linux/arch/mips/kvm/emulate.c
Huacai Chen e4de205769 MIPS: KVM: Fix NULL pointer dereference
After commit 45c7e8af4a ("MIPS: Remove KVM_TE support") we
get a NULL pointer dereference when creating a KVM guest:

[  146.243409] Starting KVM with MIPS VZ extensions
[  149.849151] CPU 3 Unable to handle kernel paging request at virtual address 0000000000000300, epc == ffffffffc06356ec, ra == ffffffffc063568c
[  149.849177] Oops[#1]:
[  149.849182] CPU: 3 PID: 2265 Comm: qemu-system-mip Not tainted 6.4.0-rc3+ #1671
[  149.849188] Hardware name: THTF CX TL630 Series/THTF-LS3A4000-7A1000-ML4A, BIOS KL4.1F.TF.D.166.201225.R 12/25/2020
[  149.849192] $ 0   : 0000000000000000 000000007400cce0 0000000000400004 ffffffff8119c740
[  149.849209] $ 4   : 000000007400cce1 000000007400cce1 0000000000000000 0000000000000000
[  149.849221] $ 8   : 000000240058bb36 ffffffff81421ac0 0000000000000000 0000000000400dc0
[  149.849233] $12   : 9800000102a07cc8 ffffffff80e40e38 0000000000000001 0000000000400dc0
[  149.849245] $16   : 0000000000000000 9800000106cd0000 9800000106cd0000 9800000100cce000
[  149.849257] $20   : ffffffffc0632b28 ffffffffc05b31b0 9800000100ccca00 0000000000400000
[  149.849269] $24   : 9800000106cd09ce ffffffff802f69d0
[  149.849281] $28   : 9800000102a04000 9800000102a07cd0 98000001106a8000 ffffffffc063568c
[  149.849293] Hi    : 00000335b2111e66
[  149.849295] Lo    : 6668d90061ae0ae9
[  149.849298] epc   : ffffffffc06356ec kvm_vz_vcpu_setup+0xc4/0x328 [kvm]
[  149.849324] ra    : ffffffffc063568c kvm_vz_vcpu_setup+0x64/0x328 [kvm]
[  149.849336] Status: 7400cce3 KX SX UX KERNEL EXL IE
[  149.849351] Cause : 1000000c (ExcCode 03)
[  149.849354] BadVA : 0000000000000300
[  149.849357] PrId  : 0014c004 (ICT Loongson-3)
[  149.849360] Modules linked in: kvm nfnetlink_queue nfnetlink_log nfnetlink fuse sha256_generic libsha256 cfg80211 rfkill binfmt_misc vfat fat snd_hda_codec_hdmi input_leds led_class snd_hda_intel snd_intel_dspcfg snd_hda_codec snd_hda_core snd_pcm snd_timer snd serio_raw xhci_pci radeon drm_suballoc_helper drm_display_helper xhci_hcd ip_tables x_tables
[  149.849432] Process qemu-system-mip (pid: 2265, threadinfo=00000000ae2982d2, task=0000000038e09ad4, tls=000000ffeba16030)
[  149.849439] Stack : 9800000000000003 9800000100ccca00 9800000100ccc000 ffffffffc062cef4
[  149.849453]         9800000102a07d18 c89b63a7ab338e00 0000000000000000 ffffffff811a0000
[  149.849465]         0000000000000000 9800000106cd0000 ffffffff80e59938 98000001106a8920
[  149.849476]         ffffffff80e57f30 ffffffffc062854c ffffffff811a0000 9800000102bf4240
[  149.849488]         ffffffffc05b0000 ffffffff80e3a798 000000ff78000000 000000ff78000010
[  149.849500]         0000000000000255 98000001021f7de0 98000001023f0078 ffffffff81434000
[  149.849511]         0000000000000000 0000000000000000 9800000102ae0000 980000025e92ae28
[  149.849523]         0000000000000000 c89b63a7ab338e00 0000000000000001 ffffffff8119dce0
[  149.849535]         000000ff78000010 ffffffff804f3d3c 9800000102a07eb0 0000000000000255
[  149.849546]         0000000000000000 ffffffff8049460c 000000ff78000010 0000000000000255
[  149.849558]         ...
[  149.849565] Call Trace:
[  149.849567] [<ffffffffc06356ec>] kvm_vz_vcpu_setup+0xc4/0x328 [kvm]
[  149.849586] [<ffffffffc062cef4>] kvm_arch_vcpu_create+0x184/0x228 [kvm]
[  149.849605] [<ffffffffc062854c>] kvm_vm_ioctl+0x64c/0xf28 [kvm]
[  149.849623] [<ffffffff805209c0>] sys_ioctl+0xc8/0x118
[  149.849631] [<ffffffff80219eb0>] syscall_common+0x34/0x58

The root cause is the deletion of kvm_mips_commpage_init() leaves vcpu
->arch.cop0 NULL. So fix it by making cop0 from a pointer to an embedded
object.

Fixes: 45c7e8af4a ("MIPS: Remove KVM_TE support")
Cc: stable@vger.kernel.org
Reported-by: Yu Zhao <yuzhao@google.com>
Suggested-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
2023-07-03 16:06:19 +02:00

1651 lines
43 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* KVM/MIPS: Instruction/Exception emulation
*
* Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
* Authors: Sanjay Lal <sanjayl@kymasys.com>
*/
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/ktime.h>
#include <linux/kvm_host.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/memblock.h>
#include <linux/random.h>
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/cacheops.h>
#include <asm/cpu-info.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include <asm/inst.h>
#undef CONFIG_MIPS_MT
#include <asm/r4kcache.h>
#define CONFIG_MIPS_MT
#include "interrupt.h"
#include "trace.h"
/*
* Compute the return address and do emulate branch simulation, if required.
* This function should be called only in branch delay slot active.
*/
static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
unsigned long *out)
{
unsigned int dspcontrol;
union mips_instruction insn;
struct kvm_vcpu_arch *arch = &vcpu->arch;
long epc = instpc;
long nextpc;
int err;
if (epc & 3) {
kvm_err("%s: unaligned epc\n", __func__);
return -EINVAL;
}
/* Read the instruction */
err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
if (err)
return err;
switch (insn.i_format.opcode) {
/* jr and jalr are in r_format format. */
case spec_op:
switch (insn.r_format.func) {
case jalr_op:
arch->gprs[insn.r_format.rd] = epc + 8;
fallthrough;
case jr_op:
nextpc = arch->gprs[insn.r_format.rs];
break;
default:
return -EINVAL;
}
break;
/*
* This group contains:
* bltz_op, bgez_op, bltzl_op, bgezl_op,
* bltzal_op, bgezal_op, bltzall_op, bgezall_op.
*/
case bcond_op:
switch (insn.i_format.rt) {
case bltz_op:
case bltzl_op:
if ((long)arch->gprs[insn.i_format.rs] < 0)
epc = epc + 4 + (insn.i_format.simmediate << 2);
else
epc += 8;
nextpc = epc;
break;
case bgez_op:
case bgezl_op:
if ((long)arch->gprs[insn.i_format.rs] >= 0)
epc = epc + 4 + (insn.i_format.simmediate << 2);
else
epc += 8;
nextpc = epc;
break;
case bltzal_op:
case bltzall_op:
arch->gprs[31] = epc + 8;
if ((long)arch->gprs[insn.i_format.rs] < 0)
epc = epc + 4 + (insn.i_format.simmediate << 2);
else
epc += 8;
nextpc = epc;
break;
case bgezal_op:
case bgezall_op:
arch->gprs[31] = epc + 8;
if ((long)arch->gprs[insn.i_format.rs] >= 0)
epc = epc + 4 + (insn.i_format.simmediate << 2);
else
epc += 8;
nextpc = epc;
break;
case bposge32_op:
if (!cpu_has_dsp) {
kvm_err("%s: DSP branch but not DSP ASE\n",
__func__);
return -EINVAL;
}
dspcontrol = rddsp(0x01);
if (dspcontrol >= 32)
epc = epc + 4 + (insn.i_format.simmediate << 2);
else
epc += 8;
nextpc = epc;
break;
default:
return -EINVAL;
}
break;
/* These are unconditional and in j_format. */
case jal_op:
arch->gprs[31] = instpc + 8;
fallthrough;
case j_op:
epc += 4;
epc >>= 28;
epc <<= 28;
epc |= (insn.j_format.target << 2);
nextpc = epc;
break;
/* These are conditional and in i_format. */
case beq_op:
case beql_op:
if (arch->gprs[insn.i_format.rs] ==
arch->gprs[insn.i_format.rt])
epc = epc + 4 + (insn.i_format.simmediate << 2);
else
epc += 8;
nextpc = epc;
break;
case bne_op:
case bnel_op:
if (arch->gprs[insn.i_format.rs] !=
arch->gprs[insn.i_format.rt])
epc = epc + 4 + (insn.i_format.simmediate << 2);
else
epc += 8;
nextpc = epc;
break;
case blez_op: /* POP06 */
#ifndef CONFIG_CPU_MIPSR6
case blezl_op: /* removed in R6 */
#endif
if (insn.i_format.rt != 0)
goto compact_branch;
if ((long)arch->gprs[insn.i_format.rs] <= 0)
epc = epc + 4 + (insn.i_format.simmediate << 2);
else
epc += 8;
nextpc = epc;
break;
case bgtz_op: /* POP07 */
#ifndef CONFIG_CPU_MIPSR6
case bgtzl_op: /* removed in R6 */
#endif
if (insn.i_format.rt != 0)
goto compact_branch;
if ((long)arch->gprs[insn.i_format.rs] > 0)
epc = epc + 4 + (insn.i_format.simmediate << 2);
else
epc += 8;
nextpc = epc;
break;
/* And now the FPA/cp1 branch instructions. */
case cop1_op:
kvm_err("%s: unsupported cop1_op\n", __func__);
return -EINVAL;
#ifdef CONFIG_CPU_MIPSR6
/* R6 added the following compact branches with forbidden slots */
case blezl_op: /* POP26 */
case bgtzl_op: /* POP27 */
/* only rt == 0 isn't compact branch */
if (insn.i_format.rt != 0)
goto compact_branch;
return -EINVAL;
case pop10_op:
case pop30_op:
/* only rs == rt == 0 is reserved, rest are compact branches */
if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
goto compact_branch;
return -EINVAL;
case pop66_op:
case pop76_op:
/* only rs == 0 isn't compact branch */
if (insn.i_format.rs != 0)
goto compact_branch;
return -EINVAL;
compact_branch:
/*
* If we've hit an exception on the forbidden slot, then
* the branch must not have been taken.
*/
epc += 8;
nextpc = epc;
break;
#else
compact_branch:
/* Fall through - Compact branches not supported before R6 */
#endif
default:
return -EINVAL;
}
*out = nextpc;
return 0;
}
enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
{
int err;
if (cause & CAUSEF_BD) {
err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
&vcpu->arch.pc);
if (err)
return EMULATE_FAIL;
} else {
vcpu->arch.pc += 4;
}
kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
return EMULATE_DONE;
}
/**
* kvm_get_badinstr() - Get bad instruction encoding.
* @opc: Guest pointer to faulting instruction.
* @vcpu: KVM VCPU information.
*
* Gets the instruction encoding of the faulting instruction, using the saved
* BadInstr register value if it exists, otherwise falling back to reading guest
* memory at @opc.
*
* Returns: The instruction encoding of the faulting instruction.
*/
int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
{
if (cpu_has_badinstr) {
*out = vcpu->arch.host_cp0_badinstr;
return 0;
} else {
WARN_ONCE(1, "CPU doesn't have BadInstr register\n");
return -EINVAL;
}
}
/**
* kvm_get_badinstrp() - Get bad prior instruction encoding.
* @opc: Guest pointer to prior faulting instruction.
* @vcpu: KVM VCPU information.
*
* Gets the instruction encoding of the prior faulting instruction (the branch
* containing the delay slot which faulted), using the saved BadInstrP register
* value if it exists, otherwise falling back to reading guest memory at @opc.
*
* Returns: The instruction encoding of the prior faulting instruction.
*/
int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
{
if (cpu_has_badinstrp) {
*out = vcpu->arch.host_cp0_badinstrp;
return 0;
} else {
WARN_ONCE(1, "CPU doesn't have BadInstrp register\n");
return -EINVAL;
}
}
/**
* kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
* @vcpu: Virtual CPU.
*
* Returns: 1 if the CP0_Count timer is disabled by either the guest
* CP0_Cause.DC bit or the count_ctl.DC bit.
* 0 otherwise (in which case CP0_Count timer is running).
*/
int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
{
struct mips_coproc *cop0 = &vcpu->arch.cop0;
return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
}
/**
* kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
*
* Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
*
* Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
*/
static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
{
s64 now_ns, periods;
u64 delta;
now_ns = ktime_to_ns(now);
delta = now_ns + vcpu->arch.count_dyn_bias;
if (delta >= vcpu->arch.count_period) {
/* If delta is out of safe range the bias needs adjusting */
periods = div64_s64(now_ns, vcpu->arch.count_period);
vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
/* Recalculate delta with new bias */
delta = now_ns + vcpu->arch.count_dyn_bias;
}
/*
* We've ensured that:
* delta < count_period
*
* Therefore the intermediate delta*count_hz will never overflow since
* at the boundary condition:
* delta = count_period
* delta = NSEC_PER_SEC * 2^32 / count_hz
* delta * count_hz = NSEC_PER_SEC * 2^32
*/
return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
}
/**
* kvm_mips_count_time() - Get effective current time.
* @vcpu: Virtual CPU.
*
* Get effective monotonic ktime. This is usually a straightforward ktime_get(),
* except when the master disable bit is set in count_ctl, in which case it is
* count_resume, i.e. the time that the count was disabled.
*
* Returns: Effective monotonic ktime for CP0_Count.
*/
static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
{
if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
return vcpu->arch.count_resume;
return ktime_get();
}
/**
* kvm_mips_read_count_running() - Read the current count value as if running.
* @vcpu: Virtual CPU.
* @now: Kernel time to read CP0_Count at.
*
* Returns the current guest CP0_Count register at time @now and handles if the
* timer interrupt is pending and hasn't been handled yet.
*
* Returns: The current value of the guest CP0_Count register.
*/
static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
{
struct mips_coproc *cop0 = &vcpu->arch.cop0;
ktime_t expires, threshold;
u32 count, compare;
int running;
/* Calculate the biased and scaled guest CP0_Count */
count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
compare = kvm_read_c0_guest_compare(cop0);
/*
* Find whether CP0_Count has reached the closest timer interrupt. If
* not, we shouldn't inject it.
*/
if ((s32)(count - compare) < 0)
return count;
/*
* The CP0_Count we're going to return has already reached the closest
* timer interrupt. Quickly check if it really is a new interrupt by
* looking at whether the interval until the hrtimer expiry time is
* less than 1/4 of the timer period.
*/
expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
if (ktime_before(expires, threshold)) {
/*
* Cancel it while we handle it so there's no chance of
* interference with the timeout handler.
*/
running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
/* Nothing should be waiting on the timeout */
kvm_mips_callbacks->queue_timer_int(vcpu);
/*
* Restart the timer if it was running based on the expiry time
* we read, so that we don't push it back 2 periods.
*/
if (running) {
expires = ktime_add_ns(expires,
vcpu->arch.count_period);
hrtimer_start(&vcpu->arch.comparecount_timer, expires,
HRTIMER_MODE_ABS);
}
}
return count;
}
/**
* kvm_mips_read_count() - Read the current count value.
* @vcpu: Virtual CPU.
*
* Read the current guest CP0_Count value, taking into account whether the timer
* is stopped.
*
* Returns: The current guest CP0_Count value.
*/
u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
{
struct mips_coproc *cop0 = &vcpu->arch.cop0;
/* If count disabled just read static copy of count */
if (kvm_mips_count_disabled(vcpu))
return kvm_read_c0_guest_count(cop0);
return kvm_mips_read_count_running(vcpu, ktime_get());
}
/**
* kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
* @vcpu: Virtual CPU.
* @count: Output pointer for CP0_Count value at point of freeze.
*
* Freeze the hrtimer safely and return both the ktime and the CP0_Count value
* at the point it was frozen. It is guaranteed that any pending interrupts at
* the point it was frozen are handled, and none after that point.
*
* This is useful where the time/CP0_Count is needed in the calculation of the
* new parameters.
*
* Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
*
* Returns: The ktime at the point of freeze.
*/
ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
{
ktime_t now;
/* stop hrtimer before finding time */
hrtimer_cancel(&vcpu->arch.comparecount_timer);
now = ktime_get();
/* find count at this point and handle pending hrtimer */
*count = kvm_mips_read_count_running(vcpu, now);
return now;
}
/**
* kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
* @vcpu: Virtual CPU.
* @now: ktime at point of resume.
* @count: CP0_Count at point of resume.
*
* Resumes the timer and updates the timer expiry based on @now and @count.
* This can be used in conjunction with kvm_mips_freeze_timer() when timer
* parameters need to be changed.
*
* It is guaranteed that a timer interrupt immediately after resume will be
* handled, but not if CP_Compare is exactly at @count. That case is already
* handled by kvm_mips_freeze_timer().
*
* Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
*/
static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
ktime_t now, u32 count)
{
struct mips_coproc *cop0 = &vcpu->arch.cop0;
u32 compare;
u64 delta;
ktime_t expire;
/* Calculate timeout (wrap 0 to 2^32) */
compare = kvm_read_c0_guest_compare(cop0);
delta = (u64)(u32)(compare - count - 1) + 1;
delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
expire = ktime_add_ns(now, delta);
/* Update hrtimer to use new timeout */
hrtimer_cancel(&vcpu->arch.comparecount_timer);
hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
}
/**
* kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
* @vcpu: Virtual CPU.
* @before: Time before Count was saved, lower bound of drift calculation.
* @count: CP0_Count at point of restore.
* @min_drift: Minimum amount of drift permitted before correction.
* Must be <= 0.
*
* Restores the timer from a particular @count, accounting for drift. This can
* be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
* to be used for a period of time, but the exact ktime corresponding to the
* final Count that must be restored is not known.
*
* It is gauranteed that a timer interrupt immediately after restore will be
* handled, but not if CP0_Compare is exactly at @count. That case should
* already be handled when the hardware timer state is saved.
*
* Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
* stopped).
*
* Returns: Amount of correction to count_bias due to drift.
*/
int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
u32 count, int min_drift)
{
ktime_t now, count_time;
u32 now_count, before_count;
u64 delta;
int drift, ret = 0;
/* Calculate expected count at before */
before_count = vcpu->arch.count_bias +
kvm_mips_ktime_to_count(vcpu, before);
/*
* Detect significantly negative drift, where count is lower than
* expected. Some negative drift is expected when hardware counter is
* set after kvm_mips_freeze_timer(), and it is harmless to allow the
* time to jump forwards a little, within reason. If the drift is too
* significant, adjust the bias to avoid a big Guest.CP0_Count jump.
*/
drift = count - before_count;
if (drift < min_drift) {
count_time = before;
vcpu->arch.count_bias += drift;
ret = drift;
goto resume;
}
/* Calculate expected count right now */
now = ktime_get();
now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
/*
* Detect positive drift, where count is higher than expected, and
* adjust the bias to avoid guest time going backwards.
*/
drift = count - now_count;
if (drift > 0) {
count_time = now;
vcpu->arch.count_bias += drift;
ret = drift;
goto resume;
}
/* Subtract nanosecond delta to find ktime when count was read */
delta = (u64)(u32)(now_count - count);
delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
count_time = ktime_sub_ns(now, delta);
resume:
/* Resume using the calculated ktime */
kvm_mips_resume_hrtimer(vcpu, count_time, count);
return ret;
}
/**
* kvm_mips_write_count() - Modify the count and update timer.
* @vcpu: Virtual CPU.
* @count: Guest CP0_Count value to set.
*
* Sets the CP0_Count value and updates the timer accordingly.
*/
void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
{
struct mips_coproc *cop0 = &vcpu->arch.cop0;
ktime_t now;
/* Calculate bias */
now = kvm_mips_count_time(vcpu);
vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
if (kvm_mips_count_disabled(vcpu))
/* The timer's disabled, adjust the static count */
kvm_write_c0_guest_count(cop0, count);
else
/* Update timeout */
kvm_mips_resume_hrtimer(vcpu, now, count);
}
/**
* kvm_mips_init_count() - Initialise timer.
* @vcpu: Virtual CPU.
* @count_hz: Frequency of timer.
*
* Initialise the timer to the specified frequency, zero it, and set it going if
* it's enabled.
*/
void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
{
vcpu->arch.count_hz = count_hz;
vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
vcpu->arch.count_dyn_bias = 0;
/* Starting at 0 */
kvm_mips_write_count(vcpu, 0);
}
/**
* kvm_mips_set_count_hz() - Update the frequency of the timer.
* @vcpu: Virtual CPU.
* @count_hz: Frequency of CP0_Count timer in Hz.
*
* Change the frequency of the CP0_Count timer. This is done atomically so that
* CP0_Count is continuous and no timer interrupt is lost.
*
* Returns: -EINVAL if @count_hz is out of range.
* 0 on success.
*/
int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
{
struct mips_coproc *cop0 = &vcpu->arch.cop0;
int dc;
ktime_t now;
u32 count;
/* ensure the frequency is in a sensible range... */
if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
return -EINVAL;
/* ... and has actually changed */
if (vcpu->arch.count_hz == count_hz)
return 0;
/* Safely freeze timer so we can keep it continuous */
dc = kvm_mips_count_disabled(vcpu);
if (dc) {
now = kvm_mips_count_time(vcpu);
count = kvm_read_c0_guest_count(cop0);
} else {
now = kvm_mips_freeze_hrtimer(vcpu, &count);
}
/* Update the frequency */
vcpu->arch.count_hz = count_hz;
vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
vcpu->arch.count_dyn_bias = 0;
/* Calculate adjusted bias so dynamic count is unchanged */
vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
/* Update and resume hrtimer */
if (!dc)
kvm_mips_resume_hrtimer(vcpu, now, count);
return 0;
}
/**
* kvm_mips_write_compare() - Modify compare and update timer.
* @vcpu: Virtual CPU.
* @compare: New CP0_Compare value.
* @ack: Whether to acknowledge timer interrupt.
*
* Update CP0_Compare to a new value and update the timeout.
* If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
* any pending timer interrupt is preserved.
*/
void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
{
struct mips_coproc *cop0 = &vcpu->arch.cop0;
int dc;
u32 old_compare = kvm_read_c0_guest_compare(cop0);
s32 delta = compare - old_compare;
u32 cause;
ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
u32 count;
/* if unchanged, must just be an ack */
if (old_compare == compare) {
if (!ack)
return;
kvm_mips_callbacks->dequeue_timer_int(vcpu);
kvm_write_c0_guest_compare(cop0, compare);
return;
}
/*
* If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
* too to prevent guest CP0_Count hitting guest CP0_Compare.
*
* The new GTOffset corresponds to the new value of CP0_Compare, and is
* set prior to it being written into the guest context. We disable
* preemption until the new value is written to prevent restore of a
* GTOffset corresponding to the old CP0_Compare value.
*/
if (delta > 0) {
preempt_disable();
write_c0_gtoffset(compare - read_c0_count());
back_to_back_c0_hazard();
}
/* freeze_hrtimer() takes care of timer interrupts <= count */
dc = kvm_mips_count_disabled(vcpu);
if (!dc)
now = kvm_mips_freeze_hrtimer(vcpu, &count);
if (ack)
kvm_mips_callbacks->dequeue_timer_int(vcpu);
else
/*
* With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
* preserve guest CP0_Cause.TI if we don't want to ack it.
*/
cause = kvm_read_c0_guest_cause(cop0);
kvm_write_c0_guest_compare(cop0, compare);
if (delta > 0)
preempt_enable();
back_to_back_c0_hazard();
if (!ack && cause & CAUSEF_TI)
kvm_write_c0_guest_cause(cop0, cause);
/* resume_hrtimer() takes care of timer interrupts > count */
if (!dc)
kvm_mips_resume_hrtimer(vcpu, now, count);
/*
* If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
* until after the new CP0_Compare is written, otherwise new guest
* CP0_Count could hit new guest CP0_Compare.
*/
if (delta <= 0)
write_c0_gtoffset(compare - read_c0_count());
}
/**
* kvm_mips_count_disable() - Disable count.
* @vcpu: Virtual CPU.
*
* Disable the CP0_Count timer. A timer interrupt on or before the final stop
* time will be handled but not after.
*
* Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
* count_ctl.DC has been set (count disabled).
*
* Returns: The time that the timer was stopped.
*/
static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
{
struct mips_coproc *cop0 = &vcpu->arch.cop0;
u32 count;
ktime_t now;
/* Stop hrtimer */
hrtimer_cancel(&vcpu->arch.comparecount_timer);
/* Set the static count from the dynamic count, handling pending TI */
now = ktime_get();
count = kvm_mips_read_count_running(vcpu, now);
kvm_write_c0_guest_count(cop0, count);
return now;
}
/**
* kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
* @vcpu: Virtual CPU.
*
* Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
* before the final stop time will be handled if the timer isn't disabled by
* count_ctl.DC, but not after.
*
* Assumes CP0_Cause.DC is clear (count enabled).
*/
void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
{
struct mips_coproc *cop0 = &vcpu->arch.cop0;
kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
kvm_mips_count_disable(vcpu);
}
/**
* kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
* @vcpu: Virtual CPU.
*
* Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
* the start time will be handled if the timer isn't disabled by count_ctl.DC,
* potentially before even returning, so the caller should be careful with
* ordering of CP0_Cause modifications so as not to lose it.
*
* Assumes CP0_Cause.DC is set (count disabled).
*/
void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
{
struct mips_coproc *cop0 = &vcpu->arch.cop0;
u32 count;
kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
/*
* Set the dynamic count to match the static count.
* This starts the hrtimer if count_ctl.DC allows it.
* Otherwise it conveniently updates the biases.
*/
count = kvm_read_c0_guest_count(cop0);
kvm_mips_write_count(vcpu, count);
}
/**
* kvm_mips_set_count_ctl() - Update the count control KVM register.
* @vcpu: Virtual CPU.
* @count_ctl: Count control register new value.
*
* Set the count control KVM register. The timer is updated accordingly.
*
* Returns: -EINVAL if reserved bits are set.
* 0 on success.
*/
int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
{
struct mips_coproc *cop0 = &vcpu->arch.cop0;
s64 changed = count_ctl ^ vcpu->arch.count_ctl;
s64 delta;
ktime_t expire, now;
u32 count, compare;
/* Only allow defined bits to be changed */
if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
return -EINVAL;
/* Apply new value */
vcpu->arch.count_ctl = count_ctl;
/* Master CP0_Count disable */
if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
/* Is CP0_Cause.DC already disabling CP0_Count? */
if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
/* Just record the current time */
vcpu->arch.count_resume = ktime_get();
} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
/* disable timer and record current time */
vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
} else {
/*
* Calculate timeout relative to static count at resume
* time (wrap 0 to 2^32).
*/
count = kvm_read_c0_guest_count(cop0);
compare = kvm_read_c0_guest_compare(cop0);
delta = (u64)(u32)(compare - count - 1) + 1;
delta = div_u64(delta * NSEC_PER_SEC,
vcpu->arch.count_hz);
expire = ktime_add_ns(vcpu->arch.count_resume, delta);
/* Handle pending interrupt */
now = ktime_get();
if (ktime_compare(now, expire) >= 0)
/* Nothing should be waiting on the timeout */
kvm_mips_callbacks->queue_timer_int(vcpu);
/* Resume hrtimer without changing bias */
count = kvm_mips_read_count_running(vcpu, now);
kvm_mips_resume_hrtimer(vcpu, now, count);
}
}
return 0;
}
/**
* kvm_mips_set_count_resume() - Update the count resume KVM register.
* @vcpu: Virtual CPU.
* @count_resume: Count resume register new value.
*
* Set the count resume KVM register.
*
* Returns: -EINVAL if out of valid range (0..now).
* 0 on success.
*/
int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
{
/*
* It doesn't make sense for the resume time to be in the future, as it
* would be possible for the next interrupt to be more than a full
* period in the future.
*/
if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
return -EINVAL;
vcpu->arch.count_resume = ns_to_ktime(count_resume);
return 0;
}
/**
* kvm_mips_count_timeout() - Push timer forward on timeout.
* @vcpu: Virtual CPU.
*
* Handle an hrtimer event by push the hrtimer forward a period.
*
* Returns: The hrtimer_restart value to return to the hrtimer subsystem.
*/
enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
{
/* Add the Count period to the current expiry time */
hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
vcpu->arch.count_period);
return HRTIMER_RESTART;
}
enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
{
kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
vcpu->arch.pending_exceptions);
++vcpu->stat.wait_exits;
trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
if (!vcpu->arch.pending_exceptions) {
kvm_vz_lose_htimer(vcpu);
vcpu->arch.wait = 1;
kvm_vcpu_halt(vcpu);
/*
* We are runnable, then definitely go off to user space to
* check if any I/O interrupts are pending.
*/
if (kvm_arch_vcpu_runnable(vcpu))
vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
}
return EMULATE_DONE;
}
enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
u32 cause,
struct kvm_vcpu *vcpu)
{
int r;
enum emulation_result er;
u32 rt;
struct kvm_run *run = vcpu->run;
void *data = run->mmio.data;
unsigned int imme;
unsigned long curr_pc;
/*
* Update PC and hold onto current PC in case there is
* an error and we want to rollback the PC
*/
curr_pc = vcpu->arch.pc;
er = update_pc(vcpu, cause);
if (er == EMULATE_FAIL)
return er;
rt = inst.i_format.rt;
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
vcpu->arch.host_cp0_badvaddr);
if (run->mmio.phys_addr == KVM_INVALID_ADDR)
goto out_fail;
switch (inst.i_format.opcode) {
#if defined(CONFIG_64BIT)
case sd_op:
run->mmio.len = 8;
*(u64 *)data = vcpu->arch.gprs[rt];
kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
vcpu->arch.gprs[rt], *(u64 *)data);
break;
#endif
case sw_op:
run->mmio.len = 4;
*(u32 *)data = vcpu->arch.gprs[rt];
kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
vcpu->arch.gprs[rt], *(u32 *)data);
break;
case sh_op:
run->mmio.len = 2;
*(u16 *)data = vcpu->arch.gprs[rt];
kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
vcpu->arch.gprs[rt], *(u16 *)data);
break;
case sb_op:
run->mmio.len = 1;
*(u8 *)data = vcpu->arch.gprs[rt];
kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
vcpu->arch.gprs[rt], *(u8 *)data);
break;
case swl_op:
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
vcpu->arch.host_cp0_badvaddr) & (~0x3);
run->mmio.len = 4;
imme = vcpu->arch.host_cp0_badvaddr & 0x3;
switch (imme) {
case 0:
*(u32 *)data = ((*(u32 *)data) & 0xffffff00) |
(vcpu->arch.gprs[rt] >> 24);
break;
case 1:
*(u32 *)data = ((*(u32 *)data) & 0xffff0000) |
(vcpu->arch.gprs[rt] >> 16);
break;
case 2:
*(u32 *)data = ((*(u32 *)data) & 0xff000000) |
(vcpu->arch.gprs[rt] >> 8);
break;
case 3:
*(u32 *)data = vcpu->arch.gprs[rt];
break;
default:
break;
}
kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n",
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
vcpu->arch.gprs[rt], *(u32 *)data);
break;
case swr_op:
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
vcpu->arch.host_cp0_badvaddr) & (~0x3);
run->mmio.len = 4;
imme = vcpu->arch.host_cp0_badvaddr & 0x3;
switch (imme) {
case 0:
*(u32 *)data = vcpu->arch.gprs[rt];
break;
case 1:
*(u32 *)data = ((*(u32 *)data) & 0xff) |
(vcpu->arch.gprs[rt] << 8);
break;
case 2:
*(u32 *)data = ((*(u32 *)data) & 0xffff) |
(vcpu->arch.gprs[rt] << 16);
break;
case 3:
*(u32 *)data = ((*(u32 *)data) & 0xffffff) |
(vcpu->arch.gprs[rt] << 24);
break;
default:
break;
}
kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n",
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
vcpu->arch.gprs[rt], *(u32 *)data);
break;
#if defined(CONFIG_64BIT)
case sdl_op:
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
vcpu->arch.host_cp0_badvaddr) & (~0x7);
run->mmio.len = 8;
imme = vcpu->arch.host_cp0_badvaddr & 0x7;
switch (imme) {
case 0:
*(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) |
((vcpu->arch.gprs[rt] >> 56) & 0xff);
break;
case 1:
*(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) |
((vcpu->arch.gprs[rt] >> 48) & 0xffff);
break;
case 2:
*(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) |
((vcpu->arch.gprs[rt] >> 40) & 0xffffff);
break;
case 3:
*(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) |
((vcpu->arch.gprs[rt] >> 32) & 0xffffffff);
break;
case 4:
*(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) |
((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff);
break;
case 5:
*(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) |
((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff);
break;
case 6:
*(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) |
((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff);
break;
case 7:
*(u64 *)data = vcpu->arch.gprs[rt];
break;
default:
break;
}
kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n",
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
vcpu->arch.gprs[rt], *(u64 *)data);
break;
case sdr_op:
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
vcpu->arch.host_cp0_badvaddr) & (~0x7);
run->mmio.len = 8;
imme = vcpu->arch.host_cp0_badvaddr & 0x7;
switch (imme) {
case 0:
*(u64 *)data = vcpu->arch.gprs[rt];
break;
case 1:
*(u64 *)data = ((*(u64 *)data) & 0xff) |
(vcpu->arch.gprs[rt] << 8);
break;
case 2:
*(u64 *)data = ((*(u64 *)data) & 0xffff) |
(vcpu->arch.gprs[rt] << 16);
break;
case 3:
*(u64 *)data = ((*(u64 *)data) & 0xffffff) |
(vcpu->arch.gprs[rt] << 24);
break;
case 4:
*(u64 *)data = ((*(u64 *)data) & 0xffffffff) |
(vcpu->arch.gprs[rt] << 32);
break;
case 5:
*(u64 *)data = ((*(u64 *)data) & 0xffffffffff) |
(vcpu->arch.gprs[rt] << 40);
break;
case 6:
*(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) |
(vcpu->arch.gprs[rt] << 48);
break;
case 7:
*(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) |
(vcpu->arch.gprs[rt] << 56);
break;
default:
break;
}
kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n",
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
vcpu->arch.gprs[rt], *(u64 *)data);
break;
#endif
#ifdef CONFIG_CPU_LOONGSON64
case sdc2_op:
rt = inst.loongson3_lsdc2_format.rt;
switch (inst.loongson3_lsdc2_format.opcode1) {
/*
* Loongson-3 overridden sdc2 instructions.
* opcode1 instruction
* 0x0 gssbx: store 1 bytes from GPR
* 0x1 gsshx: store 2 bytes from GPR
* 0x2 gsswx: store 4 bytes from GPR
* 0x3 gssdx: store 8 bytes from GPR
*/
case 0x0:
run->mmio.len = 1;
*(u8 *)data = vcpu->arch.gprs[rt];
kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
vcpu->arch.gprs[rt], *(u8 *)data);
break;
case 0x1:
run->mmio.len = 2;
*(u16 *)data = vcpu->arch.gprs[rt];
kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
vcpu->arch.gprs[rt], *(u16 *)data);
break;
case 0x2:
run->mmio.len = 4;
*(u32 *)data = vcpu->arch.gprs[rt];
kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
vcpu->arch.gprs[rt], *(u32 *)data);
break;
case 0x3:
run->mmio.len = 8;
*(u64 *)data = vcpu->arch.gprs[rt];
kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
vcpu->arch.gprs[rt], *(u64 *)data);
break;
default:
kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n",
inst.word);
break;
}
break;
#endif
default:
kvm_err("Store not yet supported (inst=0x%08x)\n",
inst.word);
goto out_fail;
}
vcpu->mmio_needed = 1;
run->mmio.is_write = 1;
vcpu->mmio_is_write = 1;
r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
run->mmio.phys_addr, run->mmio.len, data);
if (!r) {
vcpu->mmio_needed = 0;
return EMULATE_DONE;
}
return EMULATE_DO_MMIO;
out_fail:
/* Rollback PC if emulation was unsuccessful */
vcpu->arch.pc = curr_pc;
return EMULATE_FAIL;
}
enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
u32 cause, struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
int r;
enum emulation_result er;
unsigned long curr_pc;
u32 op, rt;
unsigned int imme;
rt = inst.i_format.rt;
op = inst.i_format.opcode;
/*
* Find the resume PC now while we have safe and easy access to the
* prior branch instruction, and save it for
* kvm_mips_complete_mmio_load() to restore later.
*/
curr_pc = vcpu->arch.pc;
er = update_pc(vcpu, cause);
if (er == EMULATE_FAIL)
return er;
vcpu->arch.io_pc = vcpu->arch.pc;
vcpu->arch.pc = curr_pc;
vcpu->arch.io_gpr = rt;
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
vcpu->arch.host_cp0_badvaddr);
if (run->mmio.phys_addr == KVM_INVALID_ADDR)
return EMULATE_FAIL;
vcpu->mmio_needed = 2; /* signed */
switch (op) {
#if defined(CONFIG_64BIT)
case ld_op:
run->mmio.len = 8;
break;
case lwu_op:
vcpu->mmio_needed = 1; /* unsigned */
fallthrough;
#endif
case lw_op:
run->mmio.len = 4;
break;
case lhu_op:
vcpu->mmio_needed = 1; /* unsigned */
fallthrough;
case lh_op:
run->mmio.len = 2;
break;
case lbu_op:
vcpu->mmio_needed = 1; /* unsigned */
fallthrough;
case lb_op:
run->mmio.len = 1;
break;
case lwl_op:
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
vcpu->arch.host_cp0_badvaddr) & (~0x3);
run->mmio.len = 4;
imme = vcpu->arch.host_cp0_badvaddr & 0x3;
switch (imme) {
case 0:
vcpu->mmio_needed = 3; /* 1 byte */
break;
case 1:
vcpu->mmio_needed = 4; /* 2 bytes */
break;
case 2:
vcpu->mmio_needed = 5; /* 3 bytes */
break;
case 3:
vcpu->mmio_needed = 6; /* 4 bytes */
break;
default:
break;
}
break;
case lwr_op:
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
vcpu->arch.host_cp0_badvaddr) & (~0x3);
run->mmio.len = 4;
imme = vcpu->arch.host_cp0_badvaddr & 0x3;
switch (imme) {
case 0:
vcpu->mmio_needed = 7; /* 4 bytes */
break;
case 1:
vcpu->mmio_needed = 8; /* 3 bytes */
break;
case 2:
vcpu->mmio_needed = 9; /* 2 bytes */
break;
case 3:
vcpu->mmio_needed = 10; /* 1 byte */
break;
default:
break;
}
break;
#if defined(CONFIG_64BIT)
case ldl_op:
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
vcpu->arch.host_cp0_badvaddr) & (~0x7);
run->mmio.len = 8;
imme = vcpu->arch.host_cp0_badvaddr & 0x7;
switch (imme) {
case 0:
vcpu->mmio_needed = 11; /* 1 byte */
break;
case 1:
vcpu->mmio_needed = 12; /* 2 bytes */
break;
case 2:
vcpu->mmio_needed = 13; /* 3 bytes */
break;
case 3:
vcpu->mmio_needed = 14; /* 4 bytes */
break;
case 4:
vcpu->mmio_needed = 15; /* 5 bytes */
break;
case 5:
vcpu->mmio_needed = 16; /* 6 bytes */
break;
case 6:
vcpu->mmio_needed = 17; /* 7 bytes */
break;
case 7:
vcpu->mmio_needed = 18; /* 8 bytes */
break;
default:
break;
}
break;
case ldr_op:
run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
vcpu->arch.host_cp0_badvaddr) & (~0x7);
run->mmio.len = 8;
imme = vcpu->arch.host_cp0_badvaddr & 0x7;
switch (imme) {
case 0:
vcpu->mmio_needed = 19; /* 8 bytes */
break;
case 1:
vcpu->mmio_needed = 20; /* 7 bytes */
break;
case 2:
vcpu->mmio_needed = 21; /* 6 bytes */
break;
case 3:
vcpu->mmio_needed = 22; /* 5 bytes */
break;
case 4:
vcpu->mmio_needed = 23; /* 4 bytes */
break;
case 5:
vcpu->mmio_needed = 24; /* 3 bytes */
break;
case 6:
vcpu->mmio_needed = 25; /* 2 bytes */
break;
case 7:
vcpu->mmio_needed = 26; /* 1 byte */
break;
default:
break;
}
break;
#endif
#ifdef CONFIG_CPU_LOONGSON64
case ldc2_op:
rt = inst.loongson3_lsdc2_format.rt;
switch (inst.loongson3_lsdc2_format.opcode1) {
/*
* Loongson-3 overridden ldc2 instructions.
* opcode1 instruction
* 0x0 gslbx: store 1 bytes from GPR
* 0x1 gslhx: store 2 bytes from GPR
* 0x2 gslwx: store 4 bytes from GPR
* 0x3 gsldx: store 8 bytes from GPR
*/
case 0x0:
run->mmio.len = 1;
vcpu->mmio_needed = 27; /* signed */
break;
case 0x1:
run->mmio.len = 2;
vcpu->mmio_needed = 28; /* signed */
break;
case 0x2:
run->mmio.len = 4;
vcpu->mmio_needed = 29; /* signed */
break;
case 0x3:
run->mmio.len = 8;
vcpu->mmio_needed = 30; /* signed */
break;
default:
kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n",
inst.word);
break;
}
break;
#endif
default:
kvm_err("Load not yet supported (inst=0x%08x)\n",
inst.word);
vcpu->mmio_needed = 0;
return EMULATE_FAIL;
}
run->mmio.is_write = 0;
vcpu->mmio_is_write = 0;
r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS,
run->mmio.phys_addr, run->mmio.len, run->mmio.data);
if (!r) {
kvm_mips_complete_mmio_load(vcpu);
vcpu->mmio_needed = 0;
return EMULATE_DONE;
}
return EMULATE_DO_MMIO;
}
enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
enum emulation_result er = EMULATE_DONE;
if (run->mmio.len > sizeof(*gpr)) {
kvm_err("Bad MMIO length: %d", run->mmio.len);
er = EMULATE_FAIL;
goto done;
}
/* Restore saved resume PC */
vcpu->arch.pc = vcpu->arch.io_pc;
switch (run->mmio.len) {
case 8:
switch (vcpu->mmio_needed) {
case 11:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) |
(((*(s64 *)run->mmio.data) & 0xff) << 56);
break;
case 12:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) |
(((*(s64 *)run->mmio.data) & 0xffff) << 48);
break;
case 13:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) |
(((*(s64 *)run->mmio.data) & 0xffffff) << 40);
break;
case 14:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) |
(((*(s64 *)run->mmio.data) & 0xffffffff) << 32);
break;
case 15:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
(((*(s64 *)run->mmio.data) & 0xffffffffff) << 24);
break;
case 16:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
(((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16);
break;
case 17:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
(((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8);
break;
case 18:
case 19:
*gpr = *(s64 *)run->mmio.data;
break;
case 20:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) |
((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff);
break;
case 21:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) |
((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff);
break;
case 22:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) |
((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff);
break;
case 23:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) |
((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff);
break;
case 24:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) |
((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff);
break;
case 25:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) |
((((*(s64 *)run->mmio.data)) >> 48) & 0xffff);
break;
case 26:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) |
((((*(s64 *)run->mmio.data)) >> 56) & 0xff);
break;
default:
*gpr = *(s64 *)run->mmio.data;
}
break;
case 4:
switch (vcpu->mmio_needed) {
case 1:
*gpr = *(u32 *)run->mmio.data;
break;
case 2:
*gpr = *(s32 *)run->mmio.data;
break;
case 3:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
(((*(s32 *)run->mmio.data) & 0xff) << 24);
break;
case 4:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
(((*(s32 *)run->mmio.data) & 0xffff) << 16);
break;
case 5:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
(((*(s32 *)run->mmio.data) & 0xffffff) << 8);
break;
case 6:
case 7:
*gpr = *(s32 *)run->mmio.data;
break;
case 8:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) |
((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff);
break;
case 9:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) |
((((*(s32 *)run->mmio.data)) >> 16) & 0xffff);
break;
case 10:
*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) |
((((*(s32 *)run->mmio.data)) >> 24) & 0xff);
break;
default:
*gpr = *(s32 *)run->mmio.data;
}
break;
case 2:
if (vcpu->mmio_needed == 1)
*gpr = *(u16 *)run->mmio.data;
else
*gpr = *(s16 *)run->mmio.data;
break;
case 1:
if (vcpu->mmio_needed == 1)
*gpr = *(u8 *)run->mmio.data;
else
*gpr = *(s8 *)run->mmio.data;
break;
}
done:
return er;
}