linux/drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c
Alexander Lobakin a79afa78e6 net: use the new dev_page_is_reusable() instead of private versions
Now we can remove a bunch of identical functions from the drivers and
make them use common dev_page_is_reusable(). All {,un}likely() checks
are omitted since it's already present in this helper.
Also update some comments near the call sites.

Suggested-by: David Rientjes <rientjes@google.com>
Suggested-by: Jakub Kicinski <kuba@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Alexander Lobakin <alobakin@pm.me>
Reviewed-by: Jesse Brandeburg <jesse.brandeburg@intel.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-04 18:20:14 -08:00

4904 lines
131 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 1999 - 2018 Intel Corporation. */
/******************************************************************************
Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
******************************************************************************/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/vmalloc.h>
#include <linux/string.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
#include <linux/ipv6.h>
#include <linux/slab.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/ethtool.h>
#include <linux/if.h>
#include <linux/if_vlan.h>
#include <linux/prefetch.h>
#include <net/mpls.h>
#include <linux/bpf.h>
#include <linux/bpf_trace.h>
#include <linux/atomic.h>
#include <net/xfrm.h>
#include "ixgbevf.h"
const char ixgbevf_driver_name[] = "ixgbevf";
static const char ixgbevf_driver_string[] =
"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
static char ixgbevf_copyright[] =
"Copyright (c) 2009 - 2018 Intel Corporation.";
static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
[board_82599_vf] = &ixgbevf_82599_vf_info,
[board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info,
[board_X540_vf] = &ixgbevf_X540_vf_info,
[board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info,
[board_X550_vf] = &ixgbevf_X550_vf_info,
[board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info,
[board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info,
[board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info,
[board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info,
};
/* ixgbevf_pci_tbl - PCI Device ID Table
*
* Wildcard entries (PCI_ANY_ID) should come last
* Last entry must be all 0s
*
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
* Class, Class Mask, private data (not used) }
*/
static const struct pci_device_id ixgbevf_pci_tbl[] = {
{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
/* required last entry */
{0, }
};
MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
MODULE_LICENSE("GPL v2");
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
static struct workqueue_struct *ixgbevf_wq;
static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
{
if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
!test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
!test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
queue_work(ixgbevf_wq, &adapter->service_task);
}
static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
{
BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
/* flush memory to make sure state is correct before next watchdog */
smp_mb__before_atomic();
clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
}
/* forward decls */
static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer);
static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
struct ixgbevf_rx_buffer *old_buff);
static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
{
struct ixgbevf_adapter *adapter = hw->back;
if (!hw->hw_addr)
return;
hw->hw_addr = NULL;
dev_err(&adapter->pdev->dev, "Adapter removed\n");
if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
ixgbevf_service_event_schedule(adapter);
}
static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
{
u32 value;
/* The following check not only optimizes a bit by not
* performing a read on the status register when the
* register just read was a status register read that
* returned IXGBE_FAILED_READ_REG. It also blocks any
* potential recursion.
*/
if (reg == IXGBE_VFSTATUS) {
ixgbevf_remove_adapter(hw);
return;
}
value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
if (value == IXGBE_FAILED_READ_REG)
ixgbevf_remove_adapter(hw);
}
u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
{
u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr);
u32 value;
if (IXGBE_REMOVED(reg_addr))
return IXGBE_FAILED_READ_REG;
value = readl(reg_addr + reg);
if (unlikely(value == IXGBE_FAILED_READ_REG))
ixgbevf_check_remove(hw, reg);
return value;
}
/**
* ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
* @adapter: pointer to adapter struct
* @direction: 0 for Rx, 1 for Tx, -1 for other causes
* @queue: queue to map the corresponding interrupt to
* @msix_vector: the vector to map to the corresponding queue
**/
static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
u8 queue, u8 msix_vector)
{
u32 ivar, index;
struct ixgbe_hw *hw = &adapter->hw;
if (direction == -1) {
/* other causes */
msix_vector |= IXGBE_IVAR_ALLOC_VAL;
ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
ivar &= ~0xFF;
ivar |= msix_vector;
IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
} else {
/* Tx or Rx causes */
msix_vector |= IXGBE_IVAR_ALLOC_VAL;
index = ((16 * (queue & 1)) + (8 * direction));
ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
ivar &= ~(0xFF << index);
ivar |= (msix_vector << index);
IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
}
}
static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
{
return ring->stats.packets;
}
static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
{
struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
struct ixgbe_hw *hw = &adapter->hw;
u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
if (head != tail)
return (head < tail) ?
tail - head : (tail + ring->count - head);
return 0;
}
static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
{
u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
clear_check_for_tx_hang(tx_ring);
/* Check for a hung queue, but be thorough. This verifies
* that a transmit has been completed since the previous
* check AND there is at least one packet pending. The
* ARMED bit is set to indicate a potential hang.
*/
if ((tx_done_old == tx_done) && tx_pending) {
/* make sure it is true for two checks in a row */
return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
&tx_ring->state);
}
/* reset the countdown */
clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
/* update completed stats and continue */
tx_ring->tx_stats.tx_done_old = tx_done;
return false;
}
static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
{
/* Do the reset outside of interrupt context */
if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
ixgbevf_service_event_schedule(adapter);
}
}
/**
* ixgbevf_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
* @txqueue: transmit queue hanging (unused)
**/
static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
{
struct ixgbevf_adapter *adapter = netdev_priv(netdev);
ixgbevf_tx_timeout_reset(adapter);
}
/**
* ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
* @q_vector: board private structure
* @tx_ring: tx ring to clean
* @napi_budget: Used to determine if we are in netpoll
**/
static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
struct ixgbevf_ring *tx_ring, int napi_budget)
{
struct ixgbevf_adapter *adapter = q_vector->adapter;
struct ixgbevf_tx_buffer *tx_buffer;
union ixgbe_adv_tx_desc *tx_desc;
unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0;
unsigned int budget = tx_ring->count / 2;
unsigned int i = tx_ring->next_to_clean;
if (test_bit(__IXGBEVF_DOWN, &adapter->state))
return true;
tx_buffer = &tx_ring->tx_buffer_info[i];
tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
i -= tx_ring->count;
do {
union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
/* if next_to_watch is not set then there is no work pending */
if (!eop_desc)
break;
/* prevent any other reads prior to eop_desc */
smp_rmb();
/* if DD is not set pending work has not been completed */
if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
break;
/* clear next_to_watch to prevent false hangs */
tx_buffer->next_to_watch = NULL;
/* update the statistics for this packet */
total_bytes += tx_buffer->bytecount;
total_packets += tx_buffer->gso_segs;
if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC)
total_ipsec++;
/* free the skb */
if (ring_is_xdp(tx_ring))
page_frag_free(tx_buffer->data);
else
napi_consume_skb(tx_buffer->skb, napi_budget);
/* unmap skb header data */
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
/* clear tx_buffer data */
dma_unmap_len_set(tx_buffer, len, 0);
/* unmap remaining buffers */
while (tx_desc != eop_desc) {
tx_buffer++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
}
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buffer, len)) {
dma_unmap_page(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buffer, len, 0);
}
}
/* move us one more past the eop_desc for start of next pkt */
tx_buffer++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
}
/* issue prefetch for next Tx descriptor */
prefetch(tx_desc);
/* update budget accounting */
budget--;
} while (likely(budget));
i += tx_ring->count;
tx_ring->next_to_clean = i;
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->stats.bytes += total_bytes;
tx_ring->stats.packets += total_packets;
u64_stats_update_end(&tx_ring->syncp);
q_vector->tx.total_bytes += total_bytes;
q_vector->tx.total_packets += total_packets;
adapter->tx_ipsec += total_ipsec;
if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
struct ixgbe_hw *hw = &adapter->hw;
union ixgbe_adv_tx_desc *eop_desc;
eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
pr_err("Detected Tx Unit Hang%s\n"
" Tx Queue <%d>\n"
" TDH, TDT <%x>, <%x>\n"
" next_to_use <%x>\n"
" next_to_clean <%x>\n"
"tx_buffer_info[next_to_clean]\n"
" next_to_watch <%p>\n"
" eop_desc->wb.status <%x>\n"
" time_stamp <%lx>\n"
" jiffies <%lx>\n",
ring_is_xdp(tx_ring) ? " XDP" : "",
tx_ring->queue_index,
IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
tx_ring->next_to_use, i,
eop_desc, (eop_desc ? eop_desc->wb.status : 0),
tx_ring->tx_buffer_info[i].time_stamp, jiffies);
if (!ring_is_xdp(tx_ring))
netif_stop_subqueue(tx_ring->netdev,
tx_ring->queue_index);
/* schedule immediate reset if we believe we hung */
ixgbevf_tx_timeout_reset(adapter);
return true;
}
if (ring_is_xdp(tx_ring))
return !!budget;
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
(ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (__netif_subqueue_stopped(tx_ring->netdev,
tx_ring->queue_index) &&
!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
netif_wake_subqueue(tx_ring->netdev,
tx_ring->queue_index);
++tx_ring->tx_stats.restart_queue;
}
}
return !!budget;
}
/**
* ixgbevf_rx_skb - Helper function to determine proper Rx method
* @q_vector: structure containing interrupt and ring information
* @skb: packet to send up
**/
static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
struct sk_buff *skb)
{
napi_gro_receive(&q_vector->napi, skb);
}
#define IXGBE_RSS_L4_TYPES_MASK \
((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
(1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
(1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
(1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
union ixgbe_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
u16 rss_type;
if (!(ring->netdev->features & NETIF_F_RXHASH))
return;
rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
IXGBE_RXDADV_RSSTYPE_MASK;
if (!rss_type)
return;
skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
(IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
}
/**
* ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
* @ring: structure containig ring specific data
* @rx_desc: current Rx descriptor being processed
* @skb: skb currently being received and modified
**/
static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
union ixgbe_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
skb_checksum_none_assert(skb);
/* Rx csum disabled */
if (!(ring->netdev->features & NETIF_F_RXCSUM))
return;
/* if IP and error */
if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
ring->rx_stats.csum_err++;
return;
}
if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
return;
if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
ring->rx_stats.csum_err++;
return;
}
/* It must be a TCP or UDP packet with a valid checksum */
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
/**
* ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
* @rx_ring: rx descriptor ring packet is being transacted on
* @rx_desc: pointer to the EOP Rx descriptor
* @skb: pointer to current skb being populated
*
* This function checks the ring, descriptor, and packet information in
* order to populate the checksum, VLAN, protocol, and other fields within
* the skb.
**/
static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
union ixgbe_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
ixgbevf_rx_hash(rx_ring, rx_desc, skb);
ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
if (test_bit(vid & VLAN_VID_MASK, active_vlans))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
}
if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP))
ixgbevf_ipsec_rx(rx_ring, rx_desc, skb);
skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}
static
struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring,
const unsigned int size)
{
struct ixgbevf_rx_buffer *rx_buffer;
rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
prefetchw(rx_buffer->page);
/* we are reusing so sync this buffer for CPU use */
dma_sync_single_range_for_cpu(rx_ring->dev,
rx_buffer->dma,
rx_buffer->page_offset,
size,
DMA_FROM_DEVICE);
rx_buffer->pagecnt_bias--;
return rx_buffer;
}
static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring,
struct ixgbevf_rx_buffer *rx_buffer,
struct sk_buff *skb)
{
if (ixgbevf_can_reuse_rx_page(rx_buffer)) {
/* hand second half of page back to the ring */
ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
} else {
if (IS_ERR(skb))
/* We are not reusing the buffer so unmap it and free
* any references we are holding to it
*/
dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
ixgbevf_rx_pg_size(rx_ring),
DMA_FROM_DEVICE,
IXGBEVF_RX_DMA_ATTR);
__page_frag_cache_drain(rx_buffer->page,
rx_buffer->pagecnt_bias);
}
/* clear contents of rx_buffer */
rx_buffer->page = NULL;
}
/**
* ixgbevf_is_non_eop - process handling of non-EOP buffers
* @rx_ring: Rx ring being processed
* @rx_desc: Rx descriptor for current buffer
*
* This function updates next to clean. If the buffer is an EOP buffer
* this function exits returning false, otherwise it will place the
* sk_buff in the next buffer to be chained and return true indicating
* that this is in fact a non-EOP buffer.
**/
static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
union ixgbe_adv_rx_desc *rx_desc)
{
u32 ntc = rx_ring->next_to_clean + 1;
/* fetch, update, and store next to clean */
ntc = (ntc < rx_ring->count) ? ntc : 0;
rx_ring->next_to_clean = ntc;
prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
return false;
return true;
}
static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring)
{
return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0;
}
static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
struct ixgbevf_rx_buffer *bi)
{
struct page *page = bi->page;
dma_addr_t dma;
/* since we are recycling buffers we should seldom need to alloc */
if (likely(page))
return true;
/* alloc new page for storage */
page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring));
if (unlikely(!page)) {
rx_ring->rx_stats.alloc_rx_page_failed++;
return false;
}
/* map page for use */
dma = dma_map_page_attrs(rx_ring->dev, page, 0,
ixgbevf_rx_pg_size(rx_ring),
DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR);
/* if mapping failed free memory back to system since
* there isn't much point in holding memory we can't use
*/
if (dma_mapping_error(rx_ring->dev, dma)) {
__free_pages(page, ixgbevf_rx_pg_order(rx_ring));
rx_ring->rx_stats.alloc_rx_page_failed++;
return false;
}
bi->dma = dma;
bi->page = page;
bi->page_offset = ixgbevf_rx_offset(rx_ring);
bi->pagecnt_bias = 1;
rx_ring->rx_stats.alloc_rx_page++;
return true;
}
/**
* ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
* @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
* @cleaned_count: number of buffers to replace
**/
static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
u16 cleaned_count)
{
union ixgbe_adv_rx_desc *rx_desc;
struct ixgbevf_rx_buffer *bi;
unsigned int i = rx_ring->next_to_use;
/* nothing to do or no valid netdev defined */
if (!cleaned_count || !rx_ring->netdev)
return;
rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
bi = &rx_ring->rx_buffer_info[i];
i -= rx_ring->count;
do {
if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
break;
/* sync the buffer for use by the device */
dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
bi->page_offset,
ixgbevf_rx_bufsz(rx_ring),
DMA_FROM_DEVICE);
/* Refresh the desc even if pkt_addr didn't change
* because each write-back erases this info.
*/
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
rx_desc++;
bi++;
i++;
if (unlikely(!i)) {
rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
bi = rx_ring->rx_buffer_info;
i -= rx_ring->count;
}
/* clear the length for the next_to_use descriptor */
rx_desc->wb.upper.length = 0;
cleaned_count--;
} while (cleaned_count);
i += rx_ring->count;
if (rx_ring->next_to_use != i) {
/* record the next descriptor to use */
rx_ring->next_to_use = i;
/* update next to alloc since we have filled the ring */
rx_ring->next_to_alloc = i;
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
ixgbevf_write_tail(rx_ring, i);
}
}
/**
* ixgbevf_cleanup_headers - Correct corrupted or empty headers
* @rx_ring: rx descriptor ring packet is being transacted on
* @rx_desc: pointer to the EOP Rx descriptor
* @skb: pointer to current skb being fixed
*
* Check for corrupted packet headers caused by senders on the local L2
* embedded NIC switch not setting up their Tx Descriptors right. These
* should be very rare.
*
* Also address the case where we are pulling data in on pages only
* and as such no data is present in the skb header.
*
* In addition if skb is not at least 60 bytes we need to pad it so that
* it is large enough to qualify as a valid Ethernet frame.
*
* Returns true if an error was encountered and skb was freed.
**/
static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
union ixgbe_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
/* XDP packets use error pointer so abort at this point */
if (IS_ERR(skb))
return true;
/* verify that the packet does not have any known errors */
if (unlikely(ixgbevf_test_staterr(rx_desc,
IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
struct net_device *netdev = rx_ring->netdev;
if (!(netdev->features & NETIF_F_RXALL)) {
dev_kfree_skb_any(skb);
return true;
}
}
/* if eth_skb_pad returns an error the skb was freed */
if (eth_skb_pad(skb))
return true;
return false;
}
/**
* ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
* @rx_ring: rx descriptor ring to store buffers on
* @old_buff: donor buffer to have page reused
*
* Synchronizes page for reuse by the adapter
**/
static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
struct ixgbevf_rx_buffer *old_buff)
{
struct ixgbevf_rx_buffer *new_buff;
u16 nta = rx_ring->next_to_alloc;
new_buff = &rx_ring->rx_buffer_info[nta];
/* update, and store next to alloc */
nta++;
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
/* transfer page from old buffer to new buffer */
new_buff->page = old_buff->page;
new_buff->dma = old_buff->dma;
new_buff->page_offset = old_buff->page_offset;
new_buff->pagecnt_bias = old_buff->pagecnt_bias;
}
static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer)
{
unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
struct page *page = rx_buffer->page;
/* avoid re-using remote and pfmemalloc pages */
if (!dev_page_is_reusable(page))
return false;
#if (PAGE_SIZE < 8192)
/* if we are only owner of page we can reuse it */
if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
return false;
#else
#define IXGBEVF_LAST_OFFSET \
(SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048)
if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET)
return false;
#endif
/* If we have drained the page fragment pool we need to update
* the pagecnt_bias and page count so that we fully restock the
* number of references the driver holds.
*/
if (unlikely(!pagecnt_bias)) {
page_ref_add(page, USHRT_MAX);
rx_buffer->pagecnt_bias = USHRT_MAX;
}
return true;
}
/**
* ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
* @rx_ring: rx descriptor ring to transact packets on
* @rx_buffer: buffer containing page to add
* @skb: sk_buff to place the data into
* @size: size of buffer to be added
*
* This function will add the data contained in rx_buffer->page to the skb.
**/
static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
struct ixgbevf_rx_buffer *rx_buffer,
struct sk_buff *skb,
unsigned int size)
{
#if (PAGE_SIZE < 8192)
unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
#else
unsigned int truesize = ring_uses_build_skb(rx_ring) ?
SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
SKB_DATA_ALIGN(size);
#endif
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
rx_buffer->page_offset, size, truesize);
#if (PAGE_SIZE < 8192)
rx_buffer->page_offset ^= truesize;
#else
rx_buffer->page_offset += truesize;
#endif
}
static
struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring,
struct ixgbevf_rx_buffer *rx_buffer,
struct xdp_buff *xdp,
union ixgbe_adv_rx_desc *rx_desc)
{
unsigned int size = xdp->data_end - xdp->data;
#if (PAGE_SIZE < 8192)
unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
#else
unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
xdp->data_hard_start);
#endif
unsigned int headlen;
struct sk_buff *skb;
/* prefetch first cache line of first page */
net_prefetch(xdp->data);
/* Note, we get here by enabling legacy-rx via:
*
* ethtool --set-priv-flags <dev> legacy-rx on
*
* In this mode, we currently get 0 extra XDP headroom as
* opposed to having legacy-rx off, where we process XDP
* packets going to stack via ixgbevf_build_skb().
*
* For ixgbevf_construct_skb() mode it means that the
* xdp->data_meta will always point to xdp->data, since
* the helper cannot expand the head. Should this ever
* changed in future for legacy-rx mode on, then lets also
* add xdp->data_meta handling here.
*/
/* allocate a skb to store the frags */
skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE);
if (unlikely(!skb))
return NULL;
/* Determine available headroom for copy */
headlen = size;
if (headlen > IXGBEVF_RX_HDR_SIZE)
headlen = eth_get_headlen(skb->dev, xdp->data,
IXGBEVF_RX_HDR_SIZE);
/* align pull length to size of long to optimize memcpy performance */
memcpy(__skb_put(skb, headlen), xdp->data,
ALIGN(headlen, sizeof(long)));
/* update all of the pointers */
size -= headlen;
if (size) {
skb_add_rx_frag(skb, 0, rx_buffer->page,
(xdp->data + headlen) -
page_address(rx_buffer->page),
size, truesize);
#if (PAGE_SIZE < 8192)
rx_buffer->page_offset ^= truesize;
#else
rx_buffer->page_offset += truesize;
#endif
} else {
rx_buffer->pagecnt_bias++;
}
return skb;
}
static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
u32 qmask)
{
struct ixgbe_hw *hw = &adapter->hw;
IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
}
static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring,
struct ixgbevf_rx_buffer *rx_buffer,
struct xdp_buff *xdp,
union ixgbe_adv_rx_desc *rx_desc)
{
unsigned int metasize = xdp->data - xdp->data_meta;
#if (PAGE_SIZE < 8192)
unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
#else
unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
SKB_DATA_ALIGN(xdp->data_end -
xdp->data_hard_start);
#endif
struct sk_buff *skb;
/* Prefetch first cache line of first page. If xdp->data_meta
* is unused, this points to xdp->data, otherwise, we likely
* have a consumer accessing first few bytes of meta data,
* and then actual data.
*/
net_prefetch(xdp->data_meta);
/* build an skb around the page buffer */
skb = build_skb(xdp->data_hard_start, truesize);
if (unlikely(!skb))
return NULL;
/* update pointers within the skb to store the data */
skb_reserve(skb, xdp->data - xdp->data_hard_start);
__skb_put(skb, xdp->data_end - xdp->data);
if (metasize)
skb_metadata_set(skb, metasize);
/* update buffer offset */
#if (PAGE_SIZE < 8192)
rx_buffer->page_offset ^= truesize;
#else
rx_buffer->page_offset += truesize;
#endif
return skb;
}
#define IXGBEVF_XDP_PASS 0
#define IXGBEVF_XDP_CONSUMED 1
#define IXGBEVF_XDP_TX 2
static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring,
struct xdp_buff *xdp)
{
struct ixgbevf_tx_buffer *tx_buffer;
union ixgbe_adv_tx_desc *tx_desc;
u32 len, cmd_type;
dma_addr_t dma;
u16 i;
len = xdp->data_end - xdp->data;
if (unlikely(!ixgbevf_desc_unused(ring)))
return IXGBEVF_XDP_CONSUMED;
dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE);
if (dma_mapping_error(ring->dev, dma))
return IXGBEVF_XDP_CONSUMED;
/* record the location of the first descriptor for this packet */
i = ring->next_to_use;
tx_buffer = &ring->tx_buffer_info[i];
dma_unmap_len_set(tx_buffer, len, len);
dma_unmap_addr_set(tx_buffer, dma, dma);
tx_buffer->data = xdp->data;
tx_buffer->bytecount = len;
tx_buffer->gso_segs = 1;
tx_buffer->protocol = 0;
/* Populate minimal context descriptor that will provide for the
* fact that we are expected to process Ethernet frames.
*/
if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) {
struct ixgbe_adv_tx_context_desc *context_desc;
set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
context_desc = IXGBEVF_TX_CTXTDESC(ring, 0);
context_desc->vlan_macip_lens =
cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT);
context_desc->fceof_saidx = 0;
context_desc->type_tucmd_mlhl =
cpu_to_le32(IXGBE_TXD_CMD_DEXT |
IXGBE_ADVTXD_DTYP_CTXT);
context_desc->mss_l4len_idx = 0;
i = 1;
}
/* put descriptor type bits */
cmd_type = IXGBE_ADVTXD_DTYP_DATA |
IXGBE_ADVTXD_DCMD_DEXT |
IXGBE_ADVTXD_DCMD_IFCS;
cmd_type |= len | IXGBE_TXD_CMD;
tx_desc = IXGBEVF_TX_DESC(ring, i);
tx_desc->read.buffer_addr = cpu_to_le64(dma);
tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
tx_desc->read.olinfo_status =
cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) |
IXGBE_ADVTXD_CC);
/* Avoid any potential race with cleanup */
smp_wmb();
/* set next_to_watch value indicating a packet is present */
i++;
if (i == ring->count)
i = 0;
tx_buffer->next_to_watch = tx_desc;
ring->next_to_use = i;
return IXGBEVF_XDP_TX;
}
static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter,
struct ixgbevf_ring *rx_ring,
struct xdp_buff *xdp)
{
int result = IXGBEVF_XDP_PASS;
struct ixgbevf_ring *xdp_ring;
struct bpf_prog *xdp_prog;
u32 act;
rcu_read_lock();
xdp_prog = READ_ONCE(rx_ring->xdp_prog);
if (!xdp_prog)
goto xdp_out;
act = bpf_prog_run_xdp(xdp_prog, xdp);
switch (act) {
case XDP_PASS:
break;
case XDP_TX:
xdp_ring = adapter->xdp_ring[rx_ring->queue_index];
result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp);
break;
default:
bpf_warn_invalid_xdp_action(act);
fallthrough;
case XDP_ABORTED:
trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
fallthrough; /* handle aborts by dropping packet */
case XDP_DROP:
result = IXGBEVF_XDP_CONSUMED;
break;
}
xdp_out:
rcu_read_unlock();
return ERR_PTR(-result);
}
static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring,
unsigned int size)
{
unsigned int truesize;
#if (PAGE_SIZE < 8192)
truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
#else
truesize = ring_uses_build_skb(rx_ring) ?
SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
SKB_DATA_ALIGN(size);
#endif
return truesize;
}
static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring,
struct ixgbevf_rx_buffer *rx_buffer,
unsigned int size)
{
unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size);
#if (PAGE_SIZE < 8192)
rx_buffer->page_offset ^= truesize;
#else
rx_buffer->page_offset += truesize;
#endif
}
static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
struct ixgbevf_ring *rx_ring,
int budget)
{
unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
struct ixgbevf_adapter *adapter = q_vector->adapter;
u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
struct sk_buff *skb = rx_ring->skb;
bool xdp_xmit = false;
struct xdp_buff xdp;
/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
#if (PAGE_SIZE < 8192)
frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0);
#endif
xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
while (likely(total_rx_packets < budget)) {
struct ixgbevf_rx_buffer *rx_buffer;
union ixgbe_adv_rx_desc *rx_desc;
unsigned int size;
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
cleaned_count = 0;
}
rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
size = le16_to_cpu(rx_desc->wb.upper.length);
if (!size)
break;
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we know the
* RXD_STAT_DD bit is set
*/
rmb();
rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size);
/* retrieve a buffer from the ring */
if (!skb) {
unsigned int offset = ixgbevf_rx_offset(rx_ring);
unsigned char *hard_start;
hard_start = page_address(rx_buffer->page) +
rx_buffer->page_offset - offset;
xdp_prepare_buff(&xdp, hard_start, offset, size, true);
#if (PAGE_SIZE > 4096)
/* At larger PAGE_SIZE, frame_sz depend on len size */
xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size);
#endif
skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp);
}
if (IS_ERR(skb)) {
if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) {
xdp_xmit = true;
ixgbevf_rx_buffer_flip(rx_ring, rx_buffer,
size);
} else {
rx_buffer->pagecnt_bias++;
}
total_rx_packets++;
total_rx_bytes += size;
} else if (skb) {
ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size);
} else if (ring_uses_build_skb(rx_ring)) {
skb = ixgbevf_build_skb(rx_ring, rx_buffer,
&xdp, rx_desc);
} else {
skb = ixgbevf_construct_skb(rx_ring, rx_buffer,
&xdp, rx_desc);
}
/* exit if we failed to retrieve a buffer */
if (!skb) {
rx_ring->rx_stats.alloc_rx_buff_failed++;
rx_buffer->pagecnt_bias++;
break;
}
ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb);
cleaned_count++;
/* fetch next buffer in frame if non-eop */
if (ixgbevf_is_non_eop(rx_ring, rx_desc))
continue;
/* verify the packet layout is correct */
if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
skb = NULL;
continue;
}
/* probably a little skewed due to removing CRC */
total_rx_bytes += skb->len;
/* Workaround hardware that can't do proper VEPA multicast
* source pruning.
*/
if ((skb->pkt_type == PACKET_BROADCAST ||
skb->pkt_type == PACKET_MULTICAST) &&
ether_addr_equal(rx_ring->netdev->dev_addr,
eth_hdr(skb)->h_source)) {
dev_kfree_skb_irq(skb);
continue;
}
/* populate checksum, VLAN, and protocol */
ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
ixgbevf_rx_skb(q_vector, skb);
/* reset skb pointer */
skb = NULL;
/* update budget accounting */
total_rx_packets++;
}
/* place incomplete frames back on ring for completion */
rx_ring->skb = skb;
if (xdp_xmit) {
struct ixgbevf_ring *xdp_ring =
adapter->xdp_ring[rx_ring->queue_index];
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch.
*/
wmb();
ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use);
}
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->stats.packets += total_rx_packets;
rx_ring->stats.bytes += total_rx_bytes;
u64_stats_update_end(&rx_ring->syncp);
q_vector->rx.total_packets += total_rx_packets;
q_vector->rx.total_bytes += total_rx_bytes;
return total_rx_packets;
}
/**
* ixgbevf_poll - NAPI polling calback
* @napi: napi struct with our devices info in it
* @budget: amount of work driver is allowed to do this pass, in packets
*
* This function will clean more than one or more rings associated with a
* q_vector.
**/
static int ixgbevf_poll(struct napi_struct *napi, int budget)
{
struct ixgbevf_q_vector *q_vector =
container_of(napi, struct ixgbevf_q_vector, napi);
struct ixgbevf_adapter *adapter = q_vector->adapter;
struct ixgbevf_ring *ring;
int per_ring_budget, work_done = 0;
bool clean_complete = true;
ixgbevf_for_each_ring(ring, q_vector->tx) {
if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
clean_complete = false;
}
if (budget <= 0)
return budget;
/* attempt to distribute budget to each queue fairly, but don't allow
* the budget to go below 1 because we'll exit polling
*/
if (q_vector->rx.count > 1)
per_ring_budget = max(budget/q_vector->rx.count, 1);
else
per_ring_budget = budget;
ixgbevf_for_each_ring(ring, q_vector->rx) {
int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
per_ring_budget);
work_done += cleaned;
if (cleaned >= per_ring_budget)
clean_complete = false;
}
/* If all work not completed, return budget and keep polling */
if (!clean_complete)
return budget;
/* Exit the polling mode, but don't re-enable interrupts if stack might
* poll us due to busy-polling
*/
if (likely(napi_complete_done(napi, work_done))) {
if (adapter->rx_itr_setting == 1)
ixgbevf_set_itr(q_vector);
if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
!test_bit(__IXGBEVF_REMOVING, &adapter->state))
ixgbevf_irq_enable_queues(adapter,
BIT(q_vector->v_idx));
}
return min(work_done, budget - 1);
}
/**
* ixgbevf_write_eitr - write VTEITR register in hardware specific way
* @q_vector: structure containing interrupt and ring information
**/
void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
{
struct ixgbevf_adapter *adapter = q_vector->adapter;
struct ixgbe_hw *hw = &adapter->hw;
int v_idx = q_vector->v_idx;
u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
/* set the WDIS bit to not clear the timer bits and cause an
* immediate assertion of the interrupt
*/
itr_reg |= IXGBE_EITR_CNT_WDIS;
IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
}
/**
* ixgbevf_configure_msix - Configure MSI-X hardware
* @adapter: board private structure
*
* ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
* interrupts.
**/
static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
{
struct ixgbevf_q_vector *q_vector;
int q_vectors, v_idx;
q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
adapter->eims_enable_mask = 0;
/* Populate the IVAR table and set the ITR values to the
* corresponding register.
*/
for (v_idx = 0; v_idx < q_vectors; v_idx++) {
struct ixgbevf_ring *ring;
q_vector = adapter->q_vector[v_idx];
ixgbevf_for_each_ring(ring, q_vector->rx)
ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
ixgbevf_for_each_ring(ring, q_vector->tx)
ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
if (q_vector->tx.ring && !q_vector->rx.ring) {
/* Tx only vector */
if (adapter->tx_itr_setting == 1)
q_vector->itr = IXGBE_12K_ITR;
else
q_vector->itr = adapter->tx_itr_setting;
} else {
/* Rx or Rx/Tx vector */
if (adapter->rx_itr_setting == 1)
q_vector->itr = IXGBE_20K_ITR;
else
q_vector->itr = adapter->rx_itr_setting;
}
/* add q_vector eims value to global eims_enable_mask */
adapter->eims_enable_mask |= BIT(v_idx);
ixgbevf_write_eitr(q_vector);
}
ixgbevf_set_ivar(adapter, -1, 1, v_idx);
/* setup eims_other and add value to global eims_enable_mask */
adapter->eims_other = BIT(v_idx);
adapter->eims_enable_mask |= adapter->eims_other;
}
enum latency_range {
lowest_latency = 0,
low_latency = 1,
bulk_latency = 2,
latency_invalid = 255
};
/**
* ixgbevf_update_itr - update the dynamic ITR value based on statistics
* @q_vector: structure containing interrupt and ring information
* @ring_container: structure containing ring performance data
*
* Stores a new ITR value based on packets and byte
* counts during the last interrupt. The advantage of per interrupt
* computation is faster updates and more accurate ITR for the current
* traffic pattern. Constants in this function were computed
* based on theoretical maximum wire speed and thresholds were set based
* on testing data as well as attempting to minimize response time
* while increasing bulk throughput.
**/
static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
struct ixgbevf_ring_container *ring_container)
{
int bytes = ring_container->total_bytes;
int packets = ring_container->total_packets;
u32 timepassed_us;
u64 bytes_perint;
u8 itr_setting = ring_container->itr;
if (packets == 0)
return;
/* simple throttle rate management
* 0-20MB/s lowest (100000 ints/s)
* 20-100MB/s low (20000 ints/s)
* 100-1249MB/s bulk (12000 ints/s)
*/
/* what was last interrupt timeslice? */
timepassed_us = q_vector->itr >> 2;
if (timepassed_us == 0)
return;
bytes_perint = bytes / timepassed_us; /* bytes/usec */
switch (itr_setting) {
case lowest_latency:
if (bytes_perint > 10)
itr_setting = low_latency;
break;
case low_latency:
if (bytes_perint > 20)
itr_setting = bulk_latency;
else if (bytes_perint <= 10)
itr_setting = lowest_latency;
break;
case bulk_latency:
if (bytes_perint <= 20)
itr_setting = low_latency;
break;
}
/* clear work counters since we have the values we need */
ring_container->total_bytes = 0;
ring_container->total_packets = 0;
/* write updated itr to ring container */
ring_container->itr = itr_setting;
}
static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
{
u32 new_itr = q_vector->itr;
u8 current_itr;
ixgbevf_update_itr(q_vector, &q_vector->tx);
ixgbevf_update_itr(q_vector, &q_vector->rx);
current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
switch (current_itr) {
/* counts and packets in update_itr are dependent on these numbers */
case lowest_latency:
new_itr = IXGBE_100K_ITR;
break;
case low_latency:
new_itr = IXGBE_20K_ITR;
break;
case bulk_latency:
new_itr = IXGBE_12K_ITR;
break;
default:
break;
}
if (new_itr != q_vector->itr) {
/* do an exponential smoothing */
new_itr = (10 * new_itr * q_vector->itr) /
((9 * new_itr) + q_vector->itr);
/* save the algorithm value here */
q_vector->itr = new_itr;
ixgbevf_write_eitr(q_vector);
}
}
static irqreturn_t ixgbevf_msix_other(int irq, void *data)
{
struct ixgbevf_adapter *adapter = data;
struct ixgbe_hw *hw = &adapter->hw;
hw->mac.get_link_status = 1;
ixgbevf_service_event_schedule(adapter);
IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
return IRQ_HANDLED;
}
/**
* ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
* @irq: unused
* @data: pointer to our q_vector struct for this interrupt vector
**/
static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
{
struct ixgbevf_q_vector *q_vector = data;
/* EIAM disabled interrupts (on this vector) for us */
if (q_vector->rx.ring || q_vector->tx.ring)
napi_schedule_irqoff(&q_vector->napi);
return IRQ_HANDLED;
}
/**
* ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
* @adapter: board private structure
*
* ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
* interrupts from the kernel.
**/
static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
unsigned int ri = 0, ti = 0;
int vector, err;
for (vector = 0; vector < q_vectors; vector++) {
struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
struct msix_entry *entry = &adapter->msix_entries[vector];
if (q_vector->tx.ring && q_vector->rx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name),
"%s-TxRx-%u", netdev->name, ri++);
ti++;
} else if (q_vector->rx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name),
"%s-rx-%u", netdev->name, ri++);
} else if (q_vector->tx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name),
"%s-tx-%u", netdev->name, ti++);
} else {
/* skip this unused q_vector */
continue;
}
err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
q_vector->name, q_vector);
if (err) {
hw_dbg(&adapter->hw,
"request_irq failed for MSIX interrupt Error: %d\n",
err);
goto free_queue_irqs;
}
}
err = request_irq(adapter->msix_entries[vector].vector,
&ixgbevf_msix_other, 0, netdev->name, adapter);
if (err) {
hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
err);
goto free_queue_irqs;
}
return 0;
free_queue_irqs:
while (vector) {
vector--;
free_irq(adapter->msix_entries[vector].vector,
adapter->q_vector[vector]);
}
/* This failure is non-recoverable - it indicates the system is
* out of MSIX vector resources and the VF driver cannot run
* without them. Set the number of msix vectors to zero
* indicating that not enough can be allocated. The error
* will be returned to the user indicating device open failed.
* Any further attempts to force the driver to open will also
* fail. The only way to recover is to unload the driver and
* reload it again. If the system has recovered some MSIX
* vectors then it may succeed.
*/
adapter->num_msix_vectors = 0;
return err;
}
/**
* ixgbevf_request_irq - initialize interrupts
* @adapter: board private structure
*
* Attempts to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
{
int err = ixgbevf_request_msix_irqs(adapter);
if (err)
hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
return err;
}
static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
{
int i, q_vectors;
if (!adapter->msix_entries)
return;
q_vectors = adapter->num_msix_vectors;
i = q_vectors - 1;
free_irq(adapter->msix_entries[i].vector, adapter);
i--;
for (; i >= 0; i--) {
/* free only the irqs that were actually requested */
if (!adapter->q_vector[i]->rx.ring &&
!adapter->q_vector[i]->tx.ring)
continue;
free_irq(adapter->msix_entries[i].vector,
adapter->q_vector[i]);
}
}
/**
* ixgbevf_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
**/
static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
int i;
IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
IXGBE_WRITE_FLUSH(hw);
for (i = 0; i < adapter->num_msix_vectors; i++)
synchronize_irq(adapter->msix_entries[i].vector);
}
/**
* ixgbevf_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
**/
static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
}
/**
* ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
* @adapter: board private structure
* @ring: structure containing ring specific data
*
* Configure the Tx descriptor ring after a reset.
**/
static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
struct ixgbevf_ring *ring)
{
struct ixgbe_hw *hw = &adapter->hw;
u64 tdba = ring->dma;
int wait_loop = 10;
u32 txdctl = IXGBE_TXDCTL_ENABLE;
u8 reg_idx = ring->reg_idx;
/* disable queue to avoid issues while updating state */
IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
IXGBE_WRITE_FLUSH(hw);
IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
ring->count * sizeof(union ixgbe_adv_tx_desc));
/* disable head writeback */
IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
/* enable relaxed ordering */
IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
(IXGBE_DCA_TXCTRL_DESC_RRO_EN |
IXGBE_DCA_TXCTRL_DATA_RRO_EN));
/* reset head and tail pointers */
IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
/* reset ntu and ntc to place SW in sync with hardwdare */
ring->next_to_clean = 0;
ring->next_to_use = 0;
/* In order to avoid issues WTHRESH + PTHRESH should always be equal
* to or less than the number of on chip descriptors, which is
* currently 40.
*/
txdctl |= (8 << 16); /* WTHRESH = 8 */
/* Setting PTHRESH to 32 both improves performance */
txdctl |= (1u << 8) | /* HTHRESH = 1 */
32; /* PTHRESH = 32 */
/* reinitialize tx_buffer_info */
memset(ring->tx_buffer_info, 0,
sizeof(struct ixgbevf_tx_buffer) * ring->count);
clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
/* poll to verify queue is enabled */
do {
usleep_range(1000, 2000);
txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
} while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
if (!wait_loop)
hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
}
/**
* ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
{
u32 i;
/* Setup the HW Tx Head and Tail descriptor pointers */
for (i = 0; i < adapter->num_tx_queues; i++)
ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
for (i = 0; i < adapter->num_xdp_queues; i++)
ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]);
}
#define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter,
struct ixgbevf_ring *ring, int index)
{
struct ixgbe_hw *hw = &adapter->hw;
u32 srrctl;
srrctl = IXGBE_SRRCTL_DROP_EN;
srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
if (ring_uses_large_buffer(ring))
srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
else
srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
}
static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
/* PSRTYPE must be initialized in 82599 */
u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
IXGBE_PSRTYPE_L2HDR;
if (adapter->num_rx_queues > 1)
psrtype |= BIT(29);
IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
}
#define IXGBEVF_MAX_RX_DESC_POLL 10
static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
struct ixgbevf_ring *ring)
{
struct ixgbe_hw *hw = &adapter->hw;
int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
u32 rxdctl;
u8 reg_idx = ring->reg_idx;
if (IXGBE_REMOVED(hw->hw_addr))
return;
rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
rxdctl &= ~IXGBE_RXDCTL_ENABLE;
/* write value back with RXDCTL.ENABLE bit cleared */
IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
/* the hardware may take up to 100us to really disable the Rx queue */
do {
udelay(10);
rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
} while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
if (!wait_loop)
pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
reg_idx);
}
static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
struct ixgbevf_ring *ring)
{
struct ixgbe_hw *hw = &adapter->hw;
int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
u32 rxdctl;
u8 reg_idx = ring->reg_idx;
if (IXGBE_REMOVED(hw->hw_addr))
return;
do {
usleep_range(1000, 2000);
rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
} while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
if (!wait_loop)
pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
reg_idx);
}
/**
* ixgbevf_init_rss_key - Initialize adapter RSS key
* @adapter: device handle
*
* Allocates and initializes the RSS key if it is not allocated.
**/
static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter)
{
u32 *rss_key;
if (!adapter->rss_key) {
rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL);
if (unlikely(!rss_key))
return -ENOMEM;
netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE);
adapter->rss_key = rss_key;
}
return 0;
}
static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
u32 vfmrqc = 0, vfreta = 0;
u16 rss_i = adapter->num_rx_queues;
u8 i, j;
/* Fill out hash function seeds */
for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i));
for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
if (j == rss_i)
j = 0;
adapter->rss_indir_tbl[i] = j;
vfreta |= j << (i & 0x3) * 8;
if ((i & 3) == 3) {
IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
vfreta = 0;
}
}
/* Perform hash on these packet types */
vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
IXGBE_VFMRQC_RSS_FIELD_IPV6 |
IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
vfmrqc |= IXGBE_VFMRQC_RSSEN;
IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
}
static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
struct ixgbevf_ring *ring)
{
struct ixgbe_hw *hw = &adapter->hw;
union ixgbe_adv_rx_desc *rx_desc;
u64 rdba = ring->dma;
u32 rxdctl;
u8 reg_idx = ring->reg_idx;
/* disable queue to avoid issues while updating state */
rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
ixgbevf_disable_rx_queue(adapter, ring);
IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
ring->count * sizeof(union ixgbe_adv_rx_desc));
#ifndef CONFIG_SPARC
/* enable relaxed ordering */
IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
IXGBE_DCA_RXCTRL_DESC_RRO_EN);
#else
IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
IXGBE_DCA_RXCTRL_DESC_RRO_EN |
IXGBE_DCA_RXCTRL_DATA_WRO_EN);
#endif
/* reset head and tail pointers */
IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
/* initialize rx_buffer_info */
memset(ring->rx_buffer_info, 0,
sizeof(struct ixgbevf_rx_buffer) * ring->count);
/* initialize Rx descriptor 0 */
rx_desc = IXGBEVF_RX_DESC(ring, 0);
rx_desc->wb.upper.length = 0;
/* reset ntu and ntc to place SW in sync with hardwdare */
ring->next_to_clean = 0;
ring->next_to_use = 0;
ring->next_to_alloc = 0;
ixgbevf_configure_srrctl(adapter, ring, reg_idx);
/* RXDCTL.RLPML does not work on 82599 */
if (adapter->hw.mac.type != ixgbe_mac_82599_vf) {
rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK |
IXGBE_RXDCTL_RLPML_EN);
#if (PAGE_SIZE < 8192)
/* Limit the maximum frame size so we don't overrun the skb */
if (ring_uses_build_skb(ring) &&
!ring_uses_large_buffer(ring))
rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB |
IXGBE_RXDCTL_RLPML_EN;
#endif
}
rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
ixgbevf_rx_desc_queue_enable(adapter, ring);
ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
}
static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter,
struct ixgbevf_ring *rx_ring)
{
struct net_device *netdev = adapter->netdev;
unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
/* set build_skb and buffer size flags */
clear_ring_build_skb_enabled(rx_ring);
clear_ring_uses_large_buffer(rx_ring);
if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX)
return;
set_ring_build_skb_enabled(rx_ring);
if (PAGE_SIZE < 8192) {
if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB)
return;
set_ring_uses_large_buffer(rx_ring);
}
}
/**
* ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
int i, ret;
ixgbevf_setup_psrtype(adapter);
if (hw->mac.type >= ixgbe_mac_X550_vf)
ixgbevf_setup_vfmrqc(adapter);
spin_lock_bh(&adapter->mbx_lock);
/* notify the PF of our intent to use this size of frame */
ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
spin_unlock_bh(&adapter->mbx_lock);
if (ret)
dev_err(&adapter->pdev->dev,
"Failed to set MTU at %d\n", netdev->mtu);
/* Setup the HW Rx Head and Tail Descriptor Pointers and
* the Base and Length of the Rx Descriptor Ring
*/
for (i = 0; i < adapter->num_rx_queues; i++) {
struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
ixgbevf_set_rx_buffer_len(adapter, rx_ring);
ixgbevf_configure_rx_ring(adapter, rx_ring);
}
}
static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
__be16 proto, u16 vid)
{
struct ixgbevf_adapter *adapter = netdev_priv(netdev);
struct ixgbe_hw *hw = &adapter->hw;
int err;
spin_lock_bh(&adapter->mbx_lock);
/* add VID to filter table */
err = hw->mac.ops.set_vfta(hw, vid, 0, true);
spin_unlock_bh(&adapter->mbx_lock);
/* translate error return types so error makes sense */
if (err == IXGBE_ERR_MBX)
return -EIO;
if (err == IXGBE_ERR_INVALID_ARGUMENT)
return -EACCES;
set_bit(vid, adapter->active_vlans);
return err;
}
static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
__be16 proto, u16 vid)
{
struct ixgbevf_adapter *adapter = netdev_priv(netdev);
struct ixgbe_hw *hw = &adapter->hw;
int err;
spin_lock_bh(&adapter->mbx_lock);
/* remove VID from filter table */
err = hw->mac.ops.set_vfta(hw, vid, 0, false);
spin_unlock_bh(&adapter->mbx_lock);
clear_bit(vid, adapter->active_vlans);
return err;
}
static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
{
u16 vid;
for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
ixgbevf_vlan_rx_add_vid(adapter->netdev,
htons(ETH_P_8021Q), vid);
}
static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
{
struct ixgbevf_adapter *adapter = netdev_priv(netdev);
struct ixgbe_hw *hw = &adapter->hw;
int count = 0;
if (!netdev_uc_empty(netdev)) {
struct netdev_hw_addr *ha;
netdev_for_each_uc_addr(ha, netdev) {
hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
udelay(200);
}
} else {
/* If the list is empty then send message to PF driver to
* clear all MAC VLANs on this VF.
*/
hw->mac.ops.set_uc_addr(hw, 0, NULL);
}
return count;
}
/**
* ixgbevf_set_rx_mode - Multicast and unicast set
* @netdev: network interface device structure
*
* The set_rx_method entry point is called whenever the multicast address
* list, unicast address list or the network interface flags are updated.
* This routine is responsible for configuring the hardware for proper
* multicast mode and configuring requested unicast filters.
**/
static void ixgbevf_set_rx_mode(struct net_device *netdev)
{
struct ixgbevf_adapter *adapter = netdev_priv(netdev);
struct ixgbe_hw *hw = &adapter->hw;
unsigned int flags = netdev->flags;
int xcast_mode;
/* request the most inclusive mode we need */
if (flags & IFF_PROMISC)
xcast_mode = IXGBEVF_XCAST_MODE_PROMISC;
else if (flags & IFF_ALLMULTI)
xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI;
else if (flags & (IFF_BROADCAST | IFF_MULTICAST))
xcast_mode = IXGBEVF_XCAST_MODE_MULTI;
else
xcast_mode = IXGBEVF_XCAST_MODE_NONE;
spin_lock_bh(&adapter->mbx_lock);
hw->mac.ops.update_xcast_mode(hw, xcast_mode);
/* reprogram multicast list */
hw->mac.ops.update_mc_addr_list(hw, netdev);
ixgbevf_write_uc_addr_list(netdev);
spin_unlock_bh(&adapter->mbx_lock);
}
static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
{
int q_idx;
struct ixgbevf_q_vector *q_vector;
int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
for (q_idx = 0; q_idx < q_vectors; q_idx++) {
q_vector = adapter->q_vector[q_idx];
napi_enable(&q_vector->napi);
}
}
static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
{
int q_idx;
struct ixgbevf_q_vector *q_vector;
int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
for (q_idx = 0; q_idx < q_vectors; q_idx++) {
q_vector = adapter->q_vector[q_idx];
napi_disable(&q_vector->napi);
}
}
static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
unsigned int def_q = 0;
unsigned int num_tcs = 0;
unsigned int num_rx_queues = adapter->num_rx_queues;
unsigned int num_tx_queues = adapter->num_tx_queues;
int err;
spin_lock_bh(&adapter->mbx_lock);
/* fetch queue configuration from the PF */
err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
spin_unlock_bh(&adapter->mbx_lock);
if (err)
return err;
if (num_tcs > 1) {
/* we need only one Tx queue */
num_tx_queues = 1;
/* update default Tx ring register index */
adapter->tx_ring[0]->reg_idx = def_q;
/* we need as many queues as traffic classes */
num_rx_queues = num_tcs;
}
/* if we have a bad config abort request queue reset */
if ((adapter->num_rx_queues != num_rx_queues) ||
(adapter->num_tx_queues != num_tx_queues)) {
/* force mailbox timeout to prevent further messages */
hw->mbx.timeout = 0;
/* wait for watchdog to come around and bail us out */
set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
}
return 0;
}
static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
{
ixgbevf_configure_dcb(adapter);
ixgbevf_set_rx_mode(adapter->netdev);
ixgbevf_restore_vlan(adapter);
ixgbevf_ipsec_restore(adapter);
ixgbevf_configure_tx(adapter);
ixgbevf_configure_rx(adapter);
}
static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
{
/* Only save pre-reset stats if there are some */
if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
adapter->stats.base_vfgprc;
adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
adapter->stats.base_vfgptc;
adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
adapter->stats.base_vfgorc;
adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
adapter->stats.base_vfgotc;
adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
adapter->stats.base_vfmprc;
}
}
static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
adapter->stats.last_vfgorc |=
(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
adapter->stats.last_vfgotc |=
(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
}
static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
static const int api[] = {
ixgbe_mbox_api_14,
ixgbe_mbox_api_13,
ixgbe_mbox_api_12,
ixgbe_mbox_api_11,
ixgbe_mbox_api_10,
ixgbe_mbox_api_unknown
};
int err, idx = 0;
spin_lock_bh(&adapter->mbx_lock);
while (api[idx] != ixgbe_mbox_api_unknown) {
err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
if (!err)
break;
idx++;
}
spin_unlock_bh(&adapter->mbx_lock);
}
static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct ixgbe_hw *hw = &adapter->hw;
ixgbevf_configure_msix(adapter);
spin_lock_bh(&adapter->mbx_lock);
if (is_valid_ether_addr(hw->mac.addr))
hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
else
hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
spin_unlock_bh(&adapter->mbx_lock);
smp_mb__before_atomic();
clear_bit(__IXGBEVF_DOWN, &adapter->state);
ixgbevf_napi_enable_all(adapter);
/* clear any pending interrupts, may auto mask */
IXGBE_READ_REG(hw, IXGBE_VTEICR);
ixgbevf_irq_enable(adapter);
/* enable transmits */
netif_tx_start_all_queues(netdev);
ixgbevf_save_reset_stats(adapter);
ixgbevf_init_last_counter_stats(adapter);
hw->mac.get_link_status = 1;
mod_timer(&adapter->service_timer, jiffies);
}
void ixgbevf_up(struct ixgbevf_adapter *adapter)
{
ixgbevf_configure(adapter);
ixgbevf_up_complete(adapter);
}
/**
* ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
* @rx_ring: ring to free buffers from
**/
static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
{
u16 i = rx_ring->next_to_clean;
/* Free Rx ring sk_buff */
if (rx_ring->skb) {
dev_kfree_skb(rx_ring->skb);
rx_ring->skb = NULL;
}
/* Free all the Rx ring pages */
while (i != rx_ring->next_to_alloc) {
struct ixgbevf_rx_buffer *rx_buffer;
rx_buffer = &rx_ring->rx_buffer_info[i];
/* Invalidate cache lines that may have been written to by
* device so that we avoid corrupting memory.
*/
dma_sync_single_range_for_cpu(rx_ring->dev,
rx_buffer->dma,
rx_buffer->page_offset,
ixgbevf_rx_bufsz(rx_ring),
DMA_FROM_DEVICE);
/* free resources associated with mapping */
dma_unmap_page_attrs(rx_ring->dev,
rx_buffer->dma,
ixgbevf_rx_pg_size(rx_ring),
DMA_FROM_DEVICE,
IXGBEVF_RX_DMA_ATTR);
__page_frag_cache_drain(rx_buffer->page,
rx_buffer->pagecnt_bias);
i++;
if (i == rx_ring->count)
i = 0;
}
rx_ring->next_to_alloc = 0;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
}
/**
* ixgbevf_clean_tx_ring - Free Tx Buffers
* @tx_ring: ring to be cleaned
**/
static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
{
u16 i = tx_ring->next_to_clean;
struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
while (i != tx_ring->next_to_use) {
union ixgbe_adv_tx_desc *eop_desc, *tx_desc;
/* Free all the Tx ring sk_buffs */
if (ring_is_xdp(tx_ring))
page_frag_free(tx_buffer->data);
else
dev_kfree_skb_any(tx_buffer->skb);
/* unmap skb header data */
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
/* check for eop_desc to determine the end of the packet */
eop_desc = tx_buffer->next_to_watch;
tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
/* unmap remaining buffers */
while (tx_desc != eop_desc) {
tx_buffer++;
tx_desc++;
i++;
if (unlikely(i == tx_ring->count)) {
i = 0;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
}
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buffer, len))
dma_unmap_page(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
}
/* move us one more past the eop_desc for start of next pkt */
tx_buffer++;
i++;
if (unlikely(i == tx_ring->count)) {
i = 0;
tx_buffer = tx_ring->tx_buffer_info;
}
}
/* reset next_to_use and next_to_clean */
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
}
/**
* ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
* @adapter: board private structure
**/
static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
}
/**
* ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
* @adapter: board private structure
**/
static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
for (i = 0; i < adapter->num_xdp_queues; i++)
ixgbevf_clean_tx_ring(adapter->xdp_ring[i]);
}
void ixgbevf_down(struct ixgbevf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct ixgbe_hw *hw = &adapter->hw;
int i;
/* signal that we are down to the interrupt handler */
if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
return; /* do nothing if already down */
/* disable all enabled Rx queues */
for (i = 0; i < adapter->num_rx_queues; i++)
ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
usleep_range(10000, 20000);
netif_tx_stop_all_queues(netdev);
/* call carrier off first to avoid false dev_watchdog timeouts */
netif_carrier_off(netdev);
netif_tx_disable(netdev);
ixgbevf_irq_disable(adapter);
ixgbevf_napi_disable_all(adapter);
del_timer_sync(&adapter->service_timer);
/* disable transmits in the hardware now that interrupts are off */
for (i = 0; i < adapter->num_tx_queues; i++) {
u8 reg_idx = adapter->tx_ring[i]->reg_idx;
IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
IXGBE_TXDCTL_SWFLSH);
}
for (i = 0; i < adapter->num_xdp_queues; i++) {
u8 reg_idx = adapter->xdp_ring[i]->reg_idx;
IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
IXGBE_TXDCTL_SWFLSH);
}
if (!pci_channel_offline(adapter->pdev))
ixgbevf_reset(adapter);
ixgbevf_clean_all_tx_rings(adapter);
ixgbevf_clean_all_rx_rings(adapter);
}
void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
{
while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
msleep(1);
ixgbevf_down(adapter);
pci_set_master(adapter->pdev);
ixgbevf_up(adapter);
clear_bit(__IXGBEVF_RESETTING, &adapter->state);
}
void ixgbevf_reset(struct ixgbevf_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
if (hw->mac.ops.reset_hw(hw)) {
hw_dbg(hw, "PF still resetting\n");
} else {
hw->mac.ops.init_hw(hw);
ixgbevf_negotiate_api(adapter);
}
if (is_valid_ether_addr(adapter->hw.mac.addr)) {
ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
}
adapter->last_reset = jiffies;
}
static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
int vectors)
{
int vector_threshold;
/* We'll want at least 2 (vector_threshold):
* 1) TxQ[0] + RxQ[0] handler
* 2) Other (Link Status Change, etc.)
*/
vector_threshold = MIN_MSIX_COUNT;
/* The more we get, the more we will assign to Tx/Rx Cleanup
* for the separate queues...where Rx Cleanup >= Tx Cleanup.
* Right now, we simply care about how many we'll get; we'll
* set them up later while requesting irq's.
*/
vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
vector_threshold, vectors);
if (vectors < 0) {
dev_err(&adapter->pdev->dev,
"Unable to allocate MSI-X interrupts\n");
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
return vectors;
}
/* Adjust for only the vectors we'll use, which is minimum
* of max_msix_q_vectors + NON_Q_VECTORS, or the number of
* vectors we were allocated.
*/
adapter->num_msix_vectors = vectors;
return 0;
}
/**
* ixgbevf_set_num_queues - Allocate queues for device, feature dependent
* @adapter: board private structure to initialize
*
* This is the top level queue allocation routine. The order here is very
* important, starting with the "most" number of features turned on at once,
* and ending with the smallest set of features. This way large combinations
* can be allocated if they're turned on, and smaller combinations are the
* fall through conditions.
*
**/
static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
unsigned int def_q = 0;
unsigned int num_tcs = 0;
int err;
/* Start with base case */
adapter->num_rx_queues = 1;
adapter->num_tx_queues = 1;
adapter->num_xdp_queues = 0;
spin_lock_bh(&adapter->mbx_lock);
/* fetch queue configuration from the PF */
err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
spin_unlock_bh(&adapter->mbx_lock);
if (err)
return;
/* we need as many queues as traffic classes */
if (num_tcs > 1) {
adapter->num_rx_queues = num_tcs;
} else {
u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
switch (hw->api_version) {
case ixgbe_mbox_api_11:
case ixgbe_mbox_api_12:
case ixgbe_mbox_api_13:
case ixgbe_mbox_api_14:
if (adapter->xdp_prog &&
hw->mac.max_tx_queues == rss)
rss = rss > 3 ? 2 : 1;
adapter->num_rx_queues = rss;
adapter->num_tx_queues = rss;
adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0;
default:
break;
}
}
}
/**
* ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
* @adapter: board private structure to initialize
*
* Attempt to configure the interrupts using the best available
* capabilities of the hardware and the kernel.
**/
static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
{
int vector, v_budget;
/* It's easy to be greedy for MSI-X vectors, but it really
* doesn't do us much good if we have a lot more vectors
* than CPU's. So let's be conservative and only ask for
* (roughly) the same number of vectors as there are CPU's.
* The default is to use pairs of vectors.
*/
v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
v_budget = min_t(int, v_budget, num_online_cpus());
v_budget += NON_Q_VECTORS;
adapter->msix_entries = kcalloc(v_budget,
sizeof(struct msix_entry), GFP_KERNEL);
if (!adapter->msix_entries)
return -ENOMEM;
for (vector = 0; vector < v_budget; vector++)
adapter->msix_entries[vector].entry = vector;
/* A failure in MSI-X entry allocation isn't fatal, but the VF driver
* does not support any other modes, so we will simply fail here. Note
* that we clean up the msix_entries pointer else-where.
*/
return ixgbevf_acquire_msix_vectors(adapter, v_budget);
}
static void ixgbevf_add_ring(struct ixgbevf_ring *ring,
struct ixgbevf_ring_container *head)
{
ring->next = head->ring;
head->ring = ring;
head->count++;
}
/**
* ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector
* @adapter: board private structure to initialize
* @v_idx: index of vector in adapter struct
* @txr_count: number of Tx rings for q vector
* @txr_idx: index of first Tx ring to assign
* @xdp_count: total number of XDP rings to allocate
* @xdp_idx: index of first XDP ring to allocate
* @rxr_count: number of Rx rings for q vector
* @rxr_idx: index of first Rx ring to assign
*
* We allocate one q_vector. If allocation fails we return -ENOMEM.
**/
static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx,
int txr_count, int txr_idx,
int xdp_count, int xdp_idx,
int rxr_count, int rxr_idx)
{
struct ixgbevf_q_vector *q_vector;
int reg_idx = txr_idx + xdp_idx;
struct ixgbevf_ring *ring;
int ring_count, size;
ring_count = txr_count + xdp_count + rxr_count;
size = sizeof(*q_vector) + (sizeof(*ring) * ring_count);
/* allocate q_vector and rings */
q_vector = kzalloc(size, GFP_KERNEL);
if (!q_vector)
return -ENOMEM;
/* initialize NAPI */
netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64);
/* tie q_vector and adapter together */
adapter->q_vector[v_idx] = q_vector;
q_vector->adapter = adapter;
q_vector->v_idx = v_idx;
/* initialize pointer to rings */
ring = q_vector->ring;
while (txr_count) {
/* assign generic ring traits */
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
/* configure backlink on ring */
ring->q_vector = q_vector;
/* update q_vector Tx values */
ixgbevf_add_ring(ring, &q_vector->tx);
/* apply Tx specific ring traits */
ring->count = adapter->tx_ring_count;
ring->queue_index = txr_idx;
ring->reg_idx = reg_idx;
/* assign ring to adapter */
adapter->tx_ring[txr_idx] = ring;
/* update count and index */
txr_count--;
txr_idx++;
reg_idx++;
/* push pointer to next ring */
ring++;
}
while (xdp_count) {
/* assign generic ring traits */
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
/* configure backlink on ring */
ring->q_vector = q_vector;
/* update q_vector Tx values */
ixgbevf_add_ring(ring, &q_vector->tx);
/* apply Tx specific ring traits */
ring->count = adapter->tx_ring_count;
ring->queue_index = xdp_idx;
ring->reg_idx = reg_idx;
set_ring_xdp(ring);
/* assign ring to adapter */
adapter->xdp_ring[xdp_idx] = ring;
/* update count and index */
xdp_count--;
xdp_idx++;
reg_idx++;
/* push pointer to next ring */
ring++;
}
while (rxr_count) {
/* assign generic ring traits */
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
/* configure backlink on ring */
ring->q_vector = q_vector;
/* update q_vector Rx values */
ixgbevf_add_ring(ring, &q_vector->rx);
/* apply Rx specific ring traits */
ring->count = adapter->rx_ring_count;
ring->queue_index = rxr_idx;
ring->reg_idx = rxr_idx;
/* assign ring to adapter */
adapter->rx_ring[rxr_idx] = ring;
/* update count and index */
rxr_count--;
rxr_idx++;
/* push pointer to next ring */
ring++;
}
return 0;
}
/**
* ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector
* @adapter: board private structure to initialize
* @v_idx: index of vector in adapter struct
*
* This function frees the memory allocated to the q_vector. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
**/
static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx)
{
struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx];
struct ixgbevf_ring *ring;
ixgbevf_for_each_ring(ring, q_vector->tx) {
if (ring_is_xdp(ring))
adapter->xdp_ring[ring->queue_index] = NULL;
else
adapter->tx_ring[ring->queue_index] = NULL;
}
ixgbevf_for_each_ring(ring, q_vector->rx)
adapter->rx_ring[ring->queue_index] = NULL;
adapter->q_vector[v_idx] = NULL;
netif_napi_del(&q_vector->napi);
/* ixgbevf_get_stats() might access the rings on this vector,
* we must wait a grace period before freeing it.
*/
kfree_rcu(q_vector, rcu);
}
/**
* ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
* @adapter: board private structure to initialize
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
**/
static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
{
int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
int rxr_remaining = adapter->num_rx_queues;
int txr_remaining = adapter->num_tx_queues;
int xdp_remaining = adapter->num_xdp_queues;
int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0;
int err;
if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) {
for (; rxr_remaining; v_idx++, q_vectors--) {
int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
err = ixgbevf_alloc_q_vector(adapter, v_idx,
0, 0, 0, 0, rqpv, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining -= rqpv;
rxr_idx += rqpv;
}
}
for (; q_vectors; v_idx++, q_vectors--) {
int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors);
int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors);
err = ixgbevf_alloc_q_vector(adapter, v_idx,
tqpv, txr_idx,
xqpv, xdp_idx,
rqpv, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining -= rqpv;
rxr_idx += rqpv;
txr_remaining -= tqpv;
txr_idx += tqpv;
xdp_remaining -= xqpv;
xdp_idx += xqpv;
}
return 0;
err_out:
while (v_idx) {
v_idx--;
ixgbevf_free_q_vector(adapter, v_idx);
}
return -ENOMEM;
}
/**
* ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
* @adapter: board private structure to initialize
*
* This function frees the memory allocated to the q_vectors. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
**/
static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
{
int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
while (q_vectors) {
q_vectors--;
ixgbevf_free_q_vector(adapter, q_vectors);
}
}
/**
* ixgbevf_reset_interrupt_capability - Reset MSIX setup
* @adapter: board private structure
*
**/
static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
{
if (!adapter->msix_entries)
return;
pci_disable_msix(adapter->pdev);
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
}
/**
* ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
* @adapter: board private structure to initialize
*
**/
static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
{
int err;
/* Number of supported queues */
ixgbevf_set_num_queues(adapter);
err = ixgbevf_set_interrupt_capability(adapter);
if (err) {
hw_dbg(&adapter->hw,
"Unable to setup interrupt capabilities\n");
goto err_set_interrupt;
}
err = ixgbevf_alloc_q_vectors(adapter);
if (err) {
hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
goto err_alloc_q_vectors;
}
hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n",
(adapter->num_rx_queues > 1) ? "Enabled" : "Disabled",
adapter->num_rx_queues, adapter->num_tx_queues,
adapter->num_xdp_queues);
set_bit(__IXGBEVF_DOWN, &adapter->state);
return 0;
err_alloc_q_vectors:
ixgbevf_reset_interrupt_capability(adapter);
err_set_interrupt:
return err;
}
/**
* ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
* @adapter: board private structure to clear interrupt scheme on
*
* We go through and clear interrupt specific resources and reset the structure
* to pre-load conditions
**/
static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
{
adapter->num_tx_queues = 0;
adapter->num_xdp_queues = 0;
adapter->num_rx_queues = 0;
ixgbevf_free_q_vectors(adapter);
ixgbevf_reset_interrupt_capability(adapter);
}
/**
* ixgbevf_sw_init - Initialize general software structures
* @adapter: board private structure to initialize
*
* ixgbevf_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
struct net_device *netdev = adapter->netdev;
int err;
/* PCI config space info */
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
hw->revision_id = pdev->revision;
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_device_id = pdev->subsystem_device;
hw->mbx.ops.init_params(hw);
if (hw->mac.type >= ixgbe_mac_X550_vf) {
err = ixgbevf_init_rss_key(adapter);
if (err)
goto out;
}
/* assume legacy case in which PF would only give VF 2 queues */
hw->mac.max_tx_queues = 2;
hw->mac.max_rx_queues = 2;
/* lock to protect mailbox accesses */
spin_lock_init(&adapter->mbx_lock);
err = hw->mac.ops.reset_hw(hw);
if (err) {
dev_info(&pdev->dev,
"PF still in reset state. Is the PF interface up?\n");
} else {
err = hw->mac.ops.init_hw(hw);
if (err) {
pr_err("init_shared_code failed: %d\n", err);
goto out;
}
ixgbevf_negotiate_api(adapter);
err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
if (err)
dev_info(&pdev->dev, "Error reading MAC address\n");
else if (is_zero_ether_addr(adapter->hw.mac.addr))
dev_info(&pdev->dev,
"MAC address not assigned by administrator.\n");
ether_addr_copy(netdev->dev_addr, hw->mac.addr);
}
if (!is_valid_ether_addr(netdev->dev_addr)) {
dev_info(&pdev->dev, "Assigning random MAC address\n");
eth_hw_addr_random(netdev);
ether_addr_copy(hw->mac.addr, netdev->dev_addr);
ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
}
/* Enable dynamic interrupt throttling rates */
adapter->rx_itr_setting = 1;
adapter->tx_itr_setting = 1;
/* set default ring sizes */
adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
set_bit(__IXGBEVF_DOWN, &adapter->state);
return 0;
out:
return err;
}
#define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \
{ \
u32 current_counter = IXGBE_READ_REG(hw, reg); \
if (current_counter < last_counter) \
counter += 0x100000000LL; \
last_counter = current_counter; \
counter &= 0xFFFFFFFF00000000LL; \
counter |= current_counter; \
}
#define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
{ \
u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \
u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \
u64 current_counter = (current_counter_msb << 32) | \
current_counter_lsb; \
if (current_counter < last_counter) \
counter += 0x1000000000LL; \
last_counter = current_counter; \
counter &= 0xFFFFFFF000000000LL; \
counter |= current_counter; \
}
/**
* ixgbevf_update_stats - Update the board statistics counters.
* @adapter: board private structure
**/
void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0;
u64 alloc_rx_page = 0, hw_csum_rx_error = 0;
int i;
if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
test_bit(__IXGBEVF_RESETTING, &adapter->state))
return;
UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
adapter->stats.vfgprc);
UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
adapter->stats.vfgptc);
UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
adapter->stats.last_vfgorc,
adapter->stats.vfgorc);
UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
adapter->stats.last_vfgotc,
adapter->stats.vfgotc);
UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
adapter->stats.vfmprc);
for (i = 0; i < adapter->num_rx_queues; i++) {
struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
hw_csum_rx_error += rx_ring->rx_stats.csum_err;
alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed;
alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
alloc_rx_page += rx_ring->rx_stats.alloc_rx_page;
}
adapter->hw_csum_rx_error = hw_csum_rx_error;
adapter->alloc_rx_page_failed = alloc_rx_page_failed;
adapter->alloc_rx_buff_failed = alloc_rx_buff_failed;
adapter->alloc_rx_page = alloc_rx_page;
}
/**
* ixgbevf_service_timer - Timer Call-back
* @t: pointer to timer_list struct
**/
static void ixgbevf_service_timer(struct timer_list *t)
{
struct ixgbevf_adapter *adapter = from_timer(adapter, t,
service_timer);
/* Reset the timer */
mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
ixgbevf_service_event_schedule(adapter);
}
static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
{
if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
return;
rtnl_lock();
/* If we're already down or resetting, just bail */
if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
test_bit(__IXGBEVF_RESETTING, &adapter->state)) {
rtnl_unlock();
return;
}
adapter->tx_timeout_count++;
ixgbevf_reinit_locked(adapter);
rtnl_unlock();
}
/**
* ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
* @adapter: pointer to the device adapter structure
*
* This function serves two purposes. First it strobes the interrupt lines
* in order to make certain interrupts are occurring. Secondly it sets the
* bits needed to check for TX hangs. As a result we should immediately
* determine if a hang has occurred.
**/
static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
u32 eics = 0;
int i;
/* If we're down or resetting, just bail */
if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
test_bit(__IXGBEVF_RESETTING, &adapter->state))
return;
/* Force detection of hung controller */
if (netif_carrier_ok(adapter->netdev)) {
for (i = 0; i < adapter->num_tx_queues; i++)
set_check_for_tx_hang(adapter->tx_ring[i]);
for (i = 0; i < adapter->num_xdp_queues; i++)
set_check_for_tx_hang(adapter->xdp_ring[i]);
}
/* get one bit for every active Tx/Rx interrupt vector */
for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
struct ixgbevf_q_vector *qv = adapter->q_vector[i];
if (qv->rx.ring || qv->tx.ring)
eics |= BIT(i);
}
/* Cause software interrupt to ensure rings are cleaned */
IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
}
/**
* ixgbevf_watchdog_update_link - update the link status
* @adapter: pointer to the device adapter structure
**/
static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
u32 link_speed = adapter->link_speed;
bool link_up = adapter->link_up;
s32 err;
spin_lock_bh(&adapter->mbx_lock);
err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
spin_unlock_bh(&adapter->mbx_lock);
/* if check for link returns error we will need to reset */
if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
link_up = false;
}
adapter->link_up = link_up;
adapter->link_speed = link_speed;
}
/**
* ixgbevf_watchdog_link_is_up - update netif_carrier status and
* print link up message
* @adapter: pointer to the device adapter structure
**/
static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
/* only continue if link was previously down */
if (netif_carrier_ok(netdev))
return;
dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
(adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
"10 Gbps" :
(adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
"1 Gbps" :
(adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
"100 Mbps" :
"unknown speed");
netif_carrier_on(netdev);
}
/**
* ixgbevf_watchdog_link_is_down - update netif_carrier status and
* print link down message
* @adapter: pointer to the adapter structure
**/
static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
adapter->link_speed = 0;
/* only continue if link was up previously */
if (!netif_carrier_ok(netdev))
return;
dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
netif_carrier_off(netdev);
}
/**
* ixgbevf_watchdog_subtask - worker thread to bring link up
* @adapter: board private structure
**/
static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
{
/* if interface is down do nothing */
if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
test_bit(__IXGBEVF_RESETTING, &adapter->state))
return;
ixgbevf_watchdog_update_link(adapter);
if (adapter->link_up)
ixgbevf_watchdog_link_is_up(adapter);
else
ixgbevf_watchdog_link_is_down(adapter);
ixgbevf_update_stats(adapter);
}
/**
* ixgbevf_service_task - manages and runs subtasks
* @work: pointer to work_struct containing our data
**/
static void ixgbevf_service_task(struct work_struct *work)
{
struct ixgbevf_adapter *adapter = container_of(work,
struct ixgbevf_adapter,
service_task);
struct ixgbe_hw *hw = &adapter->hw;
if (IXGBE_REMOVED(hw->hw_addr)) {
if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
rtnl_lock();
ixgbevf_down(adapter);
rtnl_unlock();
}
return;
}
ixgbevf_queue_reset_subtask(adapter);
ixgbevf_reset_subtask(adapter);
ixgbevf_watchdog_subtask(adapter);
ixgbevf_check_hang_subtask(adapter);
ixgbevf_service_event_complete(adapter);
}
/**
* ixgbevf_free_tx_resources - Free Tx Resources per Queue
* @tx_ring: Tx descriptor ring for a specific queue
*
* Free all transmit software resources
**/
void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
{
ixgbevf_clean_tx_ring(tx_ring);
vfree(tx_ring->tx_buffer_info);
tx_ring->tx_buffer_info = NULL;
/* if not set, then don't free */
if (!tx_ring->desc)
return;
dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
tx_ring->dma);
tx_ring->desc = NULL;
}
/**
* ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
* @adapter: board private structure
*
* Free all transmit software resources
**/
static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
if (adapter->tx_ring[i]->desc)
ixgbevf_free_tx_resources(adapter->tx_ring[i]);
for (i = 0; i < adapter->num_xdp_queues; i++)
if (adapter->xdp_ring[i]->desc)
ixgbevf_free_tx_resources(adapter->xdp_ring[i]);
}
/**
* ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
* @tx_ring: Tx descriptor ring (for a specific queue) to setup
*
* Return 0 on success, negative on failure
**/
int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
{
struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
int size;
size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
tx_ring->tx_buffer_info = vmalloc(size);
if (!tx_ring->tx_buffer_info)
goto err;
u64_stats_init(&tx_ring->syncp);
/* round up to nearest 4K */
tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
tx_ring->size = ALIGN(tx_ring->size, 4096);
tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
&tx_ring->dma, GFP_KERNEL);
if (!tx_ring->desc)
goto err;
return 0;
err:
vfree(tx_ring->tx_buffer_info);
tx_ring->tx_buffer_info = NULL;
hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
return -ENOMEM;
}
/**
* ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
* @adapter: board private structure
*
* If this function returns with an error, then it's possible one or
* more of the rings is populated (while the rest are not). It is the
* callers duty to clean those orphaned rings.
*
* Return 0 on success, negative on failure
**/
static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
{
int i, j = 0, err = 0;
for (i = 0; i < adapter->num_tx_queues; i++) {
err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
if (!err)
continue;
hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
goto err_setup_tx;
}
for (j = 0; j < adapter->num_xdp_queues; j++) {
err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]);
if (!err)
continue;
hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j);
goto err_setup_tx;
}
return 0;
err_setup_tx:
/* rewind the index freeing the rings as we go */
while (j--)
ixgbevf_free_tx_resources(adapter->xdp_ring[j]);
while (i--)
ixgbevf_free_tx_resources(adapter->tx_ring[i]);
return err;
}
/**
* ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
* @adapter: board private structure
* @rx_ring: Rx descriptor ring (for a specific queue) to setup
*
* Returns 0 on success, negative on failure
**/
int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
struct ixgbevf_ring *rx_ring)
{
int size;
size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
rx_ring->rx_buffer_info = vmalloc(size);
if (!rx_ring->rx_buffer_info)
goto err;
u64_stats_init(&rx_ring->syncp);
/* Round up to nearest 4K */
rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
rx_ring->size = ALIGN(rx_ring->size, 4096);
rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
&rx_ring->dma, GFP_KERNEL);
if (!rx_ring->desc)
goto err;
/* XDP RX-queue info */
if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev,
rx_ring->queue_index, 0) < 0)
goto err;
rx_ring->xdp_prog = adapter->xdp_prog;
return 0;
err:
vfree(rx_ring->rx_buffer_info);
rx_ring->rx_buffer_info = NULL;
dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
return -ENOMEM;
}
/**
* ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
* @adapter: board private structure
*
* If this function returns with an error, then it's possible one or
* more of the rings is populated (while the rest are not). It is the
* callers duty to clean those orphaned rings.
*
* Return 0 on success, negative on failure
**/
static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
{
int i, err = 0;
for (i = 0; i < adapter->num_rx_queues; i++) {
err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]);
if (!err)
continue;
hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
goto err_setup_rx;
}
return 0;
err_setup_rx:
/* rewind the index freeing the rings as we go */
while (i--)
ixgbevf_free_rx_resources(adapter->rx_ring[i]);
return err;
}
/**
* ixgbevf_free_rx_resources - Free Rx Resources
* @rx_ring: ring to clean the resources from
*
* Free all receive software resources
**/
void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
{
ixgbevf_clean_rx_ring(rx_ring);
rx_ring->xdp_prog = NULL;
xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
vfree(rx_ring->rx_buffer_info);
rx_ring->rx_buffer_info = NULL;
dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
rx_ring->dma);
rx_ring->desc = NULL;
}
/**
* ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
* @adapter: board private structure
*
* Free all receive software resources
**/
static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
if (adapter->rx_ring[i]->desc)
ixgbevf_free_rx_resources(adapter->rx_ring[i]);
}
/**
* ixgbevf_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
**/
int ixgbevf_open(struct net_device *netdev)
{
struct ixgbevf_adapter *adapter = netdev_priv(netdev);
struct ixgbe_hw *hw = &adapter->hw;
int err;
/* A previous failure to open the device because of a lack of
* available MSIX vector resources may have reset the number
* of msix vectors variable to zero. The only way to recover
* is to unload/reload the driver and hope that the system has
* been able to recover some MSIX vector resources.
*/
if (!adapter->num_msix_vectors)
return -ENOMEM;
if (hw->adapter_stopped) {
ixgbevf_reset(adapter);
/* if adapter is still stopped then PF isn't up and
* the VF can't start.
*/
if (hw->adapter_stopped) {
err = IXGBE_ERR_MBX;
pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
goto err_setup_reset;
}
}
/* disallow open during test */
if (test_bit(__IXGBEVF_TESTING, &adapter->state))
return -EBUSY;
netif_carrier_off(netdev);
/* allocate transmit descriptors */
err = ixgbevf_setup_all_tx_resources(adapter);
if (err)
goto err_setup_tx;
/* allocate receive descriptors */
err = ixgbevf_setup_all_rx_resources(adapter);
if (err)
goto err_setup_rx;
ixgbevf_configure(adapter);
err = ixgbevf_request_irq(adapter);
if (err)
goto err_req_irq;
/* Notify the stack of the actual queue counts. */
err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
if (err)
goto err_set_queues;
err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
if (err)
goto err_set_queues;
ixgbevf_up_complete(adapter);
return 0;
err_set_queues:
ixgbevf_free_irq(adapter);
err_req_irq:
ixgbevf_free_all_rx_resources(adapter);
err_setup_rx:
ixgbevf_free_all_tx_resources(adapter);
err_setup_tx:
ixgbevf_reset(adapter);
err_setup_reset:
return err;
}
/**
* ixgbevf_close_suspend - actions necessary to both suspend and close flows
* @adapter: the private adapter struct
*
* This function should contain the necessary work common to both suspending
* and closing of the device.
*/
static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter)
{
ixgbevf_down(adapter);
ixgbevf_free_irq(adapter);
ixgbevf_free_all_tx_resources(adapter);
ixgbevf_free_all_rx_resources(adapter);
}
/**
* ixgbevf_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
**/
int ixgbevf_close(struct net_device *netdev)
{
struct ixgbevf_adapter *adapter = netdev_priv(netdev);
if (netif_device_present(netdev))
ixgbevf_close_suspend(adapter);
return 0;
}
static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
{
struct net_device *dev = adapter->netdev;
if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
&adapter->state))
return;
/* if interface is down do nothing */
if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
test_bit(__IXGBEVF_RESETTING, &adapter->state))
return;
/* Hardware has to reinitialize queues and interrupts to
* match packet buffer alignment. Unfortunately, the
* hardware is not flexible enough to do this dynamically.
*/
rtnl_lock();
if (netif_running(dev))
ixgbevf_close(dev);
ixgbevf_clear_interrupt_scheme(adapter);
ixgbevf_init_interrupt_scheme(adapter);
if (netif_running(dev))
ixgbevf_open(dev);
rtnl_unlock();
}
static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
u32 vlan_macip_lens, u32 fceof_saidx,
u32 type_tucmd, u32 mss_l4len_idx)
{
struct ixgbe_adv_tx_context_desc *context_desc;
u16 i = tx_ring->next_to_use;
context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
i++;
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
/* set bits to identify this as an advanced context descriptor */
type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
context_desc->fceof_saidx = cpu_to_le32(fceof_saidx);
context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
}
static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
struct ixgbevf_tx_buffer *first,
u8 *hdr_len,
struct ixgbevf_ipsec_tx_data *itd)
{
u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
struct sk_buff *skb = first->skb;
union {
struct iphdr *v4;
struct ipv6hdr *v6;
unsigned char *hdr;
} ip;
union {
struct tcphdr *tcp;
unsigned char *hdr;
} l4;
u32 paylen, l4_offset;
u32 fceof_saidx = 0;
int err;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (!skb_is_gso(skb))
return 0;
err = skb_cow_head(skb, 0);
if (err < 0)
return err;
if (eth_p_mpls(first->protocol))
ip.hdr = skb_inner_network_header(skb);
else
ip.hdr = skb_network_header(skb);
l4.hdr = skb_checksum_start(skb);
/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
/* initialize outer IP header fields */
if (ip.v4->version == 4) {
unsigned char *csum_start = skb_checksum_start(skb);
unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
int len = csum_start - trans_start;
/* IP header will have to cancel out any data that
* is not a part of the outer IP header, so set to
* a reverse csum if needed, else init check to 0.
*/
ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ?
csum_fold(csum_partial(trans_start,
len, 0)) : 0;
type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
ip.v4->tot_len = 0;
first->tx_flags |= IXGBE_TX_FLAGS_TSO |
IXGBE_TX_FLAGS_CSUM |
IXGBE_TX_FLAGS_IPV4;
} else {
ip.v6->payload_len = 0;
first->tx_flags |= IXGBE_TX_FLAGS_TSO |
IXGBE_TX_FLAGS_CSUM;
}
/* determine offset of inner transport header */
l4_offset = l4.hdr - skb->data;
/* compute length of segmentation header */
*hdr_len = (l4.tcp->doff * 4) + l4_offset;
/* remove payload length from inner checksum */
paylen = skb->len - l4_offset;
csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
/* update gso size and bytecount with header size */
first->gso_segs = skb_shinfo(skb)->gso_segs;
first->bytecount += (first->gso_segs - 1) * *hdr_len;
/* mss_l4len_id: use 1 as index for TSO */
mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
fceof_saidx |= itd->pfsa;
type_tucmd |= itd->flags | itd->trailer_len;
/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
vlan_macip_lens = l4.hdr - ip.hdr;
vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd,
mss_l4len_idx);
return 1;
}
static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
struct ixgbevf_tx_buffer *first,
struct ixgbevf_ipsec_tx_data *itd)
{
struct sk_buff *skb = first->skb;
u32 vlan_macip_lens = 0;
u32 fceof_saidx = 0;
u32 type_tucmd = 0;
if (skb->ip_summed != CHECKSUM_PARTIAL)
goto no_csum;
switch (skb->csum_offset) {
case offsetof(struct tcphdr, check):
type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
fallthrough;
case offsetof(struct udphdr, check):
break;
case offsetof(struct sctphdr, checksum):
/* validate that this is actually an SCTP request */
if (skb_csum_is_sctp(skb)) {
type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
break;
}
fallthrough;
default:
skb_checksum_help(skb);
goto no_csum;
}
if (first->protocol == htons(ETH_P_IP))
type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
/* update TX checksum flag */
first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
vlan_macip_lens = skb_checksum_start_offset(skb) -
skb_network_offset(skb);
no_csum:
/* vlan_macip_lens: MACLEN, VLAN tag */
vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
fceof_saidx |= itd->pfsa;
type_tucmd |= itd->flags | itd->trailer_len;
ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
fceof_saidx, type_tucmd, 0);
}
static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
{
/* set type for advanced descriptor with frame checksum insertion */
__le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
IXGBE_ADVTXD_DCMD_IFCS |
IXGBE_ADVTXD_DCMD_DEXT);
/* set HW VLAN bit if VLAN is present */
if (tx_flags & IXGBE_TX_FLAGS_VLAN)
cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
/* set segmentation enable bits for TSO/FSO */
if (tx_flags & IXGBE_TX_FLAGS_TSO)
cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
return cmd_type;
}
static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
u32 tx_flags, unsigned int paylen)
{
__le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
/* enable L4 checksum for TSO and TX checksum offload */
if (tx_flags & IXGBE_TX_FLAGS_CSUM)
olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
/* enble IPv4 checksum for TSO */
if (tx_flags & IXGBE_TX_FLAGS_IPV4)
olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
/* enable IPsec */
if (tx_flags & IXGBE_TX_FLAGS_IPSEC)
olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC);
/* use index 1 context for TSO/FSO/FCOE/IPSEC */
if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC))
olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
/* Check Context must be set if Tx switch is enabled, which it
* always is for case where virtual functions are running
*/
olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
tx_desc->read.olinfo_status = olinfo_status;
}
static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
struct ixgbevf_tx_buffer *first,
const u8 hdr_len)
{
struct sk_buff *skb = first->skb;
struct ixgbevf_tx_buffer *tx_buffer;
union ixgbe_adv_tx_desc *tx_desc;
skb_frag_t *frag;
dma_addr_t dma;
unsigned int data_len, size;
u32 tx_flags = first->tx_flags;
__le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
u16 i = tx_ring->next_to_use;
tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
size = skb_headlen(skb);
data_len = skb->data_len;
dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
tx_buffer = first;
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
if (dma_mapping_error(tx_ring->dev, dma))
goto dma_error;
/* record length, and DMA address */
dma_unmap_len_set(tx_buffer, len, size);
dma_unmap_addr_set(tx_buffer, dma, dma);
tx_desc->read.buffer_addr = cpu_to_le64(dma);
while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
tx_desc->read.cmd_type_len =
cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
i++;
tx_desc++;
if (i == tx_ring->count) {
tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
i = 0;
}
tx_desc->read.olinfo_status = 0;
dma += IXGBE_MAX_DATA_PER_TXD;
size -= IXGBE_MAX_DATA_PER_TXD;
tx_desc->read.buffer_addr = cpu_to_le64(dma);
}
if (likely(!data_len))
break;
tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
i++;
tx_desc++;
if (i == tx_ring->count) {
tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
i = 0;
}
tx_desc->read.olinfo_status = 0;
size = skb_frag_size(frag);
data_len -= size;
dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
DMA_TO_DEVICE);
tx_buffer = &tx_ring->tx_buffer_info[i];
}
/* write last descriptor with RS and EOP bits */
cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
tx_desc->read.cmd_type_len = cmd_type;
/* set the timestamp */
first->time_stamp = jiffies;
skb_tx_timestamp(skb);
/* Force memory writes to complete before letting h/w know there
* are new descriptors to fetch. (Only applicable for weak-ordered
* memory model archs, such as IA-64).
*
* We also need this memory barrier (wmb) to make certain all of the
* status bits have been updated before next_to_watch is written.
*/
wmb();
/* set next_to_watch value indicating a packet is present */
first->next_to_watch = tx_desc;
i++;
if (i == tx_ring->count)
i = 0;
tx_ring->next_to_use = i;
/* notify HW of packet */
ixgbevf_write_tail(tx_ring, i);
return;
dma_error:
dev_err(tx_ring->dev, "TX DMA map failed\n");
tx_buffer = &tx_ring->tx_buffer_info[i];
/* clear dma mappings for failed tx_buffer_info map */
while (tx_buffer != first) {
if (dma_unmap_len(tx_buffer, len))
dma_unmap_page(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buffer, len, 0);
if (i-- == 0)
i += tx_ring->count;
tx_buffer = &tx_ring->tx_buffer_info[i];
}
if (dma_unmap_len(tx_buffer, len))
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buffer, len, 0);
dev_kfree_skb_any(tx_buffer->skb);
tx_buffer->skb = NULL;
tx_ring->next_to_use = i;
}
static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
{
netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
/* Herbert's original patch had:
* smp_mb__after_netif_stop_queue();
* but since that doesn't exist yet, just open code it.
*/
smp_mb();
/* We need to check again in a case another CPU has just
* made room available.
*/
if (likely(ixgbevf_desc_unused(tx_ring) < size))
return -EBUSY;
/* A reprieve! - use start_queue because it doesn't call schedule */
netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
++tx_ring->tx_stats.restart_queue;
return 0;
}
static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
{
if (likely(ixgbevf_desc_unused(tx_ring) >= size))
return 0;
return __ixgbevf_maybe_stop_tx(tx_ring, size);
}
static int ixgbevf_xmit_frame_ring(struct sk_buff *skb,
struct ixgbevf_ring *tx_ring)
{
struct ixgbevf_tx_buffer *first;
int tso;
u32 tx_flags = 0;
u16 count = TXD_USE_COUNT(skb_headlen(skb));
struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 };
#if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
unsigned short f;
#endif
u8 hdr_len = 0;
u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
* + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
* + 2 desc gap to keep tail from touching head,
* + 1 desc for context descriptor,
* otherwise try next time
*/
#if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
count += TXD_USE_COUNT(skb_frag_size(frag));
}
#else
count += skb_shinfo(skb)->nr_frags;
#endif
if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
tx_ring->tx_stats.tx_busy++;
return NETDEV_TX_BUSY;
}
/* record the location of the first descriptor for this packet */
first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
first->skb = skb;
first->bytecount = skb->len;
first->gso_segs = 1;
if (skb_vlan_tag_present(skb)) {
tx_flags |= skb_vlan_tag_get(skb);
tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
tx_flags |= IXGBE_TX_FLAGS_VLAN;
}
/* record initial flags and protocol */
first->tx_flags = tx_flags;
first->protocol = vlan_get_protocol(skb);
#ifdef CONFIG_IXGBEVF_IPSEC
if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx))
goto out_drop;
#endif
tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx);
if (tso < 0)
goto out_drop;
else if (!tso)
ixgbevf_tx_csum(tx_ring, first, &ipsec_tx);
ixgbevf_tx_map(tx_ring, first, hdr_len);
ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
return NETDEV_TX_OK;
out_drop:
dev_kfree_skb_any(first->skb);
first->skb = NULL;
return NETDEV_TX_OK;
}
static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
struct ixgbevf_adapter *adapter = netdev_priv(netdev);
struct ixgbevf_ring *tx_ring;
if (skb->len <= 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/* The minimum packet size for olinfo paylen is 17 so pad the skb
* in order to meet this minimum size requirement.
*/
if (skb->len < 17) {
if (skb_padto(skb, 17))
return NETDEV_TX_OK;
skb->len = 17;
}
tx_ring = adapter->tx_ring[skb->queue_mapping];
return ixgbevf_xmit_frame_ring(skb, tx_ring);
}
/**
* ixgbevf_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
**/
static int ixgbevf_set_mac(struct net_device *netdev, void *p)
{
struct ixgbevf_adapter *adapter = netdev_priv(netdev);
struct ixgbe_hw *hw = &adapter->hw;
struct sockaddr *addr = p;
int err;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
spin_lock_bh(&adapter->mbx_lock);
err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
spin_unlock_bh(&adapter->mbx_lock);
if (err)
return -EPERM;
ether_addr_copy(hw->mac.addr, addr->sa_data);
ether_addr_copy(hw->mac.perm_addr, addr->sa_data);
ether_addr_copy(netdev->dev_addr, addr->sa_data);
return 0;
}
/**
* ixgbevf_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
**/
static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
{
struct ixgbevf_adapter *adapter = netdev_priv(netdev);
struct ixgbe_hw *hw = &adapter->hw;
int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
int ret;
/* prevent MTU being changed to a size unsupported by XDP */
if (adapter->xdp_prog) {
dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n");
return -EPERM;
}
spin_lock_bh(&adapter->mbx_lock);
/* notify the PF of our intent to use this size of frame */
ret = hw->mac.ops.set_rlpml(hw, max_frame);
spin_unlock_bh(&adapter->mbx_lock);
if (ret)
return -EINVAL;
hw_dbg(hw, "changing MTU from %d to %d\n",
netdev->mtu, new_mtu);
/* must set new MTU before calling down or up */
netdev->mtu = new_mtu;
if (netif_running(netdev))
ixgbevf_reinit_locked(adapter);
return 0;
}
static int __maybe_unused ixgbevf_suspend(struct device *dev_d)
{
struct net_device *netdev = dev_get_drvdata(dev_d);
struct ixgbevf_adapter *adapter = netdev_priv(netdev);
rtnl_lock();
netif_device_detach(netdev);
if (netif_running(netdev))
ixgbevf_close_suspend(adapter);
ixgbevf_clear_interrupt_scheme(adapter);
rtnl_unlock();
return 0;
}
static int __maybe_unused ixgbevf_resume(struct device *dev_d)
{
struct pci_dev *pdev = to_pci_dev(dev_d);
struct net_device *netdev = pci_get_drvdata(pdev);
struct ixgbevf_adapter *adapter = netdev_priv(netdev);
u32 err;
adapter->hw.hw_addr = adapter->io_addr;
smp_mb__before_atomic();
clear_bit(__IXGBEVF_DISABLED, &adapter->state);
pci_set_master(pdev);
ixgbevf_reset(adapter);
rtnl_lock();
err = ixgbevf_init_interrupt_scheme(adapter);
if (!err && netif_running(netdev))
err = ixgbevf_open(netdev);
rtnl_unlock();
if (err)
return err;
netif_device_attach(netdev);
return err;
}
static void ixgbevf_shutdown(struct pci_dev *pdev)
{
ixgbevf_suspend(&pdev->dev);
}
static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats,
const struct ixgbevf_ring *ring)
{
u64 bytes, packets;
unsigned int start;
if (ring) {
do {
start = u64_stats_fetch_begin_irq(&ring->syncp);
bytes = ring->stats.bytes;
packets = ring->stats.packets;
} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
stats->tx_bytes += bytes;
stats->tx_packets += packets;
}
}
static void ixgbevf_get_stats(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct ixgbevf_adapter *adapter = netdev_priv(netdev);
unsigned int start;
u64 bytes, packets;
const struct ixgbevf_ring *ring;
int i;
ixgbevf_update_stats(adapter);
stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
rcu_read_lock();
for (i = 0; i < adapter->num_rx_queues; i++) {
ring = adapter->rx_ring[i];
do {
start = u64_stats_fetch_begin_irq(&ring->syncp);
bytes = ring->stats.bytes;
packets = ring->stats.packets;
} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
stats->rx_bytes += bytes;
stats->rx_packets += packets;
}
for (i = 0; i < adapter->num_tx_queues; i++) {
ring = adapter->tx_ring[i];
ixgbevf_get_tx_ring_stats(stats, ring);
}
for (i = 0; i < adapter->num_xdp_queues; i++) {
ring = adapter->xdp_ring[i];
ixgbevf_get_tx_ring_stats(stats, ring);
}
rcu_read_unlock();
}
#define IXGBEVF_MAX_MAC_HDR_LEN 127
#define IXGBEVF_MAX_NETWORK_HDR_LEN 511
static netdev_features_t
ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
netdev_features_t features)
{
unsigned int network_hdr_len, mac_hdr_len;
/* Make certain the headers can be described by a context descriptor */
mac_hdr_len = skb_network_header(skb) - skb->data;
if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
return features & ~(NETIF_F_HW_CSUM |
NETIF_F_SCTP_CRC |
NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_TSO |
NETIF_F_TSO6);
network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN))
return features & ~(NETIF_F_HW_CSUM |
NETIF_F_SCTP_CRC |
NETIF_F_TSO |
NETIF_F_TSO6);
/* We can only support IPV4 TSO in tunnels if we can mangle the
* inner IP ID field, so strip TSO if MANGLEID is not supported.
*/
if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
features &= ~NETIF_F_TSO;
return features;
}
static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog)
{
int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
struct ixgbevf_adapter *adapter = netdev_priv(dev);
struct bpf_prog *old_prog;
/* verify ixgbevf ring attributes are sufficient for XDP */
for (i = 0; i < adapter->num_rx_queues; i++) {
struct ixgbevf_ring *ring = adapter->rx_ring[i];
if (frame_size > ixgbevf_rx_bufsz(ring))
return -EINVAL;
}
old_prog = xchg(&adapter->xdp_prog, prog);
/* If transitioning XDP modes reconfigure rings */
if (!!prog != !!old_prog) {
/* Hardware has to reinitialize queues and interrupts to
* match packet buffer alignment. Unfortunately, the
* hardware is not flexible enough to do this dynamically.
*/
if (netif_running(dev))
ixgbevf_close(dev);
ixgbevf_clear_interrupt_scheme(adapter);
ixgbevf_init_interrupt_scheme(adapter);
if (netif_running(dev))
ixgbevf_open(dev);
} else {
for (i = 0; i < adapter->num_rx_queues; i++)
xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog);
}
if (old_prog)
bpf_prog_put(old_prog);
return 0;
}
static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp)
{
switch (xdp->command) {
case XDP_SETUP_PROG:
return ixgbevf_xdp_setup(dev, xdp->prog);
default:
return -EINVAL;
}
}
static const struct net_device_ops ixgbevf_netdev_ops = {
.ndo_open = ixgbevf_open,
.ndo_stop = ixgbevf_close,
.ndo_start_xmit = ixgbevf_xmit_frame,
.ndo_set_rx_mode = ixgbevf_set_rx_mode,
.ndo_get_stats64 = ixgbevf_get_stats,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = ixgbevf_set_mac,
.ndo_change_mtu = ixgbevf_change_mtu,
.ndo_tx_timeout = ixgbevf_tx_timeout,
.ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid,
.ndo_features_check = ixgbevf_features_check,
.ndo_bpf = ixgbevf_xdp,
};
static void ixgbevf_assign_netdev_ops(struct net_device *dev)
{
dev->netdev_ops = &ixgbevf_netdev_ops;
ixgbevf_set_ethtool_ops(dev);
dev->watchdog_timeo = 5 * HZ;
}
/**
* ixgbevf_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in ixgbevf_pci_tbl
*
* Returns 0 on success, negative on failure
*
* ixgbevf_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
**/
static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *netdev;
struct ixgbevf_adapter *adapter = NULL;
struct ixgbe_hw *hw = NULL;
const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
int err, pci_using_dac;
bool disable_dev = false;
err = pci_enable_device(pdev);
if (err)
return err;
if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
pci_using_dac = 1;
} else {
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
goto err_dma;
}
pci_using_dac = 0;
}
err = pci_request_regions(pdev, ixgbevf_driver_name);
if (err) {
dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
goto err_pci_reg;
}
pci_set_master(pdev);
netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
MAX_TX_QUEUES);
if (!netdev) {
err = -ENOMEM;
goto err_alloc_etherdev;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pdev = pdev;
hw = &adapter->hw;
hw->back = adapter;
adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
/* call save state here in standalone driver because it relies on
* adapter struct to exist, and needs to call netdev_priv
*/
pci_save_state(pdev);
hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
adapter->io_addr = hw->hw_addr;
if (!hw->hw_addr) {
err = -EIO;
goto err_ioremap;
}
ixgbevf_assign_netdev_ops(netdev);
/* Setup HW API */
memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
hw->mac.type = ii->mac;
memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
sizeof(struct ixgbe_mbx_operations));
/* setup the private structure */
err = ixgbevf_sw_init(adapter);
if (err)
goto err_sw_init;
/* The HW MAC address was set and/or determined in sw_init */
if (!is_valid_ether_addr(netdev->dev_addr)) {
pr_err("invalid MAC address\n");
err = -EIO;
goto err_sw_init;
}
netdev->hw_features = NETIF_F_SG |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_RXCSUM |
NETIF_F_HW_CSUM |
NETIF_F_SCTP_CRC;
#define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
NETIF_F_GSO_GRE_CSUM | \
NETIF_F_GSO_IPXIP4 | \
NETIF_F_GSO_IPXIP6 | \
NETIF_F_GSO_UDP_TUNNEL | \
NETIF_F_GSO_UDP_TUNNEL_CSUM)
netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
netdev->hw_features |= NETIF_F_GSO_PARTIAL |
IXGBEVF_GSO_PARTIAL_FEATURES;
netdev->features = netdev->hw_features;
if (pci_using_dac)
netdev->features |= NETIF_F_HIGHDMA;
netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
netdev->mpls_features |= NETIF_F_SG |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_HW_CSUM;
netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES;
netdev->hw_enc_features |= netdev->vlan_features;
/* set this bit last since it cannot be part of vlan_features */
netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_TX;
netdev->priv_flags |= IFF_UNICAST_FLT;
/* MTU range: 68 - 1504 or 9710 */
netdev->min_mtu = ETH_MIN_MTU;
switch (adapter->hw.api_version) {
case ixgbe_mbox_api_11:
case ixgbe_mbox_api_12:
case ixgbe_mbox_api_13:
case ixgbe_mbox_api_14:
netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
(ETH_HLEN + ETH_FCS_LEN);
break;
default:
if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
(ETH_HLEN + ETH_FCS_LEN);
else
netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN;
break;
}
if (IXGBE_REMOVED(hw->hw_addr)) {
err = -EIO;
goto err_sw_init;
}
timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0);
INIT_WORK(&adapter->service_task, ixgbevf_service_task);
set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
err = ixgbevf_init_interrupt_scheme(adapter);
if (err)
goto err_sw_init;
strcpy(netdev->name, "eth%d");
err = register_netdev(netdev);
if (err)
goto err_register;
pci_set_drvdata(pdev, netdev);
netif_carrier_off(netdev);
ixgbevf_init_ipsec_offload(adapter);
ixgbevf_init_last_counter_stats(adapter);
/* print the VF info */
dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
switch (hw->mac.type) {
case ixgbe_mac_X550_vf:
dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
break;
case ixgbe_mac_X540_vf:
dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
break;
case ixgbe_mac_82599_vf:
default:
dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
break;
}
return 0;
err_register:
ixgbevf_clear_interrupt_scheme(adapter);
err_sw_init:
ixgbevf_reset_interrupt_capability(adapter);
iounmap(adapter->io_addr);
kfree(adapter->rss_key);
err_ioremap:
disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
free_netdev(netdev);
err_alloc_etherdev:
pci_release_regions(pdev);
err_pci_reg:
err_dma:
if (!adapter || disable_dev)
pci_disable_device(pdev);
return err;
}
/**
* ixgbevf_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* ixgbevf_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
static void ixgbevf_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct ixgbevf_adapter *adapter;
bool disable_dev;
if (!netdev)
return;
adapter = netdev_priv(netdev);
set_bit(__IXGBEVF_REMOVING, &adapter->state);
cancel_work_sync(&adapter->service_task);
if (netdev->reg_state == NETREG_REGISTERED)
unregister_netdev(netdev);
ixgbevf_stop_ipsec_offload(adapter);
ixgbevf_clear_interrupt_scheme(adapter);
ixgbevf_reset_interrupt_capability(adapter);
iounmap(adapter->io_addr);
pci_release_regions(pdev);
hw_dbg(&adapter->hw, "Remove complete\n");
kfree(adapter->rss_key);
disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
free_netdev(netdev);
if (disable_dev)
pci_disable_device(pdev);
}
/**
* ixgbevf_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
**/
static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct ixgbevf_adapter *adapter = netdev_priv(netdev);
if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
return PCI_ERS_RESULT_DISCONNECT;
rtnl_lock();
netif_device_detach(netdev);
if (netif_running(netdev))
ixgbevf_close_suspend(adapter);
if (state == pci_channel_io_perm_failure) {
rtnl_unlock();
return PCI_ERS_RESULT_DISCONNECT;
}
if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
pci_disable_device(pdev);
rtnl_unlock();
/* Request a slot slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* ixgbevf_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot. Implementation
* resembles the first-half of the ixgbevf_resume routine.
**/
static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct ixgbevf_adapter *adapter = netdev_priv(netdev);
if (pci_enable_device_mem(pdev)) {
dev_err(&pdev->dev,
"Cannot re-enable PCI device after reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
adapter->hw.hw_addr = adapter->io_addr;
smp_mb__before_atomic();
clear_bit(__IXGBEVF_DISABLED, &adapter->state);
pci_set_master(pdev);
ixgbevf_reset(adapter);
return PCI_ERS_RESULT_RECOVERED;
}
/**
* ixgbevf_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation. Implementation resembles the
* second-half of the ixgbevf_resume routine.
**/
static void ixgbevf_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
rtnl_lock();
if (netif_running(netdev))
ixgbevf_open(netdev);
netif_device_attach(netdev);
rtnl_unlock();
}
/* PCI Error Recovery (ERS) */
static const struct pci_error_handlers ixgbevf_err_handler = {
.error_detected = ixgbevf_io_error_detected,
.slot_reset = ixgbevf_io_slot_reset,
.resume = ixgbevf_io_resume,
};
static SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume);
static struct pci_driver ixgbevf_driver = {
.name = ixgbevf_driver_name,
.id_table = ixgbevf_pci_tbl,
.probe = ixgbevf_probe,
.remove = ixgbevf_remove,
/* Power Management Hooks */
.driver.pm = &ixgbevf_pm_ops,
.shutdown = ixgbevf_shutdown,
.err_handler = &ixgbevf_err_handler
};
/**
* ixgbevf_init_module - Driver Registration Routine
*
* ixgbevf_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
**/
static int __init ixgbevf_init_module(void)
{
pr_info("%s\n", ixgbevf_driver_string);
pr_info("%s\n", ixgbevf_copyright);
ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
if (!ixgbevf_wq) {
pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
return -ENOMEM;
}
return pci_register_driver(&ixgbevf_driver);
}
module_init(ixgbevf_init_module);
/**
* ixgbevf_exit_module - Driver Exit Cleanup Routine
*
* ixgbevf_exit_module is called just before the driver is removed
* from memory.
**/
static void __exit ixgbevf_exit_module(void)
{
pci_unregister_driver(&ixgbevf_driver);
if (ixgbevf_wq) {
destroy_workqueue(ixgbevf_wq);
ixgbevf_wq = NULL;
}
}
#ifdef DEBUG
/**
* ixgbevf_get_hw_dev_name - return device name string
* used by hardware layer to print debugging information
* @hw: pointer to private hardware struct
**/
char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
{
struct ixgbevf_adapter *adapter = hw->back;
return adapter->netdev->name;
}
#endif
module_exit(ixgbevf_exit_module);
/* ixgbevf_main.c */