mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-07 14:24:18 +08:00
34bbfdfb14
The KVM patching callbacks use cpus_have_final_cap() internally within has_vhe(), and subsequent patches will make it invalid to call cpus_have_final_cap() before alternatives patching has completed, and will mean that cpus_have_const_cap() will always fall back to dynamic checks prior to alternatives patching. In preparation for said change, this patch modifies the KVM patching callbacks to use cpus_have_cap() directly. This is not subject to patching, and will dynamically check the cpu_hwcaps array, which is functionally equivalent to the existing behaviour. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: James Morse <james.morse@arm.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220912162210.3626215-3-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
299 lines
7.6 KiB
C
299 lines
7.6 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2017 ARM Ltd.
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/random.h>
|
|
#include <linux/memblock.h>
|
|
#include <asm/alternative.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/memory.h>
|
|
|
|
/*
|
|
* The LSB of the HYP VA tag
|
|
*/
|
|
static u8 tag_lsb;
|
|
/*
|
|
* The HYP VA tag value with the region bit
|
|
*/
|
|
static u64 tag_val;
|
|
static u64 va_mask;
|
|
|
|
/*
|
|
* Compute HYP VA by using the same computation as kern_hyp_va().
|
|
*/
|
|
static u64 __early_kern_hyp_va(u64 addr)
|
|
{
|
|
addr &= va_mask;
|
|
addr |= tag_val << tag_lsb;
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
* Store a hyp VA <-> PA offset into a EL2-owned variable.
|
|
*/
|
|
static void init_hyp_physvirt_offset(void)
|
|
{
|
|
u64 kern_va, hyp_va;
|
|
|
|
/* Compute the offset from the hyp VA and PA of a random symbol. */
|
|
kern_va = (u64)lm_alias(__hyp_text_start);
|
|
hyp_va = __early_kern_hyp_va(kern_va);
|
|
hyp_physvirt_offset = (s64)__pa(kern_va) - (s64)hyp_va;
|
|
}
|
|
|
|
/*
|
|
* We want to generate a hyp VA with the following format (with V ==
|
|
* vabits_actual):
|
|
*
|
|
* 63 ... V | V-1 | V-2 .. tag_lsb | tag_lsb - 1 .. 0
|
|
* ---------------------------------------------------------
|
|
* | 0000000 | hyp_va_msb | random tag | kern linear VA |
|
|
* |--------- tag_val -----------|----- va_mask ---|
|
|
*
|
|
* which does not conflict with the idmap regions.
|
|
*/
|
|
__init void kvm_compute_layout(void)
|
|
{
|
|
phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
|
|
u64 hyp_va_msb;
|
|
|
|
/* Where is my RAM region? */
|
|
hyp_va_msb = idmap_addr & BIT(vabits_actual - 1);
|
|
hyp_va_msb ^= BIT(vabits_actual - 1);
|
|
|
|
tag_lsb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^
|
|
(u64)(high_memory - 1));
|
|
|
|
va_mask = GENMASK_ULL(tag_lsb - 1, 0);
|
|
tag_val = hyp_va_msb;
|
|
|
|
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && tag_lsb != (vabits_actual - 1)) {
|
|
/* We have some free bits to insert a random tag. */
|
|
tag_val |= get_random_long() & GENMASK_ULL(vabits_actual - 2, tag_lsb);
|
|
}
|
|
tag_val >>= tag_lsb;
|
|
|
|
init_hyp_physvirt_offset();
|
|
}
|
|
|
|
/*
|
|
* The .hyp.reloc ELF section contains a list of kimg positions that
|
|
* contains kimg VAs but will be accessed only in hyp execution context.
|
|
* Convert them to hyp VAs. See gen-hyprel.c for more details.
|
|
*/
|
|
__init void kvm_apply_hyp_relocations(void)
|
|
{
|
|
int32_t *rel;
|
|
int32_t *begin = (int32_t *)__hyp_reloc_begin;
|
|
int32_t *end = (int32_t *)__hyp_reloc_end;
|
|
|
|
for (rel = begin; rel < end; ++rel) {
|
|
uintptr_t *ptr, kimg_va;
|
|
|
|
/*
|
|
* Each entry contains a 32-bit relative offset from itself
|
|
* to a kimg VA position.
|
|
*/
|
|
ptr = (uintptr_t *)lm_alias((char *)rel + *rel);
|
|
|
|
/* Read the kimg VA value at the relocation address. */
|
|
kimg_va = *ptr;
|
|
|
|
/* Convert to hyp VA and store back to the relocation address. */
|
|
*ptr = __early_kern_hyp_va((uintptr_t)lm_alias(kimg_va));
|
|
}
|
|
}
|
|
|
|
static u32 compute_instruction(int n, u32 rd, u32 rn)
|
|
{
|
|
u32 insn = AARCH64_BREAK_FAULT;
|
|
|
|
switch (n) {
|
|
case 0:
|
|
insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND,
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
rn, rd, va_mask);
|
|
break;
|
|
|
|
case 1:
|
|
/* ROR is a variant of EXTR with Rm = Rn */
|
|
insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
|
|
rn, rn, rd,
|
|
tag_lsb);
|
|
break;
|
|
|
|
case 2:
|
|
insn = aarch64_insn_gen_add_sub_imm(rd, rn,
|
|
tag_val & GENMASK(11, 0),
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
AARCH64_INSN_ADSB_ADD);
|
|
break;
|
|
|
|
case 3:
|
|
insn = aarch64_insn_gen_add_sub_imm(rd, rn,
|
|
tag_val & GENMASK(23, 12),
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
AARCH64_INSN_ADSB_ADD);
|
|
break;
|
|
|
|
case 4:
|
|
/* ROR is a variant of EXTR with Rm = Rn */
|
|
insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
|
|
rn, rn, rd, 64 - tag_lsb);
|
|
break;
|
|
}
|
|
|
|
return insn;
|
|
}
|
|
|
|
void __init kvm_update_va_mask(struct alt_instr *alt,
|
|
__le32 *origptr, __le32 *updptr, int nr_inst)
|
|
{
|
|
int i;
|
|
|
|
BUG_ON(nr_inst != 5);
|
|
|
|
for (i = 0; i < nr_inst; i++) {
|
|
u32 rd, rn, insn, oinsn;
|
|
|
|
/*
|
|
* VHE doesn't need any address translation, let's NOP
|
|
* everything.
|
|
*
|
|
* Alternatively, if the tag is zero (because the layout
|
|
* dictates it and we don't have any spare bits in the
|
|
* address), NOP everything after masking the kernel VA.
|
|
*/
|
|
if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN) || (!tag_val && i > 0)) {
|
|
updptr[i] = cpu_to_le32(aarch64_insn_gen_nop());
|
|
continue;
|
|
}
|
|
|
|
oinsn = le32_to_cpu(origptr[i]);
|
|
rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
|
|
rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn);
|
|
|
|
insn = compute_instruction(i, rd, rn);
|
|
BUG_ON(insn == AARCH64_BREAK_FAULT);
|
|
|
|
updptr[i] = cpu_to_le32(insn);
|
|
}
|
|
}
|
|
|
|
void kvm_patch_vector_branch(struct alt_instr *alt,
|
|
__le32 *origptr, __le32 *updptr, int nr_inst)
|
|
{
|
|
u64 addr;
|
|
u32 insn;
|
|
|
|
BUG_ON(nr_inst != 4);
|
|
|
|
if (!cpus_have_cap(ARM64_SPECTRE_V3A) ||
|
|
WARN_ON_ONCE(cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN)))
|
|
return;
|
|
|
|
/*
|
|
* Compute HYP VA by using the same computation as kern_hyp_va()
|
|
*/
|
|
addr = __early_kern_hyp_va((u64)kvm_ksym_ref(__kvm_hyp_vector));
|
|
|
|
/* Use PC[10:7] to branch to the same vector in KVM */
|
|
addr |= ((u64)origptr & GENMASK_ULL(10, 7));
|
|
|
|
/*
|
|
* Branch over the preamble in order to avoid the initial store on
|
|
* the stack (which we already perform in the hardening vectors).
|
|
*/
|
|
addr += KVM_VECTOR_PREAMBLE;
|
|
|
|
/* movz x0, #(addr & 0xffff) */
|
|
insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
|
|
(u16)addr,
|
|
0,
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
AARCH64_INSN_MOVEWIDE_ZERO);
|
|
*updptr++ = cpu_to_le32(insn);
|
|
|
|
/* movk x0, #((addr >> 16) & 0xffff), lsl #16 */
|
|
insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
|
|
(u16)(addr >> 16),
|
|
16,
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
AARCH64_INSN_MOVEWIDE_KEEP);
|
|
*updptr++ = cpu_to_le32(insn);
|
|
|
|
/* movk x0, #((addr >> 32) & 0xffff), lsl #32 */
|
|
insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
|
|
(u16)(addr >> 32),
|
|
32,
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
AARCH64_INSN_MOVEWIDE_KEEP);
|
|
*updptr++ = cpu_to_le32(insn);
|
|
|
|
/* br x0 */
|
|
insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0,
|
|
AARCH64_INSN_BRANCH_NOLINK);
|
|
*updptr++ = cpu_to_le32(insn);
|
|
}
|
|
|
|
static void generate_mov_q(u64 val, __le32 *origptr, __le32 *updptr, int nr_inst)
|
|
{
|
|
u32 insn, oinsn, rd;
|
|
|
|
BUG_ON(nr_inst != 4);
|
|
|
|
/* Compute target register */
|
|
oinsn = le32_to_cpu(*origptr);
|
|
rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
|
|
|
|
/* movz rd, #(val & 0xffff) */
|
|
insn = aarch64_insn_gen_movewide(rd,
|
|
(u16)val,
|
|
0,
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
AARCH64_INSN_MOVEWIDE_ZERO);
|
|
*updptr++ = cpu_to_le32(insn);
|
|
|
|
/* movk rd, #((val >> 16) & 0xffff), lsl #16 */
|
|
insn = aarch64_insn_gen_movewide(rd,
|
|
(u16)(val >> 16),
|
|
16,
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
AARCH64_INSN_MOVEWIDE_KEEP);
|
|
*updptr++ = cpu_to_le32(insn);
|
|
|
|
/* movk rd, #((val >> 32) & 0xffff), lsl #32 */
|
|
insn = aarch64_insn_gen_movewide(rd,
|
|
(u16)(val >> 32),
|
|
32,
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
AARCH64_INSN_MOVEWIDE_KEEP);
|
|
*updptr++ = cpu_to_le32(insn);
|
|
|
|
/* movk rd, #((val >> 48) & 0xffff), lsl #48 */
|
|
insn = aarch64_insn_gen_movewide(rd,
|
|
(u16)(val >> 48),
|
|
48,
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
AARCH64_INSN_MOVEWIDE_KEEP);
|
|
*updptr++ = cpu_to_le32(insn);
|
|
}
|
|
|
|
void kvm_get_kimage_voffset(struct alt_instr *alt,
|
|
__le32 *origptr, __le32 *updptr, int nr_inst)
|
|
{
|
|
generate_mov_q(kimage_voffset, origptr, updptr, nr_inst);
|
|
}
|
|
|
|
void kvm_compute_final_ctr_el0(struct alt_instr *alt,
|
|
__le32 *origptr, __le32 *updptr, int nr_inst)
|
|
{
|
|
generate_mov_q(read_sanitised_ftr_reg(SYS_CTR_EL0),
|
|
origptr, updptr, nr_inst);
|
|
}
|