool ipa_mem_valid(struct ipa *ipa, const struct ipa_mem_data *mem_data)
{
DECLARE_BITMAP(regions, IPA_MEM_COUNT) = { };
struct device *dev = &ipa->pdev->dev;
enum ipa_mem_id mem_id;
u32 i;
if (mem_data->local_count > IPA_MEM_COUNT) {
dev_err(dev, "too many memory regions (%u > %u)\n",
mem_data->local_count, IPA_MEM_COUNT);
return false;
}
for (i = 0; i < mem_data->local_count; i++) {
const struct ipa_mem *mem = &mem_data->local[i];
if (__test_and_set_bit(mem->id, regions)) {
dev_err(dev, "duplicate memory region %u\n", mem->id);
return false;
}
/* Defined regions have non-zero size and/or canary count */
if (!ipa_mem_valid_one(ipa, mem))
return false;
}
/* Now see if any required regions are not defined */
for_each_clear_bit(mem_id, regions, IPA_MEM_COUNT) {
if (ipa_mem_id_required(ipa, mem_id))
dev_err(dev, "required memory region %u missing\n",
mem_id);
}
return true;
}
/* Do all memory regions fit within the IPA local memory? */
static bool ipa_mem_size_valid(struct ipa *ipa)
{
struct device *dev = &ipa->pdev->dev;
u32 limit = ipa->mem_size;
u32 i;
for (i = 0; i < ipa->mem_count; i++) {
const struct ipa_mem *mem = &ipa->mem[i];
if (mem->offset + mem->size <= limit)
continue;
dev_err(dev, "region %u ends beyond memory limit (0x%08x)\n",
mem->id, limit);
return false;
}
return true;
}
/**
* ipa_mem_config() - Configure IPA shared memory
* @ipa: IPA pointer
*
* Return: 0 if successful, or a negative error code
*/
int ipa_mem_config(struct ipa *ipa)
{
struct device *dev = &ipa->pdev->dev;
const struct ipa_reg *reg;
const struct ipa_mem *mem;
dma_addr_t addr;
u32 mem_size;
void *virt;
u32 val;
u32 i;
/* Check the advertised location and size of the shared memory area */
reg = ipa_reg(ipa, SHARED_MEM_SIZE);
val = ioread32(ipa->reg_virt + ipa_reg_offset(reg));
/* The fields in the register are in 8 byte units */
ipa->mem_offset = 8 * ipa_reg_decode(reg, MEM_BADDR, val);
/* Make sure the end is within the region's mapped space */
mem_size = 8 * ipa_reg_decode(reg, MEM_SIZE, val);
/* If the sizes don't match, issue a warning */
if (ipa->mem_offset + mem_size < ipa->mem_size) {
dev_warn(dev, "limiting IPA memory size to 0x%08x\n",
mem_size);
ipa->mem_size = mem_size;
} else if (ipa->mem_offset + mem_size > ipa->mem_size) {
dev_dbg(dev, "ignoring larger reported memory size: 0x%08x\n",
mem_size);
}
/* We know our memory size; make sure regions are all in range */
if (!ipa_mem_size_valid(ipa))
return -EINVAL;
/* Prealloc DMA memory for zeroing regions */
virt = dma_alloc_coherent(dev, IPA_MEM_MAX, &addr, GFP_KERNEL);
if (!virt)
return -ENOMEM;
ipa->zero_addr = addr;
ipa->zero_virt = virt;
ipa->zero_size = IPA_MEM_MAX;
/* For each defined region, write "canary" values in the
* space prior to the region's base address if indicated.
*/
for (i = 0; i < ipa->mem_count; i++) {
u16 canary_count = ipa->mem[i].canary_count;
__le32 *canary;
if (!canary_count)
continue;
/* Write canary values in the space before the region */
canary = ipa->mem_virt + ipa->mem_offset + ipa->mem[i].offset;
do
*--canary = IPA_MEM_CANARY_VAL;
while (--canary_count);
}
/* Verify the microcontroller ring alignment (if defined) */
mem = ipa_mem_find(ipa, IPA_MEM_UC_EVENT_RING);
if (mem && mem->offset % 1024) {
dev_err(dev, "microcontroller ring not 1024-byte aligned\n");
goto err_dma_free;
}
return 0;
err_dma_free:
dma_free_coherent(dev, IPA_MEM_MAX, ipa->zero_virt, ipa->zero_addr);
return -EINVAL;
}
/* Inverse of ipa_mem_config() */
void ipa_mem_deconfig(struct ipa *ipa)
{
struct device *dev = &ipa->pdev->dev;
dma_free_coherent(dev, ipa->zero_size, ipa->zero_virt, ipa->zero_addr);
ipa->zero_size = 0;
ipa->zero_virt = NULL;
ipa->zero_addr = 0;
}
/**
* ipa_mem_zero_modem() - Zero IPA-local memory regions owned by the modem
* @ipa: IPA pointer
*
* Zero regions of IPA-local memory used by the modem. These are configured
* (and initially zeroed) by ipa_mem_setup(), but if the modem crashes and
* restarts via SSR we need to re-initialize them. A QMI message tells the
* modem where to find regions of IPA local memory it needs to know about
* (these included).
*/
int ipa_mem_zero_modem(struct ipa *ipa)
{
struct gsi_trans *trans;
/* Get a transaction to zero the modem memory, modem header,
* and modem processing context regions.
*/
trans = ipa_cmd_trans_alloc(ipa, 3);
if (!trans) {
dev_err(&ipa->pdev->dev,
"no transaction to zero modem memory\n");
return -EBUSY;
}
ipa_mem_zero_region_add(trans, IPA_MEM_MODEM_HEADER);
ipa_mem_zero_region_add(trans, IPA_MEM_MODEM_PROC_CTX);
ipa_mem_zero_region_add(trans, IPA_MEM_MODEM);
gsi_trans_commit_wait(trans);
return 0;
}
/**
* ipa_imem_init() - Initialize IMEM memory used by the IPA
* @ipa: IPA pointer
* @addr: Physical address of the IPA region in IMEM
* @size: Size (bytes) of the IPA region in IMEM
*
* IMEM is a block of shared memory separate from system DRAM, and
* a portion of this memory is available for the IPA to use. The
* modem accesses this memory directly, but the IPA accesses it
* via the IOMMU, using the AP's credentials.
*
* If this region exists (size > 0) we map it for read/write access
* through the IOMMU using the IPA device.
*
* Note: @addr and @size are not guaranteed to be page-aligned.
*/
static int ipa_imem_init(struct ipa *ipa, unsigned long addr, size_t size)
{
struct device *dev = &ipa->pdev->dev;
struct iommu_domain *domain;
unsigned long iova;
phys_addr_t phys;
int ret;
if (!size)
return 0; /* IMEM memory not used */
domain = iommu_get_domain_for_dev(dev);
if (!domain) {
dev_err(dev, "no IOMMU domain found for IMEM\n");
return -EINVAL;
}
/* Align the address down and the size up to page boundaries */
phys = addr & PAGE_MASK;
size = PAGE_ALIGN(size + addr - phys);
iova = phys; /* We just want a direct mapping */
ret = iommu_map(domain, iova, phys, size, IOMMU_READ | IOMMU_WRITE);
if (ret)
return ret;
ipa->imem_iova = iova;
ipa->imem_size = size;
return 0;
}
static void ipa_imem_exit(struct ipa *ipa)
{
struct iommu_domain *domain;
struct device *dev;
if (!ipa->imem_size)
return;
dev = &ipa->pdev->dev;
domain = iommu_get_domain_for_dev(dev);
if (domain) {
size_t size;
size = iommu_unmap(domain, ipa->imem_iova, ipa->imem_size);
if (size != ipa->imem_size)
dev_warn(dev, "unmapped %zu IMEM bytes, expected %zu\n",
size, ipa->imem_size);
} else {
dev_err(dev, "couldn't get IPA IOMMU domain for IMEM\n");
}
ipa->imem_size = 0;
ipa->imem_iova = 0;
}
/**
* ipa_smem_init() - Initialize SMEM memory used by the IPA
* @ipa: IPA pointer
* @item: Item ID of SMEM memory
* @size: Size (bytes) of SMEM memory region
*
* SMEM is a managed block of shared DRAM, from which numbered "items"
* can be allocated. One item is designated for use by the IPA.
*
* The modem accesses SMEM memory directly, but the IPA accesses it
* via the IOMMU, using the AP's credentials.
*
* If size provided is non-zero, we allocate it and map it for
* access through the IOMMU.
*
* Note: @size and the item address are is not guaranteed to be page-aligned.
*/
static int ipa_smem_init(struct ipa *ipa, u32 item, size_t size)
{
struct device *dev = &ipa->pdev->dev;
struct iommu_domain *domain;
unsigned long iova;
phys_addr_t phys;
phys_addr_t addr;
size_t actual;
void *virt;
int ret;
if (!size)
return 0; /* SMEM memory not used */
/* SMEM is memory shared between the AP and another system entity
* (in this case, the modem). An allocation from SMEM is persistent
* until the AP reboots; there is no way to free an allocated SMEM
* region. Allocation only reserves the space; to use it you need
* to "get" a pointer it (this does not imply reference counting).
* The item might have already been allocated, in which case we
* use it unless the size isn't what we expect.
*/
ret = qcom_smem_alloc(QCOM_SMEM_HOST_MODEM, item, size);
if (ret && ret != -EEXIST) {
dev_err(dev, "error %d allocating size %zu SMEM item %u\n",
ret, size, item);
return ret;
}
/* Now get the address of the SMEM memory region */
virt = qcom_smem_get(QCOM_SMEM_HOST_MODEM, item, &actual);
if (IS_ERR(virt)) {
ret = PTR_ERR(virt);
dev_err(dev, "error %d getting SMEM item %u\n", ret, item);
return ret;
}
/* In case the region was already allocated, verify the size */
if (ret && actual != size) {
dev_err(dev, "SMEM item %u has size %zu, expected %zu\n",
item, actual, size);
return -EINVAL;
}
domain = iommu_get_domain_for_dev(dev);
if (!domain) {
dev_err(dev, "no IOMMU domain found for SMEM\n");
return -EINVAL;
}
/* Align the address down and the size up to a page boundary */
addr = qcom_smem_virt_to_phys(virt);
phys = addr & PAGE_MASK;
size = PAGE_ALIGN(size + addr - phys);
iova = phys; /* We just want a direct mapping */
ret = iommu_map(domain, iova, phys, size, IOMMU_READ | IOMMU_WRITE);
if (ret)
return ret;
ipa->smem_iova = iova;
ipa->smem_size = size;
return 0;
}
static void ipa_smem_exit(struct ipa *ipa)
{
struct device *dev = &ipa->pdev->dev;
struct iommu_domain *domain;
domain = iommu_get_domain_for_dev(dev);
if (domain) {
size_t size;
size = iommu_unmap(domain, ipa->smem_iova, ipa->smem_size);
if (size != ipa->smem_size)
dev_warn(dev, "unmapped %zu SMEM bytes, expected %zu\n",
size, ipa->smem_size);
} else {
dev_err(dev, "couldn't get IPA IOMMU domain for SMEM\n");
}
ipa->smem_size = 0;
ipa->smem_iova = 0;
}
/* Perform memory region-related initialization */
int ipa_mem_init(struct ipa *ipa, const struct ipa_mem_data *mem_data)
{
struct device *dev = &ipa->pdev->dev;
struct resource *res;
int ret;
/* Make sure the set of defined memory regions is valid */
if (!ipa_mem_valid(ipa, mem_data))
return -EINVAL;
ipa->mem_count = mem_data->local_count;
ipa->mem = mem_data->local;
/* Check the route and filter table memory regions */
if (!ipa_table_mem_valid(ipa, false))
return -EINVAL;
if (!ipa_table_mem_valid(ipa, true))
return -EINVAL;
ret = dma_set_mask_and_coherent(&ipa->pdev->dev, DMA_BIT_MASK(64));
if (ret) {
dev_err(dev, "error %d setting DMA mask\n", ret);
return ret;
}
res = platform_get_resource_byname(ipa->pdev, IORESOURCE_MEM,
"ipa-shared");
if (!res) {
dev_err(dev,
"DT error getting \"ipa-shared\" memory property\n");
return -ENODEV;
}
ipa->mem_virt = memremap(res->start, resource_size(res), MEMREMAP_WC);
if (!ipa->mem_virt) {
dev_err(dev, "unable to remap \"ipa-shared\" memory\n");
return -ENOMEM;
}
ipa->mem_addr = res->start;
ipa->mem_size = resource_size(res);
ret = ipa_imem_init(ipa, mem_data->imem_addr, mem_data->imem_size);
if (ret)
goto err_unmap;
ret = ipa_smem_init(ipa, mem_data->smem_id, mem_data->smem_size);
if (ret)
goto err_imem_exit;
return 0;
err_imem_exit:
ipa_imem_exit(ipa);
err_unmap:
memunmap(ipa->mem_virt);
return ret;
}
/* Inverse of ipa_mem_init() */
void ipa_mem_exit(struct ipa *ipa)
{
ipa_smem_exit(ipa);
ipa_imem_exit(ipa);
memunmap(ipa->mem_virt);
}