mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-27 06:04:23 +08:00
381b53c3b5
Some functions name declared in cpuset-internel.h are generic. To avoid confilicting with other variables for the same name, rename these functions with cpuset_/cpuset1_ prefix to make them unique to cpuset. Signed-off-by: Chen Ridong <chenridong@huawei.com> Acked-by: Waiman Long <longman@redhat.com> Signed-off-by: Tejun Heo <tj@kernel.org>
4303 lines
121 KiB
C
4303 lines
121 KiB
C
/*
|
|
* kernel/cpuset.c
|
|
*
|
|
* Processor and Memory placement constraints for sets of tasks.
|
|
*
|
|
* Copyright (C) 2003 BULL SA.
|
|
* Copyright (C) 2004-2007 Silicon Graphics, Inc.
|
|
* Copyright (C) 2006 Google, Inc
|
|
*
|
|
* Portions derived from Patrick Mochel's sysfs code.
|
|
* sysfs is Copyright (c) 2001-3 Patrick Mochel
|
|
*
|
|
* 2003-10-10 Written by Simon Derr.
|
|
* 2003-10-22 Updates by Stephen Hemminger.
|
|
* 2004 May-July Rework by Paul Jackson.
|
|
* 2006 Rework by Paul Menage to use generic cgroups
|
|
* 2008 Rework of the scheduler domains and CPU hotplug handling
|
|
* by Max Krasnyansky
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file COPYING in the main directory of the Linux
|
|
* distribution for more details.
|
|
*/
|
|
#include "cgroup-internal.h"
|
|
#include "cpuset-internal.h"
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/export.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/deadline.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/security.h>
|
|
#include <linux/oom.h>
|
|
#include <linux/sched/isolation.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
|
|
DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
|
|
|
|
/*
|
|
* There could be abnormal cpuset configurations for cpu or memory
|
|
* node binding, add this key to provide a quick low-cost judgment
|
|
* of the situation.
|
|
*/
|
|
DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
|
|
|
|
static const char * const perr_strings[] = {
|
|
[PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive",
|
|
[PERR_INVPARENT] = "Parent is an invalid partition root",
|
|
[PERR_NOTPART] = "Parent is not a partition root",
|
|
[PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive",
|
|
[PERR_NOCPUS] = "Parent unable to distribute cpu downstream",
|
|
[PERR_HOTPLUG] = "No cpu available due to hotplug",
|
|
[PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty",
|
|
[PERR_HKEEPING] = "partition config conflicts with housekeeping setup",
|
|
[PERR_ACCESS] = "Enable partition not permitted",
|
|
};
|
|
|
|
/*
|
|
* Exclusive CPUs distributed out to sub-partitions of top_cpuset
|
|
*/
|
|
static cpumask_var_t subpartitions_cpus;
|
|
|
|
/*
|
|
* Exclusive CPUs in isolated partitions
|
|
*/
|
|
static cpumask_var_t isolated_cpus;
|
|
|
|
/*
|
|
* Housekeeping (HK_TYPE_DOMAIN) CPUs at boot
|
|
*/
|
|
static cpumask_var_t boot_hk_cpus;
|
|
static bool have_boot_isolcpus;
|
|
|
|
/* List of remote partition root children */
|
|
static struct list_head remote_children;
|
|
|
|
/*
|
|
* A flag to force sched domain rebuild at the end of an operation while
|
|
* inhibiting it in the intermediate stages when set. Currently it is only
|
|
* set in hotplug code.
|
|
*/
|
|
static bool force_sd_rebuild;
|
|
|
|
/*
|
|
* Partition root states:
|
|
*
|
|
* 0 - member (not a partition root)
|
|
* 1 - partition root
|
|
* 2 - partition root without load balancing (isolated)
|
|
* -1 - invalid partition root
|
|
* -2 - invalid isolated partition root
|
|
*
|
|
* There are 2 types of partitions - local or remote. Local partitions are
|
|
* those whose parents are partition root themselves. Setting of
|
|
* cpuset.cpus.exclusive are optional in setting up local partitions.
|
|
* Remote partitions are those whose parents are not partition roots. Passing
|
|
* down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor
|
|
* nodes are mandatory in creating a remote partition.
|
|
*
|
|
* For simplicity, a local partition can be created under a local or remote
|
|
* partition but a remote partition cannot have any partition root in its
|
|
* ancestor chain except the cgroup root.
|
|
*/
|
|
#define PRS_MEMBER 0
|
|
#define PRS_ROOT 1
|
|
#define PRS_ISOLATED 2
|
|
#define PRS_INVALID_ROOT -1
|
|
#define PRS_INVALID_ISOLATED -2
|
|
|
|
static inline bool is_prs_invalid(int prs_state)
|
|
{
|
|
return prs_state < 0;
|
|
}
|
|
|
|
/*
|
|
* Temporary cpumasks for working with partitions that are passed among
|
|
* functions to avoid memory allocation in inner functions.
|
|
*/
|
|
struct tmpmasks {
|
|
cpumask_var_t addmask, delmask; /* For partition root */
|
|
cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
|
|
};
|
|
|
|
void inc_dl_tasks_cs(struct task_struct *p)
|
|
{
|
|
struct cpuset *cs = task_cs(p);
|
|
|
|
cs->nr_deadline_tasks++;
|
|
}
|
|
|
|
void dec_dl_tasks_cs(struct task_struct *p)
|
|
{
|
|
struct cpuset *cs = task_cs(p);
|
|
|
|
cs->nr_deadline_tasks--;
|
|
}
|
|
|
|
static inline int is_partition_valid(const struct cpuset *cs)
|
|
{
|
|
return cs->partition_root_state > 0;
|
|
}
|
|
|
|
static inline int is_partition_invalid(const struct cpuset *cs)
|
|
{
|
|
return cs->partition_root_state < 0;
|
|
}
|
|
|
|
/*
|
|
* Callers should hold callback_lock to modify partition_root_state.
|
|
*/
|
|
static inline void make_partition_invalid(struct cpuset *cs)
|
|
{
|
|
if (cs->partition_root_state > 0)
|
|
cs->partition_root_state = -cs->partition_root_state;
|
|
}
|
|
|
|
/*
|
|
* Send notification event of whenever partition_root_state changes.
|
|
*/
|
|
static inline void notify_partition_change(struct cpuset *cs, int old_prs)
|
|
{
|
|
if (old_prs == cs->partition_root_state)
|
|
return;
|
|
cgroup_file_notify(&cs->partition_file);
|
|
|
|
/* Reset prs_err if not invalid */
|
|
if (is_partition_valid(cs))
|
|
WRITE_ONCE(cs->prs_err, PERR_NONE);
|
|
}
|
|
|
|
static struct cpuset top_cpuset = {
|
|
.flags = BIT(CS_ONLINE) | BIT(CS_CPU_EXCLUSIVE) |
|
|
BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE),
|
|
.partition_root_state = PRS_ROOT,
|
|
.relax_domain_level = -1,
|
|
.remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling),
|
|
};
|
|
|
|
/*
|
|
* There are two global locks guarding cpuset structures - cpuset_mutex and
|
|
* callback_lock. We also require taking task_lock() when dereferencing a
|
|
* task's cpuset pointer. See "The task_lock() exception", at the end of this
|
|
* comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems
|
|
* can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
|
|
* structures. Note that cpuset_mutex needs to be a mutex as it is used in
|
|
* paths that rely on priority inheritance (e.g. scheduler - on RT) for
|
|
* correctness.
|
|
*
|
|
* A task must hold both locks to modify cpusets. If a task holds
|
|
* cpuset_mutex, it blocks others, ensuring that it is the only task able to
|
|
* also acquire callback_lock and be able to modify cpusets. It can perform
|
|
* various checks on the cpuset structure first, knowing nothing will change.
|
|
* It can also allocate memory while just holding cpuset_mutex. While it is
|
|
* performing these checks, various callback routines can briefly acquire
|
|
* callback_lock to query cpusets. Once it is ready to make the changes, it
|
|
* takes callback_lock, blocking everyone else.
|
|
*
|
|
* Calls to the kernel memory allocator can not be made while holding
|
|
* callback_lock, as that would risk double tripping on callback_lock
|
|
* from one of the callbacks into the cpuset code from within
|
|
* __alloc_pages().
|
|
*
|
|
* If a task is only holding callback_lock, then it has read-only
|
|
* access to cpusets.
|
|
*
|
|
* Now, the task_struct fields mems_allowed and mempolicy may be changed
|
|
* by other task, we use alloc_lock in the task_struct fields to protect
|
|
* them.
|
|
*
|
|
* The cpuset_common_seq_show() handlers only hold callback_lock across
|
|
* small pieces of code, such as when reading out possibly multi-word
|
|
* cpumasks and nodemasks.
|
|
*
|
|
* Accessing a task's cpuset should be done in accordance with the
|
|
* guidelines for accessing subsystem state in kernel/cgroup.c
|
|
*/
|
|
|
|
static DEFINE_MUTEX(cpuset_mutex);
|
|
|
|
void cpuset_lock(void)
|
|
{
|
|
mutex_lock(&cpuset_mutex);
|
|
}
|
|
|
|
void cpuset_unlock(void)
|
|
{
|
|
mutex_unlock(&cpuset_mutex);
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(callback_lock);
|
|
|
|
void cpuset_callback_lock_irq(void)
|
|
{
|
|
spin_lock_irq(&callback_lock);
|
|
}
|
|
|
|
void cpuset_callback_unlock_irq(void)
|
|
{
|
|
spin_unlock_irq(&callback_lock);
|
|
}
|
|
|
|
static struct workqueue_struct *cpuset_migrate_mm_wq;
|
|
|
|
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
|
|
|
|
static inline void check_insane_mems_config(nodemask_t *nodes)
|
|
{
|
|
if (!cpusets_insane_config() &&
|
|
movable_only_nodes(nodes)) {
|
|
static_branch_enable(&cpusets_insane_config_key);
|
|
pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
|
|
"Cpuset allocations might fail even with a lot of memory available.\n",
|
|
nodemask_pr_args(nodes));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* decrease cs->attach_in_progress.
|
|
* wake_up cpuset_attach_wq if cs->attach_in_progress==0.
|
|
*/
|
|
static inline void dec_attach_in_progress_locked(struct cpuset *cs)
|
|
{
|
|
lockdep_assert_held(&cpuset_mutex);
|
|
|
|
cs->attach_in_progress--;
|
|
if (!cs->attach_in_progress)
|
|
wake_up(&cpuset_attach_wq);
|
|
}
|
|
|
|
static inline void dec_attach_in_progress(struct cpuset *cs)
|
|
{
|
|
mutex_lock(&cpuset_mutex);
|
|
dec_attach_in_progress_locked(cs);
|
|
mutex_unlock(&cpuset_mutex);
|
|
}
|
|
|
|
/*
|
|
* Cgroup v2 behavior is used on the "cpus" and "mems" control files when
|
|
* on default hierarchy or when the cpuset_v2_mode flag is set by mounting
|
|
* the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
|
|
* With v2 behavior, "cpus" and "mems" are always what the users have
|
|
* requested and won't be changed by hotplug events. Only the effective
|
|
* cpus or mems will be affected.
|
|
*/
|
|
static inline bool is_in_v2_mode(void)
|
|
{
|
|
return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
|
|
(cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
|
|
}
|
|
|
|
/**
|
|
* partition_is_populated - check if partition has tasks
|
|
* @cs: partition root to be checked
|
|
* @excluded_child: a child cpuset to be excluded in task checking
|
|
* Return: true if there are tasks, false otherwise
|
|
*
|
|
* It is assumed that @cs is a valid partition root. @excluded_child should
|
|
* be non-NULL when this cpuset is going to become a partition itself.
|
|
*/
|
|
static inline bool partition_is_populated(struct cpuset *cs,
|
|
struct cpuset *excluded_child)
|
|
{
|
|
struct cgroup_subsys_state *css;
|
|
struct cpuset *child;
|
|
|
|
if (cs->css.cgroup->nr_populated_csets)
|
|
return true;
|
|
if (!excluded_child && !cs->nr_subparts)
|
|
return cgroup_is_populated(cs->css.cgroup);
|
|
|
|
rcu_read_lock();
|
|
cpuset_for_each_child(child, css, cs) {
|
|
if (child == excluded_child)
|
|
continue;
|
|
if (is_partition_valid(child))
|
|
continue;
|
|
if (cgroup_is_populated(child->css.cgroup)) {
|
|
rcu_read_unlock();
|
|
return true;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Return in pmask the portion of a task's cpusets's cpus_allowed that
|
|
* are online and are capable of running the task. If none are found,
|
|
* walk up the cpuset hierarchy until we find one that does have some
|
|
* appropriate cpus.
|
|
*
|
|
* One way or another, we guarantee to return some non-empty subset
|
|
* of cpu_online_mask.
|
|
*
|
|
* Call with callback_lock or cpuset_mutex held.
|
|
*/
|
|
static void guarantee_online_cpus(struct task_struct *tsk,
|
|
struct cpumask *pmask)
|
|
{
|
|
const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
|
|
struct cpuset *cs;
|
|
|
|
if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
|
|
cpumask_copy(pmask, cpu_online_mask);
|
|
|
|
rcu_read_lock();
|
|
cs = task_cs(tsk);
|
|
|
|
while (!cpumask_intersects(cs->effective_cpus, pmask))
|
|
cs = parent_cs(cs);
|
|
|
|
cpumask_and(pmask, pmask, cs->effective_cpus);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*
|
|
* Return in *pmask the portion of a cpusets's mems_allowed that
|
|
* are online, with memory. If none are online with memory, walk
|
|
* up the cpuset hierarchy until we find one that does have some
|
|
* online mems. The top cpuset always has some mems online.
|
|
*
|
|
* One way or another, we guarantee to return some non-empty subset
|
|
* of node_states[N_MEMORY].
|
|
*
|
|
* Call with callback_lock or cpuset_mutex held.
|
|
*/
|
|
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
|
|
{
|
|
while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
|
|
cs = parent_cs(cs);
|
|
nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
|
|
}
|
|
|
|
/**
|
|
* alloc_cpumasks - allocate three cpumasks for cpuset
|
|
* @cs: the cpuset that have cpumasks to be allocated.
|
|
* @tmp: the tmpmasks structure pointer
|
|
* Return: 0 if successful, -ENOMEM otherwise.
|
|
*
|
|
* Only one of the two input arguments should be non-NULL.
|
|
*/
|
|
static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
|
|
{
|
|
cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4;
|
|
|
|
if (cs) {
|
|
pmask1 = &cs->cpus_allowed;
|
|
pmask2 = &cs->effective_cpus;
|
|
pmask3 = &cs->effective_xcpus;
|
|
pmask4 = &cs->exclusive_cpus;
|
|
} else {
|
|
pmask1 = &tmp->new_cpus;
|
|
pmask2 = &tmp->addmask;
|
|
pmask3 = &tmp->delmask;
|
|
pmask4 = NULL;
|
|
}
|
|
|
|
if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
|
|
goto free_one;
|
|
|
|
if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
|
|
goto free_two;
|
|
|
|
if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL))
|
|
goto free_three;
|
|
|
|
|
|
return 0;
|
|
|
|
free_three:
|
|
free_cpumask_var(*pmask3);
|
|
free_two:
|
|
free_cpumask_var(*pmask2);
|
|
free_one:
|
|
free_cpumask_var(*pmask1);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* free_cpumasks - free cpumasks in a tmpmasks structure
|
|
* @cs: the cpuset that have cpumasks to be free.
|
|
* @tmp: the tmpmasks structure pointer
|
|
*/
|
|
static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
|
|
{
|
|
if (cs) {
|
|
free_cpumask_var(cs->cpus_allowed);
|
|
free_cpumask_var(cs->effective_cpus);
|
|
free_cpumask_var(cs->effective_xcpus);
|
|
free_cpumask_var(cs->exclusive_cpus);
|
|
}
|
|
if (tmp) {
|
|
free_cpumask_var(tmp->new_cpus);
|
|
free_cpumask_var(tmp->addmask);
|
|
free_cpumask_var(tmp->delmask);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* alloc_trial_cpuset - allocate a trial cpuset
|
|
* @cs: the cpuset that the trial cpuset duplicates
|
|
*/
|
|
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
|
|
{
|
|
struct cpuset *trial;
|
|
|
|
trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
|
|
if (!trial)
|
|
return NULL;
|
|
|
|
if (alloc_cpumasks(trial, NULL)) {
|
|
kfree(trial);
|
|
return NULL;
|
|
}
|
|
|
|
cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
|
|
cpumask_copy(trial->effective_cpus, cs->effective_cpus);
|
|
cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
|
|
cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
|
|
return trial;
|
|
}
|
|
|
|
/**
|
|
* free_cpuset - free the cpuset
|
|
* @cs: the cpuset to be freed
|
|
*/
|
|
static inline void free_cpuset(struct cpuset *cs)
|
|
{
|
|
free_cpumasks(cs, NULL);
|
|
kfree(cs);
|
|
}
|
|
|
|
/* Return user specified exclusive CPUs */
|
|
static inline struct cpumask *user_xcpus(struct cpuset *cs)
|
|
{
|
|
return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed
|
|
: cs->exclusive_cpus;
|
|
}
|
|
|
|
static inline bool xcpus_empty(struct cpuset *cs)
|
|
{
|
|
return cpumask_empty(cs->cpus_allowed) &&
|
|
cpumask_empty(cs->exclusive_cpus);
|
|
}
|
|
|
|
/*
|
|
* cpusets_are_exclusive() - check if two cpusets are exclusive
|
|
*
|
|
* Return true if exclusive, false if not
|
|
*/
|
|
static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
|
|
{
|
|
struct cpumask *xcpus1 = user_xcpus(cs1);
|
|
struct cpumask *xcpus2 = user_xcpus(cs2);
|
|
|
|
if (cpumask_intersects(xcpus1, xcpus2))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* validate_change() - Used to validate that any proposed cpuset change
|
|
* follows the structural rules for cpusets.
|
|
*
|
|
* If we replaced the flag and mask values of the current cpuset
|
|
* (cur) with those values in the trial cpuset (trial), would
|
|
* our various subset and exclusive rules still be valid? Presumes
|
|
* cpuset_mutex held.
|
|
*
|
|
* 'cur' is the address of an actual, in-use cpuset. Operations
|
|
* such as list traversal that depend on the actual address of the
|
|
* cpuset in the list must use cur below, not trial.
|
|
*
|
|
* 'trial' is the address of bulk structure copy of cur, with
|
|
* perhaps one or more of the fields cpus_allowed, mems_allowed,
|
|
* or flags changed to new, trial values.
|
|
*
|
|
* Return 0 if valid, -errno if not.
|
|
*/
|
|
|
|
static int validate_change(struct cpuset *cur, struct cpuset *trial)
|
|
{
|
|
struct cgroup_subsys_state *css;
|
|
struct cpuset *c, *par;
|
|
int ret = 0;
|
|
|
|
rcu_read_lock();
|
|
|
|
if (!is_in_v2_mode())
|
|
ret = cpuset1_validate_change(cur, trial);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Remaining checks don't apply to root cpuset */
|
|
if (cur == &top_cpuset)
|
|
goto out;
|
|
|
|
par = parent_cs(cur);
|
|
|
|
/*
|
|
* Cpusets with tasks - existing or newly being attached - can't
|
|
* be changed to have empty cpus_allowed or mems_allowed.
|
|
*/
|
|
ret = -ENOSPC;
|
|
if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
|
|
if (!cpumask_empty(cur->cpus_allowed) &&
|
|
cpumask_empty(trial->cpus_allowed))
|
|
goto out;
|
|
if (!nodes_empty(cur->mems_allowed) &&
|
|
nodes_empty(trial->mems_allowed))
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We can't shrink if we won't have enough room for SCHED_DEADLINE
|
|
* tasks.
|
|
*/
|
|
ret = -EBUSY;
|
|
if (is_cpu_exclusive(cur) &&
|
|
!cpuset_cpumask_can_shrink(cur->cpus_allowed,
|
|
trial->cpus_allowed))
|
|
goto out;
|
|
|
|
/*
|
|
* If either I or some sibling (!= me) is exclusive, we can't
|
|
* overlap. exclusive_cpus cannot overlap with each other if set.
|
|
*/
|
|
ret = -EINVAL;
|
|
cpuset_for_each_child(c, css, par) {
|
|
bool txset, cxset; /* Are exclusive_cpus set? */
|
|
|
|
if (c == cur)
|
|
continue;
|
|
|
|
txset = !cpumask_empty(trial->exclusive_cpus);
|
|
cxset = !cpumask_empty(c->exclusive_cpus);
|
|
if (is_cpu_exclusive(trial) || is_cpu_exclusive(c) ||
|
|
(txset && cxset)) {
|
|
if (!cpusets_are_exclusive(trial, c))
|
|
goto out;
|
|
} else if (txset || cxset) {
|
|
struct cpumask *xcpus, *acpus;
|
|
|
|
/*
|
|
* When just one of the exclusive_cpus's is set,
|
|
* cpus_allowed of the other cpuset, if set, cannot be
|
|
* a subset of it or none of those CPUs will be
|
|
* available if these exclusive CPUs are activated.
|
|
*/
|
|
if (txset) {
|
|
xcpus = trial->exclusive_cpus;
|
|
acpus = c->cpus_allowed;
|
|
} else {
|
|
xcpus = c->exclusive_cpus;
|
|
acpus = trial->cpus_allowed;
|
|
}
|
|
if (!cpumask_empty(acpus) && cpumask_subset(acpus, xcpus))
|
|
goto out;
|
|
}
|
|
if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
|
|
nodes_intersects(trial->mems_allowed, c->mems_allowed))
|
|
goto out;
|
|
}
|
|
|
|
ret = 0;
|
|
out:
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Helper routine for generate_sched_domains().
|
|
* Do cpusets a, b have overlapping effective cpus_allowed masks?
|
|
*/
|
|
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
|
|
{
|
|
return cpumask_intersects(a->effective_cpus, b->effective_cpus);
|
|
}
|
|
|
|
static void
|
|
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
|
|
{
|
|
if (dattr->relax_domain_level < c->relax_domain_level)
|
|
dattr->relax_domain_level = c->relax_domain_level;
|
|
return;
|
|
}
|
|
|
|
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
|
|
struct cpuset *root_cs)
|
|
{
|
|
struct cpuset *cp;
|
|
struct cgroup_subsys_state *pos_css;
|
|
|
|
rcu_read_lock();
|
|
cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
|
|
/* skip the whole subtree if @cp doesn't have any CPU */
|
|
if (cpumask_empty(cp->cpus_allowed)) {
|
|
pos_css = css_rightmost_descendant(pos_css);
|
|
continue;
|
|
}
|
|
|
|
if (is_sched_load_balance(cp))
|
|
update_domain_attr(dattr, cp);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* Must be called with cpuset_mutex held. */
|
|
static inline int nr_cpusets(void)
|
|
{
|
|
/* jump label reference count + the top-level cpuset */
|
|
return static_key_count(&cpusets_enabled_key.key) + 1;
|
|
}
|
|
|
|
/*
|
|
* generate_sched_domains()
|
|
*
|
|
* This function builds a partial partition of the systems CPUs
|
|
* A 'partial partition' is a set of non-overlapping subsets whose
|
|
* union is a subset of that set.
|
|
* The output of this function needs to be passed to kernel/sched/core.c
|
|
* partition_sched_domains() routine, which will rebuild the scheduler's
|
|
* load balancing domains (sched domains) as specified by that partial
|
|
* partition.
|
|
*
|
|
* See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
|
|
* for a background explanation of this.
|
|
*
|
|
* Does not return errors, on the theory that the callers of this
|
|
* routine would rather not worry about failures to rebuild sched
|
|
* domains when operating in the severe memory shortage situations
|
|
* that could cause allocation failures below.
|
|
*
|
|
* Must be called with cpuset_mutex held.
|
|
*
|
|
* The three key local variables below are:
|
|
* cp - cpuset pointer, used (together with pos_css) to perform a
|
|
* top-down scan of all cpusets. For our purposes, rebuilding
|
|
* the schedulers sched domains, we can ignore !is_sched_load_
|
|
* balance cpusets.
|
|
* csa - (for CpuSet Array) Array of pointers to all the cpusets
|
|
* that need to be load balanced, for convenient iterative
|
|
* access by the subsequent code that finds the best partition,
|
|
* i.e the set of domains (subsets) of CPUs such that the
|
|
* cpus_allowed of every cpuset marked is_sched_load_balance
|
|
* is a subset of one of these domains, while there are as
|
|
* many such domains as possible, each as small as possible.
|
|
* doms - Conversion of 'csa' to an array of cpumasks, for passing to
|
|
* the kernel/sched/core.c routine partition_sched_domains() in a
|
|
* convenient format, that can be easily compared to the prior
|
|
* value to determine what partition elements (sched domains)
|
|
* were changed (added or removed.)
|
|
*
|
|
* Finding the best partition (set of domains):
|
|
* The double nested loops below over i, j scan over the load
|
|
* balanced cpusets (using the array of cpuset pointers in csa[])
|
|
* looking for pairs of cpusets that have overlapping cpus_allowed
|
|
* and merging them using a union-find algorithm.
|
|
*
|
|
* The union of the cpus_allowed masks from the set of all cpusets
|
|
* having the same root then form the one element of the partition
|
|
* (one sched domain) to be passed to partition_sched_domains().
|
|
*
|
|
*/
|
|
static int generate_sched_domains(cpumask_var_t **domains,
|
|
struct sched_domain_attr **attributes)
|
|
{
|
|
struct cpuset *cp; /* top-down scan of cpusets */
|
|
struct cpuset **csa; /* array of all cpuset ptrs */
|
|
int csn; /* how many cpuset ptrs in csa so far */
|
|
int i, j; /* indices for partition finding loops */
|
|
cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
|
|
struct sched_domain_attr *dattr; /* attributes for custom domains */
|
|
int ndoms = 0; /* number of sched domains in result */
|
|
int nslot; /* next empty doms[] struct cpumask slot */
|
|
struct cgroup_subsys_state *pos_css;
|
|
bool root_load_balance = is_sched_load_balance(&top_cpuset);
|
|
bool cgrpv2 = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
|
|
int nslot_update;
|
|
|
|
doms = NULL;
|
|
dattr = NULL;
|
|
csa = NULL;
|
|
|
|
/* Special case for the 99% of systems with one, full, sched domain */
|
|
if (root_load_balance && cpumask_empty(subpartitions_cpus)) {
|
|
single_root_domain:
|
|
ndoms = 1;
|
|
doms = alloc_sched_domains(ndoms);
|
|
if (!doms)
|
|
goto done;
|
|
|
|
dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
|
|
if (dattr) {
|
|
*dattr = SD_ATTR_INIT;
|
|
update_domain_attr_tree(dattr, &top_cpuset);
|
|
}
|
|
cpumask_and(doms[0], top_cpuset.effective_cpus,
|
|
housekeeping_cpumask(HK_TYPE_DOMAIN));
|
|
|
|
goto done;
|
|
}
|
|
|
|
csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
|
|
if (!csa)
|
|
goto done;
|
|
csn = 0;
|
|
|
|
rcu_read_lock();
|
|
if (root_load_balance)
|
|
csa[csn++] = &top_cpuset;
|
|
cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
|
|
if (cp == &top_cpuset)
|
|
continue;
|
|
|
|
if (cgrpv2)
|
|
goto v2;
|
|
|
|
/*
|
|
* v1:
|
|
* Continue traversing beyond @cp iff @cp has some CPUs and
|
|
* isn't load balancing. The former is obvious. The
|
|
* latter: All child cpusets contain a subset of the
|
|
* parent's cpus, so just skip them, and then we call
|
|
* update_domain_attr_tree() to calc relax_domain_level of
|
|
* the corresponding sched domain.
|
|
*/
|
|
if (!cpumask_empty(cp->cpus_allowed) &&
|
|
!(is_sched_load_balance(cp) &&
|
|
cpumask_intersects(cp->cpus_allowed,
|
|
housekeeping_cpumask(HK_TYPE_DOMAIN))))
|
|
continue;
|
|
|
|
if (is_sched_load_balance(cp) &&
|
|
!cpumask_empty(cp->effective_cpus))
|
|
csa[csn++] = cp;
|
|
|
|
/* skip @cp's subtree */
|
|
pos_css = css_rightmost_descendant(pos_css);
|
|
continue;
|
|
|
|
v2:
|
|
/*
|
|
* Only valid partition roots that are not isolated and with
|
|
* non-empty effective_cpus will be saved into csn[].
|
|
*/
|
|
if ((cp->partition_root_state == PRS_ROOT) &&
|
|
!cpumask_empty(cp->effective_cpus))
|
|
csa[csn++] = cp;
|
|
|
|
/*
|
|
* Skip @cp's subtree if not a partition root and has no
|
|
* exclusive CPUs to be granted to child cpusets.
|
|
*/
|
|
if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus))
|
|
pos_css = css_rightmost_descendant(pos_css);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* If there are only isolated partitions underneath the cgroup root,
|
|
* we can optimize out unneeded sched domains scanning.
|
|
*/
|
|
if (root_load_balance && (csn == 1))
|
|
goto single_root_domain;
|
|
|
|
for (i = 0; i < csn; i++)
|
|
uf_node_init(&csa[i]->node);
|
|
|
|
/* Merge overlapping cpusets */
|
|
for (i = 0; i < csn; i++) {
|
|
for (j = i + 1; j < csn; j++) {
|
|
if (cpusets_overlap(csa[i], csa[j])) {
|
|
/*
|
|
* Cgroup v2 shouldn't pass down overlapping
|
|
* partition root cpusets.
|
|
*/
|
|
WARN_ON_ONCE(cgrpv2);
|
|
uf_union(&csa[i]->node, &csa[j]->node);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Count the total number of domains */
|
|
for (i = 0; i < csn; i++) {
|
|
if (uf_find(&csa[i]->node) == &csa[i]->node)
|
|
ndoms++;
|
|
}
|
|
|
|
/*
|
|
* Now we know how many domains to create.
|
|
* Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
|
|
*/
|
|
doms = alloc_sched_domains(ndoms);
|
|
if (!doms)
|
|
goto done;
|
|
|
|
/*
|
|
* The rest of the code, including the scheduler, can deal with
|
|
* dattr==NULL case. No need to abort if alloc fails.
|
|
*/
|
|
dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
|
|
GFP_KERNEL);
|
|
|
|
/*
|
|
* Cgroup v2 doesn't support domain attributes, just set all of them
|
|
* to SD_ATTR_INIT. Also non-isolating partition root CPUs are a
|
|
* subset of HK_TYPE_DOMAIN housekeeping CPUs.
|
|
*/
|
|
if (cgrpv2) {
|
|
for (i = 0; i < ndoms; i++) {
|
|
cpumask_copy(doms[i], csa[i]->effective_cpus);
|
|
if (dattr)
|
|
dattr[i] = SD_ATTR_INIT;
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
for (nslot = 0, i = 0; i < csn; i++) {
|
|
nslot_update = 0;
|
|
for (j = i; j < csn; j++) {
|
|
if (uf_find(&csa[j]->node) == &csa[i]->node) {
|
|
struct cpumask *dp = doms[nslot];
|
|
|
|
if (i == j) {
|
|
nslot_update = 1;
|
|
cpumask_clear(dp);
|
|
if (dattr)
|
|
*(dattr + nslot) = SD_ATTR_INIT;
|
|
}
|
|
cpumask_or(dp, dp, csa[j]->effective_cpus);
|
|
cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
|
|
if (dattr)
|
|
update_domain_attr_tree(dattr + nslot, csa[j]);
|
|
}
|
|
}
|
|
if (nslot_update)
|
|
nslot++;
|
|
}
|
|
BUG_ON(nslot != ndoms);
|
|
|
|
done:
|
|
kfree(csa);
|
|
|
|
/*
|
|
* Fallback to the default domain if kmalloc() failed.
|
|
* See comments in partition_sched_domains().
|
|
*/
|
|
if (doms == NULL)
|
|
ndoms = 1;
|
|
|
|
*domains = doms;
|
|
*attributes = dattr;
|
|
return ndoms;
|
|
}
|
|
|
|
static void dl_update_tasks_root_domain(struct cpuset *cs)
|
|
{
|
|
struct css_task_iter it;
|
|
struct task_struct *task;
|
|
|
|
if (cs->nr_deadline_tasks == 0)
|
|
return;
|
|
|
|
css_task_iter_start(&cs->css, 0, &it);
|
|
|
|
while ((task = css_task_iter_next(&it)))
|
|
dl_add_task_root_domain(task);
|
|
|
|
css_task_iter_end(&it);
|
|
}
|
|
|
|
static void dl_rebuild_rd_accounting(void)
|
|
{
|
|
struct cpuset *cs = NULL;
|
|
struct cgroup_subsys_state *pos_css;
|
|
|
|
lockdep_assert_held(&cpuset_mutex);
|
|
lockdep_assert_cpus_held();
|
|
lockdep_assert_held(&sched_domains_mutex);
|
|
|
|
rcu_read_lock();
|
|
|
|
/*
|
|
* Clear default root domain DL accounting, it will be computed again
|
|
* if a task belongs to it.
|
|
*/
|
|
dl_clear_root_domain(&def_root_domain);
|
|
|
|
cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
|
|
|
|
if (cpumask_empty(cs->effective_cpus)) {
|
|
pos_css = css_rightmost_descendant(pos_css);
|
|
continue;
|
|
}
|
|
|
|
css_get(&cs->css);
|
|
|
|
rcu_read_unlock();
|
|
|
|
dl_update_tasks_root_domain(cs);
|
|
|
|
rcu_read_lock();
|
|
css_put(&cs->css);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void
|
|
partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
|
|
struct sched_domain_attr *dattr_new)
|
|
{
|
|
mutex_lock(&sched_domains_mutex);
|
|
partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
|
|
dl_rebuild_rd_accounting();
|
|
mutex_unlock(&sched_domains_mutex);
|
|
}
|
|
|
|
/*
|
|
* Rebuild scheduler domains.
|
|
*
|
|
* If the flag 'sched_load_balance' of any cpuset with non-empty
|
|
* 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
|
|
* which has that flag enabled, or if any cpuset with a non-empty
|
|
* 'cpus' is removed, then call this routine to rebuild the
|
|
* scheduler's dynamic sched domains.
|
|
*
|
|
* Call with cpuset_mutex held. Takes cpus_read_lock().
|
|
*/
|
|
void rebuild_sched_domains_locked(void)
|
|
{
|
|
struct cgroup_subsys_state *pos_css;
|
|
struct sched_domain_attr *attr;
|
|
cpumask_var_t *doms;
|
|
struct cpuset *cs;
|
|
int ndoms;
|
|
|
|
lockdep_assert_cpus_held();
|
|
lockdep_assert_held(&cpuset_mutex);
|
|
|
|
/*
|
|
* If we have raced with CPU hotplug, return early to avoid
|
|
* passing doms with offlined cpu to partition_sched_domains().
|
|
* Anyways, cpuset_handle_hotplug() will rebuild sched domains.
|
|
*
|
|
* With no CPUs in any subpartitions, top_cpuset's effective CPUs
|
|
* should be the same as the active CPUs, so checking only top_cpuset
|
|
* is enough to detect racing CPU offlines.
|
|
*/
|
|
if (cpumask_empty(subpartitions_cpus) &&
|
|
!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
|
|
return;
|
|
|
|
/*
|
|
* With subpartition CPUs, however, the effective CPUs of a partition
|
|
* root should be only a subset of the active CPUs. Since a CPU in any
|
|
* partition root could be offlined, all must be checked.
|
|
*/
|
|
if (!cpumask_empty(subpartitions_cpus)) {
|
|
rcu_read_lock();
|
|
cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
|
|
if (!is_partition_valid(cs)) {
|
|
pos_css = css_rightmost_descendant(pos_css);
|
|
continue;
|
|
}
|
|
if (!cpumask_subset(cs->effective_cpus,
|
|
cpu_active_mask)) {
|
|
rcu_read_unlock();
|
|
return;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* Generate domain masks and attrs */
|
|
ndoms = generate_sched_domains(&doms, &attr);
|
|
|
|
/* Have scheduler rebuild the domains */
|
|
partition_and_rebuild_sched_domains(ndoms, doms, attr);
|
|
}
|
|
#else /* !CONFIG_SMP */
|
|
void rebuild_sched_domains_locked(void)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static void rebuild_sched_domains_cpuslocked(void)
|
|
{
|
|
mutex_lock(&cpuset_mutex);
|
|
rebuild_sched_domains_locked();
|
|
mutex_unlock(&cpuset_mutex);
|
|
}
|
|
|
|
void rebuild_sched_domains(void)
|
|
{
|
|
cpus_read_lock();
|
|
rebuild_sched_domains_cpuslocked();
|
|
cpus_read_unlock();
|
|
}
|
|
|
|
/**
|
|
* cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
|
|
* @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
|
|
* @new_cpus: the temp variable for the new effective_cpus mask
|
|
*
|
|
* Iterate through each task of @cs updating its cpus_allowed to the
|
|
* effective cpuset's. As this function is called with cpuset_mutex held,
|
|
* cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask()
|
|
* is used instead of effective_cpus to make sure all offline CPUs are also
|
|
* included as hotplug code won't update cpumasks for tasks in top_cpuset.
|
|
*/
|
|
void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
|
|
{
|
|
struct css_task_iter it;
|
|
struct task_struct *task;
|
|
bool top_cs = cs == &top_cpuset;
|
|
|
|
css_task_iter_start(&cs->css, 0, &it);
|
|
while ((task = css_task_iter_next(&it))) {
|
|
const struct cpumask *possible_mask = task_cpu_possible_mask(task);
|
|
|
|
if (top_cs) {
|
|
/*
|
|
* Percpu kthreads in top_cpuset are ignored
|
|
*/
|
|
if (kthread_is_per_cpu(task))
|
|
continue;
|
|
cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
|
|
} else {
|
|
cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
|
|
}
|
|
set_cpus_allowed_ptr(task, new_cpus);
|
|
}
|
|
css_task_iter_end(&it);
|
|
}
|
|
|
|
/**
|
|
* compute_effective_cpumask - Compute the effective cpumask of the cpuset
|
|
* @new_cpus: the temp variable for the new effective_cpus mask
|
|
* @cs: the cpuset the need to recompute the new effective_cpus mask
|
|
* @parent: the parent cpuset
|
|
*
|
|
* The result is valid only if the given cpuset isn't a partition root.
|
|
*/
|
|
static void compute_effective_cpumask(struct cpumask *new_cpus,
|
|
struct cpuset *cs, struct cpuset *parent)
|
|
{
|
|
cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
|
|
}
|
|
|
|
/*
|
|
* Commands for update_parent_effective_cpumask
|
|
*/
|
|
enum partition_cmd {
|
|
partcmd_enable, /* Enable partition root */
|
|
partcmd_enablei, /* Enable isolated partition root */
|
|
partcmd_disable, /* Disable partition root */
|
|
partcmd_update, /* Update parent's effective_cpus */
|
|
partcmd_invalidate, /* Make partition invalid */
|
|
};
|
|
|
|
static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
|
|
struct tmpmasks *tmp);
|
|
|
|
/*
|
|
* Update partition exclusive flag
|
|
*
|
|
* Return: 0 if successful, an error code otherwise
|
|
*/
|
|
static int update_partition_exclusive(struct cpuset *cs, int new_prs)
|
|
{
|
|
bool exclusive = (new_prs > PRS_MEMBER);
|
|
|
|
if (exclusive && !is_cpu_exclusive(cs)) {
|
|
if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1))
|
|
return PERR_NOTEXCL;
|
|
} else if (!exclusive && is_cpu_exclusive(cs)) {
|
|
/* Turning off CS_CPU_EXCLUSIVE will not return error */
|
|
cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update partition load balance flag and/or rebuild sched domain
|
|
*
|
|
* Changing load balance flag will automatically call
|
|
* rebuild_sched_domains_locked().
|
|
* This function is for cgroup v2 only.
|
|
*/
|
|
static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
|
|
{
|
|
int new_prs = cs->partition_root_state;
|
|
bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
|
|
bool new_lb;
|
|
|
|
/*
|
|
* If cs is not a valid partition root, the load balance state
|
|
* will follow its parent.
|
|
*/
|
|
if (new_prs > 0) {
|
|
new_lb = (new_prs != PRS_ISOLATED);
|
|
} else {
|
|
new_lb = is_sched_load_balance(parent_cs(cs));
|
|
}
|
|
if (new_lb != !!is_sched_load_balance(cs)) {
|
|
rebuild_domains = true;
|
|
if (new_lb)
|
|
set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
|
|
else
|
|
clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
|
|
}
|
|
|
|
if (rebuild_domains && !force_sd_rebuild)
|
|
rebuild_sched_domains_locked();
|
|
}
|
|
|
|
/*
|
|
* tasks_nocpu_error - Return true if tasks will have no effective_cpus
|
|
*/
|
|
static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
|
|
struct cpumask *xcpus)
|
|
{
|
|
/*
|
|
* A populated partition (cs or parent) can't have empty effective_cpus
|
|
*/
|
|
return (cpumask_subset(parent->effective_cpus, xcpus) &&
|
|
partition_is_populated(parent, cs)) ||
|
|
(!cpumask_intersects(xcpus, cpu_active_mask) &&
|
|
partition_is_populated(cs, NULL));
|
|
}
|
|
|
|
static void reset_partition_data(struct cpuset *cs)
|
|
{
|
|
struct cpuset *parent = parent_cs(cs);
|
|
|
|
if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
|
|
return;
|
|
|
|
lockdep_assert_held(&callback_lock);
|
|
|
|
cs->nr_subparts = 0;
|
|
if (cpumask_empty(cs->exclusive_cpus)) {
|
|
cpumask_clear(cs->effective_xcpus);
|
|
if (is_cpu_exclusive(cs))
|
|
clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
|
|
}
|
|
if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed))
|
|
cpumask_copy(cs->effective_cpus, parent->effective_cpus);
|
|
}
|
|
|
|
/*
|
|
* partition_xcpus_newstate - Exclusive CPUs state change
|
|
* @old_prs: old partition_root_state
|
|
* @new_prs: new partition_root_state
|
|
* @xcpus: exclusive CPUs with state change
|
|
*/
|
|
static void partition_xcpus_newstate(int old_prs, int new_prs, struct cpumask *xcpus)
|
|
{
|
|
WARN_ON_ONCE(old_prs == new_prs);
|
|
if (new_prs == PRS_ISOLATED)
|
|
cpumask_or(isolated_cpus, isolated_cpus, xcpus);
|
|
else
|
|
cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
|
|
}
|
|
|
|
/*
|
|
* partition_xcpus_add - Add new exclusive CPUs to partition
|
|
* @new_prs: new partition_root_state
|
|
* @parent: parent cpuset
|
|
* @xcpus: exclusive CPUs to be added
|
|
* Return: true if isolated_cpus modified, false otherwise
|
|
*
|
|
* Remote partition if parent == NULL
|
|
*/
|
|
static bool partition_xcpus_add(int new_prs, struct cpuset *parent,
|
|
struct cpumask *xcpus)
|
|
{
|
|
bool isolcpus_updated;
|
|
|
|
WARN_ON_ONCE(new_prs < 0);
|
|
lockdep_assert_held(&callback_lock);
|
|
if (!parent)
|
|
parent = &top_cpuset;
|
|
|
|
|
|
if (parent == &top_cpuset)
|
|
cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
|
|
|
|
isolcpus_updated = (new_prs != parent->partition_root_state);
|
|
if (isolcpus_updated)
|
|
partition_xcpus_newstate(parent->partition_root_state, new_prs,
|
|
xcpus);
|
|
|
|
cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
|
|
return isolcpus_updated;
|
|
}
|
|
|
|
/*
|
|
* partition_xcpus_del - Remove exclusive CPUs from partition
|
|
* @old_prs: old partition_root_state
|
|
* @parent: parent cpuset
|
|
* @xcpus: exclusive CPUs to be removed
|
|
* Return: true if isolated_cpus modified, false otherwise
|
|
*
|
|
* Remote partition if parent == NULL
|
|
*/
|
|
static bool partition_xcpus_del(int old_prs, struct cpuset *parent,
|
|
struct cpumask *xcpus)
|
|
{
|
|
bool isolcpus_updated;
|
|
|
|
WARN_ON_ONCE(old_prs < 0);
|
|
lockdep_assert_held(&callback_lock);
|
|
if (!parent)
|
|
parent = &top_cpuset;
|
|
|
|
if (parent == &top_cpuset)
|
|
cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
|
|
|
|
isolcpus_updated = (old_prs != parent->partition_root_state);
|
|
if (isolcpus_updated)
|
|
partition_xcpus_newstate(old_prs, parent->partition_root_state,
|
|
xcpus);
|
|
|
|
cpumask_and(xcpus, xcpus, cpu_active_mask);
|
|
cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
|
|
return isolcpus_updated;
|
|
}
|
|
|
|
static void update_unbound_workqueue_cpumask(bool isolcpus_updated)
|
|
{
|
|
int ret;
|
|
|
|
lockdep_assert_cpus_held();
|
|
|
|
if (!isolcpus_updated)
|
|
return;
|
|
|
|
ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
|
|
WARN_ON_ONCE(ret < 0);
|
|
}
|
|
|
|
/**
|
|
* cpuset_cpu_is_isolated - Check if the given CPU is isolated
|
|
* @cpu: the CPU number to be checked
|
|
* Return: true if CPU is used in an isolated partition, false otherwise
|
|
*/
|
|
bool cpuset_cpu_is_isolated(int cpu)
|
|
{
|
|
return cpumask_test_cpu(cpu, isolated_cpus);
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
|
|
|
|
/*
|
|
* compute_effective_exclusive_cpumask - compute effective exclusive CPUs
|
|
* @cs: cpuset
|
|
* @xcpus: effective exclusive CPUs value to be set
|
|
* Return: true if xcpus is not empty, false otherwise.
|
|
*
|
|
* Starting with exclusive_cpus (cpus_allowed if exclusive_cpus is not set),
|
|
* it must be a subset of parent's effective_xcpus.
|
|
*/
|
|
static bool compute_effective_exclusive_cpumask(struct cpuset *cs,
|
|
struct cpumask *xcpus)
|
|
{
|
|
struct cpuset *parent = parent_cs(cs);
|
|
|
|
if (!xcpus)
|
|
xcpus = cs->effective_xcpus;
|
|
|
|
return cpumask_and(xcpus, user_xcpus(cs), parent->effective_xcpus);
|
|
}
|
|
|
|
static inline bool is_remote_partition(struct cpuset *cs)
|
|
{
|
|
return !list_empty(&cs->remote_sibling);
|
|
}
|
|
|
|
static inline bool is_local_partition(struct cpuset *cs)
|
|
{
|
|
return is_partition_valid(cs) && !is_remote_partition(cs);
|
|
}
|
|
|
|
/*
|
|
* remote_partition_enable - Enable current cpuset as a remote partition root
|
|
* @cs: the cpuset to update
|
|
* @new_prs: new partition_root_state
|
|
* @tmp: temparary masks
|
|
* Return: 0 if successful, errcode if error
|
|
*
|
|
* Enable the current cpuset to become a remote partition root taking CPUs
|
|
* directly from the top cpuset. cpuset_mutex must be held by the caller.
|
|
*/
|
|
static int remote_partition_enable(struct cpuset *cs, int new_prs,
|
|
struct tmpmasks *tmp)
|
|
{
|
|
bool isolcpus_updated;
|
|
|
|
/*
|
|
* The user must have sysadmin privilege.
|
|
*/
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return PERR_ACCESS;
|
|
|
|
/*
|
|
* The requested exclusive_cpus must not be allocated to other
|
|
* partitions and it can't use up all the root's effective_cpus.
|
|
*
|
|
* Note that if there is any local partition root above it or
|
|
* remote partition root underneath it, its exclusive_cpus must
|
|
* have overlapped with subpartitions_cpus.
|
|
*/
|
|
compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
|
|
if (cpumask_empty(tmp->new_cpus) ||
|
|
cpumask_intersects(tmp->new_cpus, subpartitions_cpus) ||
|
|
cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
|
|
return PERR_INVCPUS;
|
|
|
|
spin_lock_irq(&callback_lock);
|
|
isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
|
|
list_add(&cs->remote_sibling, &remote_children);
|
|
spin_unlock_irq(&callback_lock);
|
|
update_unbound_workqueue_cpumask(isolcpus_updated);
|
|
|
|
/*
|
|
* Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
|
|
*/
|
|
cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
|
|
update_sibling_cpumasks(&top_cpuset, NULL, tmp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* remote_partition_disable - Remove current cpuset from remote partition list
|
|
* @cs: the cpuset to update
|
|
* @tmp: temparary masks
|
|
*
|
|
* The effective_cpus is also updated.
|
|
*
|
|
* cpuset_mutex must be held by the caller.
|
|
*/
|
|
static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
|
|
{
|
|
bool isolcpus_updated;
|
|
|
|
compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
|
|
WARN_ON_ONCE(!is_remote_partition(cs));
|
|
WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, subpartitions_cpus));
|
|
|
|
spin_lock_irq(&callback_lock);
|
|
list_del_init(&cs->remote_sibling);
|
|
isolcpus_updated = partition_xcpus_del(cs->partition_root_state,
|
|
NULL, tmp->new_cpus);
|
|
cs->partition_root_state = -cs->partition_root_state;
|
|
if (!cs->prs_err)
|
|
cs->prs_err = PERR_INVCPUS;
|
|
reset_partition_data(cs);
|
|
spin_unlock_irq(&callback_lock);
|
|
update_unbound_workqueue_cpumask(isolcpus_updated);
|
|
|
|
/*
|
|
* Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
|
|
*/
|
|
cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
|
|
update_sibling_cpumasks(&top_cpuset, NULL, tmp);
|
|
}
|
|
|
|
/*
|
|
* remote_cpus_update - cpus_exclusive change of remote partition
|
|
* @cs: the cpuset to be updated
|
|
* @newmask: the new effective_xcpus mask
|
|
* @tmp: temparary masks
|
|
*
|
|
* top_cpuset and subpartitions_cpus will be updated or partition can be
|
|
* invalidated.
|
|
*/
|
|
static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask,
|
|
struct tmpmasks *tmp)
|
|
{
|
|
bool adding, deleting;
|
|
int prs = cs->partition_root_state;
|
|
int isolcpus_updated = 0;
|
|
|
|
if (WARN_ON_ONCE(!is_remote_partition(cs)))
|
|
return;
|
|
|
|
WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
|
|
|
|
if (cpumask_empty(newmask))
|
|
goto invalidate;
|
|
|
|
adding = cpumask_andnot(tmp->addmask, newmask, cs->effective_xcpus);
|
|
deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, newmask);
|
|
|
|
/*
|
|
* Additions of remote CPUs is only allowed if those CPUs are
|
|
* not allocated to other partitions and there are effective_cpus
|
|
* left in the top cpuset.
|
|
*/
|
|
if (adding && (!capable(CAP_SYS_ADMIN) ||
|
|
cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
|
|
cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)))
|
|
goto invalidate;
|
|
|
|
spin_lock_irq(&callback_lock);
|
|
if (adding)
|
|
isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask);
|
|
if (deleting)
|
|
isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask);
|
|
spin_unlock_irq(&callback_lock);
|
|
update_unbound_workqueue_cpumask(isolcpus_updated);
|
|
|
|
/*
|
|
* Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
|
|
*/
|
|
cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
|
|
update_sibling_cpumasks(&top_cpuset, NULL, tmp);
|
|
return;
|
|
|
|
invalidate:
|
|
remote_partition_disable(cs, tmp);
|
|
}
|
|
|
|
/*
|
|
* remote_partition_check - check if a child remote partition needs update
|
|
* @cs: the cpuset to be updated
|
|
* @newmask: the new effective_xcpus mask
|
|
* @delmask: temporary mask for deletion (not in tmp)
|
|
* @tmp: temparary masks
|
|
*
|
|
* This should be called before the given cs has updated its cpus_allowed
|
|
* and/or effective_xcpus.
|
|
*/
|
|
static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask,
|
|
struct cpumask *delmask, struct tmpmasks *tmp)
|
|
{
|
|
struct cpuset *child, *next;
|
|
int disable_cnt = 0;
|
|
|
|
/*
|
|
* Compute the effective exclusive CPUs that will be deleted.
|
|
*/
|
|
if (!cpumask_andnot(delmask, cs->effective_xcpus, newmask) ||
|
|
!cpumask_intersects(delmask, subpartitions_cpus))
|
|
return; /* No deletion of exclusive CPUs in partitions */
|
|
|
|
/*
|
|
* Searching the remote children list to look for those that will
|
|
* be impacted by the deletion of exclusive CPUs.
|
|
*
|
|
* Since a cpuset must be removed from the remote children list
|
|
* before it can go offline and holding cpuset_mutex will prevent
|
|
* any change in cpuset status. RCU read lock isn't needed.
|
|
*/
|
|
lockdep_assert_held(&cpuset_mutex);
|
|
list_for_each_entry_safe(child, next, &remote_children, remote_sibling)
|
|
if (cpumask_intersects(child->effective_cpus, delmask)) {
|
|
remote_partition_disable(child, tmp);
|
|
disable_cnt++;
|
|
}
|
|
if (disable_cnt && !force_sd_rebuild)
|
|
rebuild_sched_domains_locked();
|
|
}
|
|
|
|
/*
|
|
* prstate_housekeeping_conflict - check for partition & housekeeping conflicts
|
|
* @prstate: partition root state to be checked
|
|
* @new_cpus: cpu mask
|
|
* Return: true if there is conflict, false otherwise
|
|
*
|
|
* CPUs outside of boot_hk_cpus, if defined, can only be used in an
|
|
* isolated partition.
|
|
*/
|
|
static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
|
|
{
|
|
if (!have_boot_isolcpus)
|
|
return false;
|
|
|
|
if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
|
|
* @cs: The cpuset that requests change in partition root state
|
|
* @cmd: Partition root state change command
|
|
* @newmask: Optional new cpumask for partcmd_update
|
|
* @tmp: Temporary addmask and delmask
|
|
* Return: 0 or a partition root state error code
|
|
*
|
|
* For partcmd_enable*, the cpuset is being transformed from a non-partition
|
|
* root to a partition root. The effective_xcpus (cpus_allowed if
|
|
* effective_xcpus not set) mask of the given cpuset will be taken away from
|
|
* parent's effective_cpus. The function will return 0 if all the CPUs listed
|
|
* in effective_xcpus can be granted or an error code will be returned.
|
|
*
|
|
* For partcmd_disable, the cpuset is being transformed from a partition
|
|
* root back to a non-partition root. Any CPUs in effective_xcpus will be
|
|
* given back to parent's effective_cpus. 0 will always be returned.
|
|
*
|
|
* For partcmd_update, if the optional newmask is specified, the cpu list is
|
|
* to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
|
|
* assumed to remain the same. The cpuset should either be a valid or invalid
|
|
* partition root. The partition root state may change from valid to invalid
|
|
* or vice versa. An error code will be returned if transitioning from
|
|
* invalid to valid violates the exclusivity rule.
|
|
*
|
|
* For partcmd_invalidate, the current partition will be made invalid.
|
|
*
|
|
* The partcmd_enable* and partcmd_disable commands are used by
|
|
* update_prstate(). An error code may be returned and the caller will check
|
|
* for error.
|
|
*
|
|
* The partcmd_update command is used by update_cpumasks_hier() with newmask
|
|
* NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
|
|
* by update_cpumask() with NULL newmask. In both cases, the callers won't
|
|
* check for error and so partition_root_state and prs_error will be updated
|
|
* directly.
|
|
*/
|
|
static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
|
|
struct cpumask *newmask,
|
|
struct tmpmasks *tmp)
|
|
{
|
|
struct cpuset *parent = parent_cs(cs);
|
|
int adding; /* Adding cpus to parent's effective_cpus */
|
|
int deleting; /* Deleting cpus from parent's effective_cpus */
|
|
int old_prs, new_prs;
|
|
int part_error = PERR_NONE; /* Partition error? */
|
|
int subparts_delta = 0;
|
|
struct cpumask *xcpus; /* cs effective_xcpus */
|
|
int isolcpus_updated = 0;
|
|
bool nocpu;
|
|
|
|
lockdep_assert_held(&cpuset_mutex);
|
|
|
|
/*
|
|
* new_prs will only be changed for the partcmd_update and
|
|
* partcmd_invalidate commands.
|
|
*/
|
|
adding = deleting = false;
|
|
old_prs = new_prs = cs->partition_root_state;
|
|
xcpus = user_xcpus(cs);
|
|
|
|
if (cmd == partcmd_invalidate) {
|
|
if (is_prs_invalid(old_prs))
|
|
return 0;
|
|
|
|
/*
|
|
* Make the current partition invalid.
|
|
*/
|
|
if (is_partition_valid(parent))
|
|
adding = cpumask_and(tmp->addmask,
|
|
xcpus, parent->effective_xcpus);
|
|
if (old_prs > 0) {
|
|
new_prs = -old_prs;
|
|
subparts_delta--;
|
|
}
|
|
goto write_error;
|
|
}
|
|
|
|
/*
|
|
* The parent must be a partition root.
|
|
* The new cpumask, if present, or the current cpus_allowed must
|
|
* not be empty.
|
|
*/
|
|
if (!is_partition_valid(parent)) {
|
|
return is_partition_invalid(parent)
|
|
? PERR_INVPARENT : PERR_NOTPART;
|
|
}
|
|
if (!newmask && xcpus_empty(cs))
|
|
return PERR_CPUSEMPTY;
|
|
|
|
nocpu = tasks_nocpu_error(parent, cs, xcpus);
|
|
|
|
if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
|
|
/*
|
|
* Enabling partition root is not allowed if its
|
|
* effective_xcpus is empty or doesn't overlap with
|
|
* parent's effective_xcpus.
|
|
*/
|
|
if (cpumask_empty(xcpus) ||
|
|
!cpumask_intersects(xcpus, parent->effective_xcpus))
|
|
return PERR_INVCPUS;
|
|
|
|
if (prstate_housekeeping_conflict(new_prs, xcpus))
|
|
return PERR_HKEEPING;
|
|
|
|
/*
|
|
* A parent can be left with no CPU as long as there is no
|
|
* task directly associated with the parent partition.
|
|
*/
|
|
if (nocpu)
|
|
return PERR_NOCPUS;
|
|
|
|
cpumask_copy(tmp->delmask, xcpus);
|
|
deleting = true;
|
|
subparts_delta++;
|
|
new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
|
|
} else if (cmd == partcmd_disable) {
|
|
/*
|
|
* May need to add cpus to parent's effective_cpus for
|
|
* valid partition root.
|
|
*/
|
|
adding = !is_prs_invalid(old_prs) &&
|
|
cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus);
|
|
if (adding)
|
|
subparts_delta--;
|
|
new_prs = PRS_MEMBER;
|
|
} else if (newmask) {
|
|
/*
|
|
* Empty cpumask is not allowed
|
|
*/
|
|
if (cpumask_empty(newmask)) {
|
|
part_error = PERR_CPUSEMPTY;
|
|
goto write_error;
|
|
}
|
|
/* Check newmask again, whether cpus are available for parent/cs */
|
|
nocpu |= tasks_nocpu_error(parent, cs, newmask);
|
|
|
|
/*
|
|
* partcmd_update with newmask:
|
|
*
|
|
* Compute add/delete mask to/from effective_cpus
|
|
*
|
|
* For valid partition:
|
|
* addmask = exclusive_cpus & ~newmask
|
|
* & parent->effective_xcpus
|
|
* delmask = newmask & ~exclusive_cpus
|
|
* & parent->effective_xcpus
|
|
*
|
|
* For invalid partition:
|
|
* delmask = newmask & parent->effective_xcpus
|
|
*/
|
|
if (is_prs_invalid(old_prs)) {
|
|
adding = false;
|
|
deleting = cpumask_and(tmp->delmask,
|
|
newmask, parent->effective_xcpus);
|
|
} else {
|
|
cpumask_andnot(tmp->addmask, xcpus, newmask);
|
|
adding = cpumask_and(tmp->addmask, tmp->addmask,
|
|
parent->effective_xcpus);
|
|
|
|
cpumask_andnot(tmp->delmask, newmask, xcpus);
|
|
deleting = cpumask_and(tmp->delmask, tmp->delmask,
|
|
parent->effective_xcpus);
|
|
}
|
|
/*
|
|
* Make partition invalid if parent's effective_cpus could
|
|
* become empty and there are tasks in the parent.
|
|
*/
|
|
if (nocpu && (!adding ||
|
|
!cpumask_intersects(tmp->addmask, cpu_active_mask))) {
|
|
part_error = PERR_NOCPUS;
|
|
deleting = false;
|
|
adding = cpumask_and(tmp->addmask,
|
|
xcpus, parent->effective_xcpus);
|
|
}
|
|
} else {
|
|
/*
|
|
* partcmd_update w/o newmask
|
|
*
|
|
* delmask = effective_xcpus & parent->effective_cpus
|
|
*
|
|
* This can be called from:
|
|
* 1) update_cpumasks_hier()
|
|
* 2) cpuset_hotplug_update_tasks()
|
|
*
|
|
* Check to see if it can be transitioned from valid to
|
|
* invalid partition or vice versa.
|
|
*
|
|
* A partition error happens when parent has tasks and all
|
|
* its effective CPUs will have to be distributed out.
|
|
*/
|
|
WARN_ON_ONCE(!is_partition_valid(parent));
|
|
if (nocpu) {
|
|
part_error = PERR_NOCPUS;
|
|
if (is_partition_valid(cs))
|
|
adding = cpumask_and(tmp->addmask,
|
|
xcpus, parent->effective_xcpus);
|
|
} else if (is_partition_invalid(cs) &&
|
|
cpumask_subset(xcpus, parent->effective_xcpus)) {
|
|
struct cgroup_subsys_state *css;
|
|
struct cpuset *child;
|
|
bool exclusive = true;
|
|
|
|
/*
|
|
* Convert invalid partition to valid has to
|
|
* pass the cpu exclusivity test.
|
|
*/
|
|
rcu_read_lock();
|
|
cpuset_for_each_child(child, css, parent) {
|
|
if (child == cs)
|
|
continue;
|
|
if (!cpusets_are_exclusive(cs, child)) {
|
|
exclusive = false;
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
if (exclusive)
|
|
deleting = cpumask_and(tmp->delmask,
|
|
xcpus, parent->effective_cpus);
|
|
else
|
|
part_error = PERR_NOTEXCL;
|
|
}
|
|
}
|
|
|
|
write_error:
|
|
if (part_error)
|
|
WRITE_ONCE(cs->prs_err, part_error);
|
|
|
|
if (cmd == partcmd_update) {
|
|
/*
|
|
* Check for possible transition between valid and invalid
|
|
* partition root.
|
|
*/
|
|
switch (cs->partition_root_state) {
|
|
case PRS_ROOT:
|
|
case PRS_ISOLATED:
|
|
if (part_error) {
|
|
new_prs = -old_prs;
|
|
subparts_delta--;
|
|
}
|
|
break;
|
|
case PRS_INVALID_ROOT:
|
|
case PRS_INVALID_ISOLATED:
|
|
if (!part_error) {
|
|
new_prs = -old_prs;
|
|
subparts_delta++;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!adding && !deleting && (new_prs == old_prs))
|
|
return 0;
|
|
|
|
/*
|
|
* Transitioning between invalid to valid or vice versa may require
|
|
* changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
|
|
* validate_change() has already been successfully called and
|
|
* CPU lists in cs haven't been updated yet. So defer it to later.
|
|
*/
|
|
if ((old_prs != new_prs) && (cmd != partcmd_update)) {
|
|
int err = update_partition_exclusive(cs, new_prs);
|
|
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Change the parent's effective_cpus & effective_xcpus (top cpuset
|
|
* only).
|
|
*
|
|
* Newly added CPUs will be removed from effective_cpus and
|
|
* newly deleted ones will be added back to effective_cpus.
|
|
*/
|
|
spin_lock_irq(&callback_lock);
|
|
if (old_prs != new_prs) {
|
|
cs->partition_root_state = new_prs;
|
|
if (new_prs <= 0)
|
|
cs->nr_subparts = 0;
|
|
}
|
|
/*
|
|
* Adding to parent's effective_cpus means deletion CPUs from cs
|
|
* and vice versa.
|
|
*/
|
|
if (adding)
|
|
isolcpus_updated += partition_xcpus_del(old_prs, parent,
|
|
tmp->addmask);
|
|
if (deleting)
|
|
isolcpus_updated += partition_xcpus_add(new_prs, parent,
|
|
tmp->delmask);
|
|
|
|
if (is_partition_valid(parent)) {
|
|
parent->nr_subparts += subparts_delta;
|
|
WARN_ON_ONCE(parent->nr_subparts < 0);
|
|
}
|
|
spin_unlock_irq(&callback_lock);
|
|
update_unbound_workqueue_cpumask(isolcpus_updated);
|
|
|
|
if ((old_prs != new_prs) && (cmd == partcmd_update))
|
|
update_partition_exclusive(cs, new_prs);
|
|
|
|
if (adding || deleting) {
|
|
cpuset_update_tasks_cpumask(parent, tmp->addmask);
|
|
update_sibling_cpumasks(parent, cs, tmp);
|
|
}
|
|
|
|
/*
|
|
* For partcmd_update without newmask, it is being called from
|
|
* cpuset_handle_hotplug(). Update the load balance flag and
|
|
* scheduling domain accordingly.
|
|
*/
|
|
if ((cmd == partcmd_update) && !newmask)
|
|
update_partition_sd_lb(cs, old_prs);
|
|
|
|
notify_partition_change(cs, old_prs);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* compute_partition_effective_cpumask - compute effective_cpus for partition
|
|
* @cs: partition root cpuset
|
|
* @new_ecpus: previously computed effective_cpus to be updated
|
|
*
|
|
* Compute the effective_cpus of a partition root by scanning effective_xcpus
|
|
* of child partition roots and excluding their effective_xcpus.
|
|
*
|
|
* This has the side effect of invalidating valid child partition roots,
|
|
* if necessary. Since it is called from either cpuset_hotplug_update_tasks()
|
|
* or update_cpumasks_hier() where parent and children are modified
|
|
* successively, we don't need to call update_parent_effective_cpumask()
|
|
* and the child's effective_cpus will be updated in later iterations.
|
|
*
|
|
* Note that rcu_read_lock() is assumed to be held.
|
|
*/
|
|
static void compute_partition_effective_cpumask(struct cpuset *cs,
|
|
struct cpumask *new_ecpus)
|
|
{
|
|
struct cgroup_subsys_state *css;
|
|
struct cpuset *child;
|
|
bool populated = partition_is_populated(cs, NULL);
|
|
|
|
/*
|
|
* Check child partition roots to see if they should be
|
|
* invalidated when
|
|
* 1) child effective_xcpus not a subset of new
|
|
* excluisve_cpus
|
|
* 2) All the effective_cpus will be used up and cp
|
|
* has tasks
|
|
*/
|
|
compute_effective_exclusive_cpumask(cs, new_ecpus);
|
|
cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
|
|
|
|
rcu_read_lock();
|
|
cpuset_for_each_child(child, css, cs) {
|
|
if (!is_partition_valid(child))
|
|
continue;
|
|
|
|
child->prs_err = 0;
|
|
if (!cpumask_subset(child->effective_xcpus,
|
|
cs->effective_xcpus))
|
|
child->prs_err = PERR_INVCPUS;
|
|
else if (populated &&
|
|
cpumask_subset(new_ecpus, child->effective_xcpus))
|
|
child->prs_err = PERR_NOCPUS;
|
|
|
|
if (child->prs_err) {
|
|
int old_prs = child->partition_root_state;
|
|
|
|
/*
|
|
* Invalidate child partition
|
|
*/
|
|
spin_lock_irq(&callback_lock);
|
|
make_partition_invalid(child);
|
|
cs->nr_subparts--;
|
|
child->nr_subparts = 0;
|
|
spin_unlock_irq(&callback_lock);
|
|
notify_partition_change(child, old_prs);
|
|
continue;
|
|
}
|
|
cpumask_andnot(new_ecpus, new_ecpus,
|
|
child->effective_xcpus);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*
|
|
* update_cpumasks_hier() flags
|
|
*/
|
|
#define HIER_CHECKALL 0x01 /* Check all cpusets with no skipping */
|
|
#define HIER_NO_SD_REBUILD 0x02 /* Don't rebuild sched domains */
|
|
|
|
/*
|
|
* update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
|
|
* @cs: the cpuset to consider
|
|
* @tmp: temp variables for calculating effective_cpus & partition setup
|
|
* @force: don't skip any descendant cpusets if set
|
|
*
|
|
* When configured cpumask is changed, the effective cpumasks of this cpuset
|
|
* and all its descendants need to be updated.
|
|
*
|
|
* On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
|
|
*
|
|
* Called with cpuset_mutex held
|
|
*/
|
|
static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
|
|
int flags)
|
|
{
|
|
struct cpuset *cp;
|
|
struct cgroup_subsys_state *pos_css;
|
|
bool need_rebuild_sched_domains = false;
|
|
int old_prs, new_prs;
|
|
|
|
rcu_read_lock();
|
|
cpuset_for_each_descendant_pre(cp, pos_css, cs) {
|
|
struct cpuset *parent = parent_cs(cp);
|
|
bool remote = is_remote_partition(cp);
|
|
bool update_parent = false;
|
|
|
|
/*
|
|
* Skip descendent remote partition that acquires CPUs
|
|
* directly from top cpuset unless it is cs.
|
|
*/
|
|
if (remote && (cp != cs)) {
|
|
pos_css = css_rightmost_descendant(pos_css);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Update effective_xcpus if exclusive_cpus set.
|
|
* The case when exclusive_cpus isn't set is handled later.
|
|
*/
|
|
if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) {
|
|
spin_lock_irq(&callback_lock);
|
|
compute_effective_exclusive_cpumask(cp, NULL);
|
|
spin_unlock_irq(&callback_lock);
|
|
}
|
|
|
|
old_prs = new_prs = cp->partition_root_state;
|
|
if (remote || (is_partition_valid(parent) &&
|
|
is_partition_valid(cp)))
|
|
compute_partition_effective_cpumask(cp, tmp->new_cpus);
|
|
else
|
|
compute_effective_cpumask(tmp->new_cpus, cp, parent);
|
|
|
|
/*
|
|
* A partition with no effective_cpus is allowed as long as
|
|
* there is no task associated with it. Call
|
|
* update_parent_effective_cpumask() to check it.
|
|
*/
|
|
if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
|
|
update_parent = true;
|
|
goto update_parent_effective;
|
|
}
|
|
|
|
/*
|
|
* If it becomes empty, inherit the effective mask of the
|
|
* parent, which is guaranteed to have some CPUs unless
|
|
* it is a partition root that has explicitly distributed
|
|
* out all its CPUs.
|
|
*/
|
|
if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus))
|
|
cpumask_copy(tmp->new_cpus, parent->effective_cpus);
|
|
|
|
if (remote)
|
|
goto get_css;
|
|
|
|
/*
|
|
* Skip the whole subtree if
|
|
* 1) the cpumask remains the same,
|
|
* 2) has no partition root state,
|
|
* 3) HIER_CHECKALL flag not set, and
|
|
* 4) for v2 load balance state same as its parent.
|
|
*/
|
|
if (!cp->partition_root_state && !(flags & HIER_CHECKALL) &&
|
|
cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
|
|
(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
|
|
(is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
|
|
pos_css = css_rightmost_descendant(pos_css);
|
|
continue;
|
|
}
|
|
|
|
update_parent_effective:
|
|
/*
|
|
* update_parent_effective_cpumask() should have been called
|
|
* for cs already in update_cpumask(). We should also call
|
|
* cpuset_update_tasks_cpumask() again for tasks in the parent
|
|
* cpuset if the parent's effective_cpus changes.
|
|
*/
|
|
if ((cp != cs) && old_prs) {
|
|
switch (parent->partition_root_state) {
|
|
case PRS_ROOT:
|
|
case PRS_ISOLATED:
|
|
update_parent = true;
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* When parent is not a partition root or is
|
|
* invalid, child partition roots become
|
|
* invalid too.
|
|
*/
|
|
if (is_partition_valid(cp))
|
|
new_prs = -cp->partition_root_state;
|
|
WRITE_ONCE(cp->prs_err,
|
|
is_partition_invalid(parent)
|
|
? PERR_INVPARENT : PERR_NOTPART);
|
|
break;
|
|
}
|
|
}
|
|
get_css:
|
|
if (!css_tryget_online(&cp->css))
|
|
continue;
|
|
rcu_read_unlock();
|
|
|
|
if (update_parent) {
|
|
update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
|
|
/*
|
|
* The cpuset partition_root_state may become
|
|
* invalid. Capture it.
|
|
*/
|
|
new_prs = cp->partition_root_state;
|
|
}
|
|
|
|
spin_lock_irq(&callback_lock);
|
|
cpumask_copy(cp->effective_cpus, tmp->new_cpus);
|
|
cp->partition_root_state = new_prs;
|
|
/*
|
|
* Make sure effective_xcpus is properly set for a valid
|
|
* partition root.
|
|
*/
|
|
if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
|
|
cpumask_and(cp->effective_xcpus,
|
|
cp->cpus_allowed, parent->effective_xcpus);
|
|
else if (new_prs < 0)
|
|
reset_partition_data(cp);
|
|
spin_unlock_irq(&callback_lock);
|
|
|
|
notify_partition_change(cp, old_prs);
|
|
|
|
WARN_ON(!is_in_v2_mode() &&
|
|
!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
|
|
|
|
cpuset_update_tasks_cpumask(cp, cp->effective_cpus);
|
|
|
|
/*
|
|
* On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
|
|
* from parent if current cpuset isn't a valid partition root
|
|
* and their load balance states differ.
|
|
*/
|
|
if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
|
|
!is_partition_valid(cp) &&
|
|
(is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
|
|
if (is_sched_load_balance(parent))
|
|
set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
|
|
else
|
|
clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
|
|
}
|
|
|
|
/*
|
|
* On legacy hierarchy, if the effective cpumask of any non-
|
|
* empty cpuset is changed, we need to rebuild sched domains.
|
|
* On default hierarchy, the cpuset needs to be a partition
|
|
* root as well.
|
|
*/
|
|
if (!cpumask_empty(cp->cpus_allowed) &&
|
|
is_sched_load_balance(cp) &&
|
|
(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
|
|
is_partition_valid(cp)))
|
|
need_rebuild_sched_domains = true;
|
|
|
|
rcu_read_lock();
|
|
css_put(&cp->css);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD) &&
|
|
!force_sd_rebuild)
|
|
rebuild_sched_domains_locked();
|
|
}
|
|
|
|
/**
|
|
* update_sibling_cpumasks - Update siblings cpumasks
|
|
* @parent: Parent cpuset
|
|
* @cs: Current cpuset
|
|
* @tmp: Temp variables
|
|
*/
|
|
static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
|
|
struct tmpmasks *tmp)
|
|
{
|
|
struct cpuset *sibling;
|
|
struct cgroup_subsys_state *pos_css;
|
|
|
|
lockdep_assert_held(&cpuset_mutex);
|
|
|
|
/*
|
|
* Check all its siblings and call update_cpumasks_hier()
|
|
* if their effective_cpus will need to be changed.
|
|
*
|
|
* It is possible a change in parent's effective_cpus
|
|
* due to a change in a child partition's effective_xcpus will impact
|
|
* its siblings even if they do not inherit parent's effective_cpus
|
|
* directly.
|
|
*
|
|
* The update_cpumasks_hier() function may sleep. So we have to
|
|
* release the RCU read lock before calling it. HIER_NO_SD_REBUILD
|
|
* flag is used to suppress rebuild of sched domains as the callers
|
|
* will take care of that.
|
|
*/
|
|
rcu_read_lock();
|
|
cpuset_for_each_child(sibling, pos_css, parent) {
|
|
if (sibling == cs)
|
|
continue;
|
|
if (!is_partition_valid(sibling)) {
|
|
compute_effective_cpumask(tmp->new_cpus, sibling,
|
|
parent);
|
|
if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
|
|
continue;
|
|
}
|
|
if (!css_tryget_online(&sibling->css))
|
|
continue;
|
|
|
|
rcu_read_unlock();
|
|
update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD);
|
|
rcu_read_lock();
|
|
css_put(&sibling->css);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/**
|
|
* update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
|
|
* @cs: the cpuset to consider
|
|
* @trialcs: trial cpuset
|
|
* @buf: buffer of cpu numbers written to this cpuset
|
|
*/
|
|
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
|
|
const char *buf)
|
|
{
|
|
int retval;
|
|
struct tmpmasks tmp;
|
|
struct cpuset *parent = parent_cs(cs);
|
|
bool invalidate = false;
|
|
int hier_flags = 0;
|
|
int old_prs = cs->partition_root_state;
|
|
|
|
/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
|
|
if (cs == &top_cpuset)
|
|
return -EACCES;
|
|
|
|
/*
|
|
* An empty cpus_allowed is ok only if the cpuset has no tasks.
|
|
* Since cpulist_parse() fails on an empty mask, we special case
|
|
* that parsing. The validate_change() call ensures that cpusets
|
|
* with tasks have cpus.
|
|
*/
|
|
if (!*buf) {
|
|
cpumask_clear(trialcs->cpus_allowed);
|
|
if (cpumask_empty(trialcs->exclusive_cpus))
|
|
cpumask_clear(trialcs->effective_xcpus);
|
|
} else {
|
|
retval = cpulist_parse(buf, trialcs->cpus_allowed);
|
|
if (retval < 0)
|
|
return retval;
|
|
|
|
if (!cpumask_subset(trialcs->cpus_allowed,
|
|
top_cpuset.cpus_allowed))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* When exclusive_cpus isn't explicitly set, it is constrainted
|
|
* by cpus_allowed and parent's effective_xcpus. Otherwise,
|
|
* trialcs->effective_xcpus is used as a temporary cpumask
|
|
* for checking validity of the partition root.
|
|
*/
|
|
if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs))
|
|
compute_effective_exclusive_cpumask(trialcs, NULL);
|
|
}
|
|
|
|
/* Nothing to do if the cpus didn't change */
|
|
if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
|
|
return 0;
|
|
|
|
if (alloc_cpumasks(NULL, &tmp))
|
|
return -ENOMEM;
|
|
|
|
if (old_prs) {
|
|
if (is_partition_valid(cs) &&
|
|
cpumask_empty(trialcs->effective_xcpus)) {
|
|
invalidate = true;
|
|
cs->prs_err = PERR_INVCPUS;
|
|
} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
|
|
invalidate = true;
|
|
cs->prs_err = PERR_HKEEPING;
|
|
} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
|
|
invalidate = true;
|
|
cs->prs_err = PERR_NOCPUS;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check all the descendants in update_cpumasks_hier() if
|
|
* effective_xcpus is to be changed.
|
|
*/
|
|
if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
|
|
hier_flags = HIER_CHECKALL;
|
|
|
|
retval = validate_change(cs, trialcs);
|
|
|
|
if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
|
|
struct cgroup_subsys_state *css;
|
|
struct cpuset *cp;
|
|
|
|
/*
|
|
* The -EINVAL error code indicates that partition sibling
|
|
* CPU exclusivity rule has been violated. We still allow
|
|
* the cpumask change to proceed while invalidating the
|
|
* partition. However, any conflicting sibling partitions
|
|
* have to be marked as invalid too.
|
|
*/
|
|
invalidate = true;
|
|
rcu_read_lock();
|
|
cpuset_for_each_child(cp, css, parent) {
|
|
struct cpumask *xcpus = user_xcpus(trialcs);
|
|
|
|
if (is_partition_valid(cp) &&
|
|
cpumask_intersects(xcpus, cp->effective_xcpus)) {
|
|
rcu_read_unlock();
|
|
update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp);
|
|
rcu_read_lock();
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
retval = 0;
|
|
}
|
|
|
|
if (retval < 0)
|
|
goto out_free;
|
|
|
|
if (is_partition_valid(cs) ||
|
|
(is_partition_invalid(cs) && !invalidate)) {
|
|
struct cpumask *xcpus = trialcs->effective_xcpus;
|
|
|
|
if (cpumask_empty(xcpus) && is_partition_invalid(cs))
|
|
xcpus = trialcs->cpus_allowed;
|
|
|
|
/*
|
|
* Call remote_cpus_update() to handle valid remote partition
|
|
*/
|
|
if (is_remote_partition(cs))
|
|
remote_cpus_update(cs, xcpus, &tmp);
|
|
else if (invalidate)
|
|
update_parent_effective_cpumask(cs, partcmd_invalidate,
|
|
NULL, &tmp);
|
|
else
|
|
update_parent_effective_cpumask(cs, partcmd_update,
|
|
xcpus, &tmp);
|
|
} else if (!cpumask_empty(cs->exclusive_cpus)) {
|
|
/*
|
|
* Use trialcs->effective_cpus as a temp cpumask
|
|
*/
|
|
remote_partition_check(cs, trialcs->effective_xcpus,
|
|
trialcs->effective_cpus, &tmp);
|
|
}
|
|
|
|
spin_lock_irq(&callback_lock);
|
|
cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
|
|
cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
|
|
if ((old_prs > 0) && !is_partition_valid(cs))
|
|
reset_partition_data(cs);
|
|
spin_unlock_irq(&callback_lock);
|
|
|
|
/* effective_cpus/effective_xcpus will be updated here */
|
|
update_cpumasks_hier(cs, &tmp, hier_flags);
|
|
|
|
/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
|
|
if (cs->partition_root_state)
|
|
update_partition_sd_lb(cs, old_prs);
|
|
out_free:
|
|
free_cpumasks(NULL, &tmp);
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
|
|
* @cs: the cpuset to consider
|
|
* @trialcs: trial cpuset
|
|
* @buf: buffer of cpu numbers written to this cpuset
|
|
*
|
|
* The tasks' cpumask will be updated if cs is a valid partition root.
|
|
*/
|
|
static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
|
|
const char *buf)
|
|
{
|
|
int retval;
|
|
struct tmpmasks tmp;
|
|
struct cpuset *parent = parent_cs(cs);
|
|
bool invalidate = false;
|
|
int hier_flags = 0;
|
|
int old_prs = cs->partition_root_state;
|
|
|
|
if (!*buf) {
|
|
cpumask_clear(trialcs->exclusive_cpus);
|
|
cpumask_clear(trialcs->effective_xcpus);
|
|
} else {
|
|
retval = cpulist_parse(buf, trialcs->exclusive_cpus);
|
|
if (retval < 0)
|
|
return retval;
|
|
}
|
|
|
|
/* Nothing to do if the CPUs didn't change */
|
|
if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
|
|
return 0;
|
|
|
|
if (*buf)
|
|
compute_effective_exclusive_cpumask(trialcs, NULL);
|
|
|
|
/*
|
|
* Check all the descendants in update_cpumasks_hier() if
|
|
* effective_xcpus is to be changed.
|
|
*/
|
|
if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
|
|
hier_flags = HIER_CHECKALL;
|
|
|
|
retval = validate_change(cs, trialcs);
|
|
if (retval)
|
|
return retval;
|
|
|
|
if (alloc_cpumasks(NULL, &tmp))
|
|
return -ENOMEM;
|
|
|
|
if (old_prs) {
|
|
if (cpumask_empty(trialcs->effective_xcpus)) {
|
|
invalidate = true;
|
|
cs->prs_err = PERR_INVCPUS;
|
|
} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
|
|
invalidate = true;
|
|
cs->prs_err = PERR_HKEEPING;
|
|
} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
|
|
invalidate = true;
|
|
cs->prs_err = PERR_NOCPUS;
|
|
}
|
|
|
|
if (is_remote_partition(cs)) {
|
|
if (invalidate)
|
|
remote_partition_disable(cs, &tmp);
|
|
else
|
|
remote_cpus_update(cs, trialcs->effective_xcpus,
|
|
&tmp);
|
|
} else if (invalidate) {
|
|
update_parent_effective_cpumask(cs, partcmd_invalidate,
|
|
NULL, &tmp);
|
|
} else {
|
|
update_parent_effective_cpumask(cs, partcmd_update,
|
|
trialcs->effective_xcpus, &tmp);
|
|
}
|
|
} else if (!cpumask_empty(trialcs->exclusive_cpus)) {
|
|
/*
|
|
* Use trialcs->effective_cpus as a temp cpumask
|
|
*/
|
|
remote_partition_check(cs, trialcs->effective_xcpus,
|
|
trialcs->effective_cpus, &tmp);
|
|
}
|
|
spin_lock_irq(&callback_lock);
|
|
cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
|
|
cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
|
|
if ((old_prs > 0) && !is_partition_valid(cs))
|
|
reset_partition_data(cs);
|
|
spin_unlock_irq(&callback_lock);
|
|
|
|
/*
|
|
* Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
|
|
* of the subtree when it is a valid partition root or effective_xcpus
|
|
* is updated.
|
|
*/
|
|
if (is_partition_valid(cs) || hier_flags)
|
|
update_cpumasks_hier(cs, &tmp, hier_flags);
|
|
|
|
/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
|
|
if (cs->partition_root_state)
|
|
update_partition_sd_lb(cs, old_prs);
|
|
|
|
free_cpumasks(NULL, &tmp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Migrate memory region from one set of nodes to another. This is
|
|
* performed asynchronously as it can be called from process migration path
|
|
* holding locks involved in process management. All mm migrations are
|
|
* performed in the queued order and can be waited for by flushing
|
|
* cpuset_migrate_mm_wq.
|
|
*/
|
|
|
|
struct cpuset_migrate_mm_work {
|
|
struct work_struct work;
|
|
struct mm_struct *mm;
|
|
nodemask_t from;
|
|
nodemask_t to;
|
|
};
|
|
|
|
static void cpuset_migrate_mm_workfn(struct work_struct *work)
|
|
{
|
|
struct cpuset_migrate_mm_work *mwork =
|
|
container_of(work, struct cpuset_migrate_mm_work, work);
|
|
|
|
/* on a wq worker, no need to worry about %current's mems_allowed */
|
|
do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
|
|
mmput(mwork->mm);
|
|
kfree(mwork);
|
|
}
|
|
|
|
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
|
|
const nodemask_t *to)
|
|
{
|
|
struct cpuset_migrate_mm_work *mwork;
|
|
|
|
if (nodes_equal(*from, *to)) {
|
|
mmput(mm);
|
|
return;
|
|
}
|
|
|
|
mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
|
|
if (mwork) {
|
|
mwork->mm = mm;
|
|
mwork->from = *from;
|
|
mwork->to = *to;
|
|
INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
|
|
queue_work(cpuset_migrate_mm_wq, &mwork->work);
|
|
} else {
|
|
mmput(mm);
|
|
}
|
|
}
|
|
|
|
static void cpuset_post_attach(void)
|
|
{
|
|
flush_workqueue(cpuset_migrate_mm_wq);
|
|
}
|
|
|
|
/*
|
|
* cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
|
|
* @tsk: the task to change
|
|
* @newmems: new nodes that the task will be set
|
|
*
|
|
* We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
|
|
* and rebind an eventual tasks' mempolicy. If the task is allocating in
|
|
* parallel, it might temporarily see an empty intersection, which results in
|
|
* a seqlock check and retry before OOM or allocation failure.
|
|
*/
|
|
static void cpuset_change_task_nodemask(struct task_struct *tsk,
|
|
nodemask_t *newmems)
|
|
{
|
|
task_lock(tsk);
|
|
|
|
local_irq_disable();
|
|
write_seqcount_begin(&tsk->mems_allowed_seq);
|
|
|
|
nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
|
|
mpol_rebind_task(tsk, newmems);
|
|
tsk->mems_allowed = *newmems;
|
|
|
|
write_seqcount_end(&tsk->mems_allowed_seq);
|
|
local_irq_enable();
|
|
|
|
task_unlock(tsk);
|
|
}
|
|
|
|
static void *cpuset_being_rebound;
|
|
|
|
/**
|
|
* cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
|
|
* @cs: the cpuset in which each task's mems_allowed mask needs to be changed
|
|
*
|
|
* Iterate through each task of @cs updating its mems_allowed to the
|
|
* effective cpuset's. As this function is called with cpuset_mutex held,
|
|
* cpuset membership stays stable.
|
|
*/
|
|
void cpuset_update_tasks_nodemask(struct cpuset *cs)
|
|
{
|
|
static nodemask_t newmems; /* protected by cpuset_mutex */
|
|
struct css_task_iter it;
|
|
struct task_struct *task;
|
|
|
|
cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
|
|
|
|
guarantee_online_mems(cs, &newmems);
|
|
|
|
/*
|
|
* The mpol_rebind_mm() call takes mmap_lock, which we couldn't
|
|
* take while holding tasklist_lock. Forks can happen - the
|
|
* mpol_dup() cpuset_being_rebound check will catch such forks,
|
|
* and rebind their vma mempolicies too. Because we still hold
|
|
* the global cpuset_mutex, we know that no other rebind effort
|
|
* will be contending for the global variable cpuset_being_rebound.
|
|
* It's ok if we rebind the same mm twice; mpol_rebind_mm()
|
|
* is idempotent. Also migrate pages in each mm to new nodes.
|
|
*/
|
|
css_task_iter_start(&cs->css, 0, &it);
|
|
while ((task = css_task_iter_next(&it))) {
|
|
struct mm_struct *mm;
|
|
bool migrate;
|
|
|
|
cpuset_change_task_nodemask(task, &newmems);
|
|
|
|
mm = get_task_mm(task);
|
|
if (!mm)
|
|
continue;
|
|
|
|
migrate = is_memory_migrate(cs);
|
|
|
|
mpol_rebind_mm(mm, &cs->mems_allowed);
|
|
if (migrate)
|
|
cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
|
|
else
|
|
mmput(mm);
|
|
}
|
|
css_task_iter_end(&it);
|
|
|
|
/*
|
|
* All the tasks' nodemasks have been updated, update
|
|
* cs->old_mems_allowed.
|
|
*/
|
|
cs->old_mems_allowed = newmems;
|
|
|
|
/* We're done rebinding vmas to this cpuset's new mems_allowed. */
|
|
cpuset_being_rebound = NULL;
|
|
}
|
|
|
|
/*
|
|
* update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
|
|
* @cs: the cpuset to consider
|
|
* @new_mems: a temp variable for calculating new effective_mems
|
|
*
|
|
* When configured nodemask is changed, the effective nodemasks of this cpuset
|
|
* and all its descendants need to be updated.
|
|
*
|
|
* On legacy hierarchy, effective_mems will be the same with mems_allowed.
|
|
*
|
|
* Called with cpuset_mutex held
|
|
*/
|
|
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
|
|
{
|
|
struct cpuset *cp;
|
|
struct cgroup_subsys_state *pos_css;
|
|
|
|
rcu_read_lock();
|
|
cpuset_for_each_descendant_pre(cp, pos_css, cs) {
|
|
struct cpuset *parent = parent_cs(cp);
|
|
|
|
nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
|
|
|
|
/*
|
|
* If it becomes empty, inherit the effective mask of the
|
|
* parent, which is guaranteed to have some MEMs.
|
|
*/
|
|
if (is_in_v2_mode() && nodes_empty(*new_mems))
|
|
*new_mems = parent->effective_mems;
|
|
|
|
/* Skip the whole subtree if the nodemask remains the same. */
|
|
if (nodes_equal(*new_mems, cp->effective_mems)) {
|
|
pos_css = css_rightmost_descendant(pos_css);
|
|
continue;
|
|
}
|
|
|
|
if (!css_tryget_online(&cp->css))
|
|
continue;
|
|
rcu_read_unlock();
|
|
|
|
spin_lock_irq(&callback_lock);
|
|
cp->effective_mems = *new_mems;
|
|
spin_unlock_irq(&callback_lock);
|
|
|
|
WARN_ON(!is_in_v2_mode() &&
|
|
!nodes_equal(cp->mems_allowed, cp->effective_mems));
|
|
|
|
cpuset_update_tasks_nodemask(cp);
|
|
|
|
rcu_read_lock();
|
|
css_put(&cp->css);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*
|
|
* Handle user request to change the 'mems' memory placement
|
|
* of a cpuset. Needs to validate the request, update the
|
|
* cpusets mems_allowed, and for each task in the cpuset,
|
|
* update mems_allowed and rebind task's mempolicy and any vma
|
|
* mempolicies and if the cpuset is marked 'memory_migrate',
|
|
* migrate the tasks pages to the new memory.
|
|
*
|
|
* Call with cpuset_mutex held. May take callback_lock during call.
|
|
* Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
|
|
* lock each such tasks mm->mmap_lock, scan its vma's and rebind
|
|
* their mempolicies to the cpusets new mems_allowed.
|
|
*/
|
|
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
|
|
const char *buf)
|
|
{
|
|
int retval;
|
|
|
|
/*
|
|
* top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
|
|
* it's read-only
|
|
*/
|
|
if (cs == &top_cpuset) {
|
|
retval = -EACCES;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* An empty mems_allowed is ok iff there are no tasks in the cpuset.
|
|
* Since nodelist_parse() fails on an empty mask, we special case
|
|
* that parsing. The validate_change() call ensures that cpusets
|
|
* with tasks have memory.
|
|
*/
|
|
if (!*buf) {
|
|
nodes_clear(trialcs->mems_allowed);
|
|
} else {
|
|
retval = nodelist_parse(buf, trialcs->mems_allowed);
|
|
if (retval < 0)
|
|
goto done;
|
|
|
|
if (!nodes_subset(trialcs->mems_allowed,
|
|
top_cpuset.mems_allowed)) {
|
|
retval = -EINVAL;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
|
|
retval = 0; /* Too easy - nothing to do */
|
|
goto done;
|
|
}
|
|
retval = validate_change(cs, trialcs);
|
|
if (retval < 0)
|
|
goto done;
|
|
|
|
check_insane_mems_config(&trialcs->mems_allowed);
|
|
|
|
spin_lock_irq(&callback_lock);
|
|
cs->mems_allowed = trialcs->mems_allowed;
|
|
spin_unlock_irq(&callback_lock);
|
|
|
|
/* use trialcs->mems_allowed as a temp variable */
|
|
update_nodemasks_hier(cs, &trialcs->mems_allowed);
|
|
done:
|
|
return retval;
|
|
}
|
|
|
|
bool current_cpuset_is_being_rebound(void)
|
|
{
|
|
bool ret;
|
|
|
|
rcu_read_lock();
|
|
ret = task_cs(current) == cpuset_being_rebound;
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* cpuset_update_flag - read a 0 or a 1 in a file and update associated flag
|
|
* bit: the bit to update (see cpuset_flagbits_t)
|
|
* cs: the cpuset to update
|
|
* turning_on: whether the flag is being set or cleared
|
|
*
|
|
* Call with cpuset_mutex held.
|
|
*/
|
|
|
|
int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
|
|
int turning_on)
|
|
{
|
|
struct cpuset *trialcs;
|
|
int balance_flag_changed;
|
|
int spread_flag_changed;
|
|
int err;
|
|
|
|
trialcs = alloc_trial_cpuset(cs);
|
|
if (!trialcs)
|
|
return -ENOMEM;
|
|
|
|
if (turning_on)
|
|
set_bit(bit, &trialcs->flags);
|
|
else
|
|
clear_bit(bit, &trialcs->flags);
|
|
|
|
err = validate_change(cs, trialcs);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
balance_flag_changed = (is_sched_load_balance(cs) !=
|
|
is_sched_load_balance(trialcs));
|
|
|
|
spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
|
|
|| (is_spread_page(cs) != is_spread_page(trialcs)));
|
|
|
|
spin_lock_irq(&callback_lock);
|
|
cs->flags = trialcs->flags;
|
|
spin_unlock_irq(&callback_lock);
|
|
|
|
if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed &&
|
|
!force_sd_rebuild)
|
|
rebuild_sched_domains_locked();
|
|
|
|
if (spread_flag_changed)
|
|
cpuset1_update_tasks_flags(cs);
|
|
out:
|
|
free_cpuset(trialcs);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* update_prstate - update partition_root_state
|
|
* @cs: the cpuset to update
|
|
* @new_prs: new partition root state
|
|
* Return: 0 if successful, != 0 if error
|
|
*
|
|
* Call with cpuset_mutex held.
|
|
*/
|
|
static int update_prstate(struct cpuset *cs, int new_prs)
|
|
{
|
|
int err = PERR_NONE, old_prs = cs->partition_root_state;
|
|
struct cpuset *parent = parent_cs(cs);
|
|
struct tmpmasks tmpmask;
|
|
bool new_xcpus_state = false;
|
|
|
|
if (old_prs == new_prs)
|
|
return 0;
|
|
|
|
/*
|
|
* Treat a previously invalid partition root as if it is a "member".
|
|
*/
|
|
if (new_prs && is_prs_invalid(old_prs))
|
|
old_prs = PRS_MEMBER;
|
|
|
|
if (alloc_cpumasks(NULL, &tmpmask))
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Setup effective_xcpus if not properly set yet, it will be cleared
|
|
* later if partition becomes invalid.
|
|
*/
|
|
if ((new_prs > 0) && cpumask_empty(cs->exclusive_cpus)) {
|
|
spin_lock_irq(&callback_lock);
|
|
cpumask_and(cs->effective_xcpus,
|
|
cs->cpus_allowed, parent->effective_xcpus);
|
|
spin_unlock_irq(&callback_lock);
|
|
}
|
|
|
|
err = update_partition_exclusive(cs, new_prs);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (!old_prs) {
|
|
/*
|
|
* cpus_allowed and exclusive_cpus cannot be both empty.
|
|
*/
|
|
if (xcpus_empty(cs)) {
|
|
err = PERR_CPUSEMPTY;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If parent is valid partition, enable local partiion.
|
|
* Otherwise, enable a remote partition.
|
|
*/
|
|
if (is_partition_valid(parent)) {
|
|
enum partition_cmd cmd = (new_prs == PRS_ROOT)
|
|
? partcmd_enable : partcmd_enablei;
|
|
|
|
err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
|
|
} else {
|
|
err = remote_partition_enable(cs, new_prs, &tmpmask);
|
|
}
|
|
} else if (old_prs && new_prs) {
|
|
/*
|
|
* A change in load balance state only, no change in cpumasks.
|
|
*/
|
|
new_xcpus_state = true;
|
|
} else {
|
|
/*
|
|
* Switching back to member is always allowed even if it
|
|
* disables child partitions.
|
|
*/
|
|
if (is_remote_partition(cs))
|
|
remote_partition_disable(cs, &tmpmask);
|
|
else
|
|
update_parent_effective_cpumask(cs, partcmd_disable,
|
|
NULL, &tmpmask);
|
|
|
|
/*
|
|
* Invalidation of child partitions will be done in
|
|
* update_cpumasks_hier().
|
|
*/
|
|
}
|
|
out:
|
|
/*
|
|
* Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
|
|
* happens.
|
|
*/
|
|
if (err) {
|
|
new_prs = -new_prs;
|
|
update_partition_exclusive(cs, new_prs);
|
|
}
|
|
|
|
spin_lock_irq(&callback_lock);
|
|
cs->partition_root_state = new_prs;
|
|
WRITE_ONCE(cs->prs_err, err);
|
|
if (!is_partition_valid(cs))
|
|
reset_partition_data(cs);
|
|
else if (new_xcpus_state)
|
|
partition_xcpus_newstate(old_prs, new_prs, cs->effective_xcpus);
|
|
spin_unlock_irq(&callback_lock);
|
|
update_unbound_workqueue_cpumask(new_xcpus_state);
|
|
|
|
/* Force update if switching back to member */
|
|
update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0);
|
|
|
|
/* Update sched domains and load balance flag */
|
|
update_partition_sd_lb(cs, old_prs);
|
|
|
|
notify_partition_change(cs, old_prs);
|
|
free_cpumasks(NULL, &tmpmask);
|
|
return 0;
|
|
}
|
|
|
|
static struct cpuset *cpuset_attach_old_cs;
|
|
|
|
/*
|
|
* Check to see if a cpuset can accept a new task
|
|
* For v1, cpus_allowed and mems_allowed can't be empty.
|
|
* For v2, effective_cpus can't be empty.
|
|
* Note that in v1, effective_cpus = cpus_allowed.
|
|
*/
|
|
static int cpuset_can_attach_check(struct cpuset *cs)
|
|
{
|
|
if (cpumask_empty(cs->effective_cpus) ||
|
|
(!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
|
|
return -ENOSPC;
|
|
return 0;
|
|
}
|
|
|
|
static void reset_migrate_dl_data(struct cpuset *cs)
|
|
{
|
|
cs->nr_migrate_dl_tasks = 0;
|
|
cs->sum_migrate_dl_bw = 0;
|
|
}
|
|
|
|
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
|
|
static int cpuset_can_attach(struct cgroup_taskset *tset)
|
|
{
|
|
struct cgroup_subsys_state *css;
|
|
struct cpuset *cs, *oldcs;
|
|
struct task_struct *task;
|
|
bool cpus_updated, mems_updated;
|
|
int ret;
|
|
|
|
/* used later by cpuset_attach() */
|
|
cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
|
|
oldcs = cpuset_attach_old_cs;
|
|
cs = css_cs(css);
|
|
|
|
mutex_lock(&cpuset_mutex);
|
|
|
|
/* Check to see if task is allowed in the cpuset */
|
|
ret = cpuset_can_attach_check(cs);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
|
|
mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
|
|
|
|
cgroup_taskset_for_each(task, css, tset) {
|
|
ret = task_can_attach(task);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Skip rights over task check in v2 when nothing changes,
|
|
* migration permission derives from hierarchy ownership in
|
|
* cgroup_procs_write_permission()).
|
|
*/
|
|
if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
|
|
(cpus_updated || mems_updated)) {
|
|
ret = security_task_setscheduler(task);
|
|
if (ret)
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (dl_task(task)) {
|
|
cs->nr_migrate_dl_tasks++;
|
|
cs->sum_migrate_dl_bw += task->dl.dl_bw;
|
|
}
|
|
}
|
|
|
|
if (!cs->nr_migrate_dl_tasks)
|
|
goto out_success;
|
|
|
|
if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
|
|
int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
|
|
|
|
if (unlikely(cpu >= nr_cpu_ids)) {
|
|
reset_migrate_dl_data(cs);
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
|
|
if (ret) {
|
|
reset_migrate_dl_data(cs);
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
out_success:
|
|
/*
|
|
* Mark attach is in progress. This makes validate_change() fail
|
|
* changes which zero cpus/mems_allowed.
|
|
*/
|
|
cs->attach_in_progress++;
|
|
out_unlock:
|
|
mutex_unlock(&cpuset_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static void cpuset_cancel_attach(struct cgroup_taskset *tset)
|
|
{
|
|
struct cgroup_subsys_state *css;
|
|
struct cpuset *cs;
|
|
|
|
cgroup_taskset_first(tset, &css);
|
|
cs = css_cs(css);
|
|
|
|
mutex_lock(&cpuset_mutex);
|
|
dec_attach_in_progress_locked(cs);
|
|
|
|
if (cs->nr_migrate_dl_tasks) {
|
|
int cpu = cpumask_any(cs->effective_cpus);
|
|
|
|
dl_bw_free(cpu, cs->sum_migrate_dl_bw);
|
|
reset_migrate_dl_data(cs);
|
|
}
|
|
|
|
mutex_unlock(&cpuset_mutex);
|
|
}
|
|
|
|
/*
|
|
* Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
|
|
* but we can't allocate it dynamically there. Define it global and
|
|
* allocate from cpuset_init().
|
|
*/
|
|
static cpumask_var_t cpus_attach;
|
|
static nodemask_t cpuset_attach_nodemask_to;
|
|
|
|
static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
|
|
{
|
|
lockdep_assert_held(&cpuset_mutex);
|
|
|
|
if (cs != &top_cpuset)
|
|
guarantee_online_cpus(task, cpus_attach);
|
|
else
|
|
cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
|
|
subpartitions_cpus);
|
|
/*
|
|
* can_attach beforehand should guarantee that this doesn't
|
|
* fail. TODO: have a better way to handle failure here
|
|
*/
|
|
WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
|
|
|
|
cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
|
|
cpuset1_update_task_spread_flags(cs, task);
|
|
}
|
|
|
|
static void cpuset_attach(struct cgroup_taskset *tset)
|
|
{
|
|
struct task_struct *task;
|
|
struct task_struct *leader;
|
|
struct cgroup_subsys_state *css;
|
|
struct cpuset *cs;
|
|
struct cpuset *oldcs = cpuset_attach_old_cs;
|
|
bool cpus_updated, mems_updated;
|
|
|
|
cgroup_taskset_first(tset, &css);
|
|
cs = css_cs(css);
|
|
|
|
lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
|
|
mutex_lock(&cpuset_mutex);
|
|
cpus_updated = !cpumask_equal(cs->effective_cpus,
|
|
oldcs->effective_cpus);
|
|
mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
|
|
|
|
/*
|
|
* In the default hierarchy, enabling cpuset in the child cgroups
|
|
* will trigger a number of cpuset_attach() calls with no change
|
|
* in effective cpus and mems. In that case, we can optimize out
|
|
* by skipping the task iteration and update.
|
|
*/
|
|
if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
|
|
!cpus_updated && !mems_updated) {
|
|
cpuset_attach_nodemask_to = cs->effective_mems;
|
|
goto out;
|
|
}
|
|
|
|
guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
|
|
|
|
cgroup_taskset_for_each(task, css, tset)
|
|
cpuset_attach_task(cs, task);
|
|
|
|
/*
|
|
* Change mm for all threadgroup leaders. This is expensive and may
|
|
* sleep and should be moved outside migration path proper. Skip it
|
|
* if there is no change in effective_mems and CS_MEMORY_MIGRATE is
|
|
* not set.
|
|
*/
|
|
cpuset_attach_nodemask_to = cs->effective_mems;
|
|
if (!is_memory_migrate(cs) && !mems_updated)
|
|
goto out;
|
|
|
|
cgroup_taskset_for_each_leader(leader, css, tset) {
|
|
struct mm_struct *mm = get_task_mm(leader);
|
|
|
|
if (mm) {
|
|
mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
|
|
|
|
/*
|
|
* old_mems_allowed is the same with mems_allowed
|
|
* here, except if this task is being moved
|
|
* automatically due to hotplug. In that case
|
|
* @mems_allowed has been updated and is empty, so
|
|
* @old_mems_allowed is the right nodesets that we
|
|
* migrate mm from.
|
|
*/
|
|
if (is_memory_migrate(cs))
|
|
cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
|
|
&cpuset_attach_nodemask_to);
|
|
else
|
|
mmput(mm);
|
|
}
|
|
}
|
|
|
|
out:
|
|
cs->old_mems_allowed = cpuset_attach_nodemask_to;
|
|
|
|
if (cs->nr_migrate_dl_tasks) {
|
|
cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
|
|
oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
|
|
reset_migrate_dl_data(cs);
|
|
}
|
|
|
|
dec_attach_in_progress_locked(cs);
|
|
|
|
mutex_unlock(&cpuset_mutex);
|
|
}
|
|
|
|
/*
|
|
* Common handling for a write to a "cpus" or "mems" file.
|
|
*/
|
|
ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes, loff_t off)
|
|
{
|
|
struct cpuset *cs = css_cs(of_css(of));
|
|
struct cpuset *trialcs;
|
|
int retval = -ENODEV;
|
|
|
|
buf = strstrip(buf);
|
|
|
|
/*
|
|
* CPU or memory hotunplug may leave @cs w/o any execution
|
|
* resources, in which case the hotplug code asynchronously updates
|
|
* configuration and transfers all tasks to the nearest ancestor
|
|
* which can execute.
|
|
*
|
|
* As writes to "cpus" or "mems" may restore @cs's execution
|
|
* resources, wait for the previously scheduled operations before
|
|
* proceeding, so that we don't end up keep removing tasks added
|
|
* after execution capability is restored.
|
|
*
|
|
* cpuset_handle_hotplug may call back into cgroup core asynchronously
|
|
* via cgroup_transfer_tasks() and waiting for it from a cgroupfs
|
|
* operation like this one can lead to a deadlock through kernfs
|
|
* active_ref protection. Let's break the protection. Losing the
|
|
* protection is okay as we check whether @cs is online after
|
|
* grabbing cpuset_mutex anyway. This only happens on the legacy
|
|
* hierarchies.
|
|
*/
|
|
css_get(&cs->css);
|
|
kernfs_break_active_protection(of->kn);
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&cpuset_mutex);
|
|
if (!is_cpuset_online(cs))
|
|
goto out_unlock;
|
|
|
|
trialcs = alloc_trial_cpuset(cs);
|
|
if (!trialcs) {
|
|
retval = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
switch (of_cft(of)->private) {
|
|
case FILE_CPULIST:
|
|
retval = update_cpumask(cs, trialcs, buf);
|
|
break;
|
|
case FILE_EXCLUSIVE_CPULIST:
|
|
retval = update_exclusive_cpumask(cs, trialcs, buf);
|
|
break;
|
|
case FILE_MEMLIST:
|
|
retval = update_nodemask(cs, trialcs, buf);
|
|
break;
|
|
default:
|
|
retval = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
free_cpuset(trialcs);
|
|
out_unlock:
|
|
mutex_unlock(&cpuset_mutex);
|
|
cpus_read_unlock();
|
|
kernfs_unbreak_active_protection(of->kn);
|
|
css_put(&cs->css);
|
|
flush_workqueue(cpuset_migrate_mm_wq);
|
|
return retval ?: nbytes;
|
|
}
|
|
|
|
/*
|
|
* These ascii lists should be read in a single call, by using a user
|
|
* buffer large enough to hold the entire map. If read in smaller
|
|
* chunks, there is no guarantee of atomicity. Since the display format
|
|
* used, list of ranges of sequential numbers, is variable length,
|
|
* and since these maps can change value dynamically, one could read
|
|
* gibberish by doing partial reads while a list was changing.
|
|
*/
|
|
int cpuset_common_seq_show(struct seq_file *sf, void *v)
|
|
{
|
|
struct cpuset *cs = css_cs(seq_css(sf));
|
|
cpuset_filetype_t type = seq_cft(sf)->private;
|
|
int ret = 0;
|
|
|
|
spin_lock_irq(&callback_lock);
|
|
|
|
switch (type) {
|
|
case FILE_CPULIST:
|
|
seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
|
|
break;
|
|
case FILE_MEMLIST:
|
|
seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
|
|
break;
|
|
case FILE_EFFECTIVE_CPULIST:
|
|
seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
|
|
break;
|
|
case FILE_EFFECTIVE_MEMLIST:
|
|
seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
|
|
break;
|
|
case FILE_EXCLUSIVE_CPULIST:
|
|
seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
|
|
break;
|
|
case FILE_EFFECTIVE_XCPULIST:
|
|
seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
|
|
break;
|
|
case FILE_SUBPARTS_CPULIST:
|
|
seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
|
|
break;
|
|
case FILE_ISOLATED_CPULIST:
|
|
seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
spin_unlock_irq(&callback_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int sched_partition_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct cpuset *cs = css_cs(seq_css(seq));
|
|
const char *err, *type = NULL;
|
|
|
|
switch (cs->partition_root_state) {
|
|
case PRS_ROOT:
|
|
seq_puts(seq, "root\n");
|
|
break;
|
|
case PRS_ISOLATED:
|
|
seq_puts(seq, "isolated\n");
|
|
break;
|
|
case PRS_MEMBER:
|
|
seq_puts(seq, "member\n");
|
|
break;
|
|
case PRS_INVALID_ROOT:
|
|
type = "root";
|
|
fallthrough;
|
|
case PRS_INVALID_ISOLATED:
|
|
if (!type)
|
|
type = "isolated";
|
|
err = perr_strings[READ_ONCE(cs->prs_err)];
|
|
if (err)
|
|
seq_printf(seq, "%s invalid (%s)\n", type, err);
|
|
else
|
|
seq_printf(seq, "%s invalid\n", type);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
|
|
size_t nbytes, loff_t off)
|
|
{
|
|
struct cpuset *cs = css_cs(of_css(of));
|
|
int val;
|
|
int retval = -ENODEV;
|
|
|
|
buf = strstrip(buf);
|
|
|
|
if (!strcmp(buf, "root"))
|
|
val = PRS_ROOT;
|
|
else if (!strcmp(buf, "member"))
|
|
val = PRS_MEMBER;
|
|
else if (!strcmp(buf, "isolated"))
|
|
val = PRS_ISOLATED;
|
|
else
|
|
return -EINVAL;
|
|
|
|
css_get(&cs->css);
|
|
cpus_read_lock();
|
|
mutex_lock(&cpuset_mutex);
|
|
if (!is_cpuset_online(cs))
|
|
goto out_unlock;
|
|
|
|
retval = update_prstate(cs, val);
|
|
out_unlock:
|
|
mutex_unlock(&cpuset_mutex);
|
|
cpus_read_unlock();
|
|
css_put(&cs->css);
|
|
return retval ?: nbytes;
|
|
}
|
|
|
|
/*
|
|
* This is currently a minimal set for the default hierarchy. It can be
|
|
* expanded later on by migrating more features and control files from v1.
|
|
*/
|
|
static struct cftype dfl_files[] = {
|
|
{
|
|
.name = "cpus",
|
|
.seq_show = cpuset_common_seq_show,
|
|
.write = cpuset_write_resmask,
|
|
.max_write_len = (100U + 6 * NR_CPUS),
|
|
.private = FILE_CPULIST,
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
},
|
|
|
|
{
|
|
.name = "mems",
|
|
.seq_show = cpuset_common_seq_show,
|
|
.write = cpuset_write_resmask,
|
|
.max_write_len = (100U + 6 * MAX_NUMNODES),
|
|
.private = FILE_MEMLIST,
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
},
|
|
|
|
{
|
|
.name = "cpus.effective",
|
|
.seq_show = cpuset_common_seq_show,
|
|
.private = FILE_EFFECTIVE_CPULIST,
|
|
},
|
|
|
|
{
|
|
.name = "mems.effective",
|
|
.seq_show = cpuset_common_seq_show,
|
|
.private = FILE_EFFECTIVE_MEMLIST,
|
|
},
|
|
|
|
{
|
|
.name = "cpus.partition",
|
|
.seq_show = sched_partition_show,
|
|
.write = sched_partition_write,
|
|
.private = FILE_PARTITION_ROOT,
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
.file_offset = offsetof(struct cpuset, partition_file),
|
|
},
|
|
|
|
{
|
|
.name = "cpus.exclusive",
|
|
.seq_show = cpuset_common_seq_show,
|
|
.write = cpuset_write_resmask,
|
|
.max_write_len = (100U + 6 * NR_CPUS),
|
|
.private = FILE_EXCLUSIVE_CPULIST,
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
},
|
|
|
|
{
|
|
.name = "cpus.exclusive.effective",
|
|
.seq_show = cpuset_common_seq_show,
|
|
.private = FILE_EFFECTIVE_XCPULIST,
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
},
|
|
|
|
{
|
|
.name = "cpus.subpartitions",
|
|
.seq_show = cpuset_common_seq_show,
|
|
.private = FILE_SUBPARTS_CPULIST,
|
|
.flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
|
|
},
|
|
|
|
{
|
|
.name = "cpus.isolated",
|
|
.seq_show = cpuset_common_seq_show,
|
|
.private = FILE_ISOLATED_CPULIST,
|
|
.flags = CFTYPE_ONLY_ON_ROOT,
|
|
},
|
|
|
|
{ } /* terminate */
|
|
};
|
|
|
|
|
|
/**
|
|
* cpuset_css_alloc - Allocate a cpuset css
|
|
* @parent_css: Parent css of the control group that the new cpuset will be
|
|
* part of
|
|
* Return: cpuset css on success, -ENOMEM on failure.
|
|
*
|
|
* Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
|
|
* top cpuset css otherwise.
|
|
*/
|
|
static struct cgroup_subsys_state *
|
|
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
|
|
{
|
|
struct cpuset *cs;
|
|
|
|
if (!parent_css)
|
|
return &top_cpuset.css;
|
|
|
|
cs = kzalloc(sizeof(*cs), GFP_KERNEL);
|
|
if (!cs)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (alloc_cpumasks(cs, NULL)) {
|
|
kfree(cs);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
|
|
fmeter_init(&cs->fmeter);
|
|
cs->relax_domain_level = -1;
|
|
INIT_LIST_HEAD(&cs->remote_sibling);
|
|
|
|
/* Set CS_MEMORY_MIGRATE for default hierarchy */
|
|
if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
|
|
__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
|
|
|
|
return &cs->css;
|
|
}
|
|
|
|
static int cpuset_css_online(struct cgroup_subsys_state *css)
|
|
{
|
|
struct cpuset *cs = css_cs(css);
|
|
struct cpuset *parent = parent_cs(cs);
|
|
struct cpuset *tmp_cs;
|
|
struct cgroup_subsys_state *pos_css;
|
|
|
|
if (!parent)
|
|
return 0;
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&cpuset_mutex);
|
|
|
|
set_bit(CS_ONLINE, &cs->flags);
|
|
if (is_spread_page(parent))
|
|
set_bit(CS_SPREAD_PAGE, &cs->flags);
|
|
if (is_spread_slab(parent))
|
|
set_bit(CS_SPREAD_SLAB, &cs->flags);
|
|
/*
|
|
* For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
|
|
*/
|
|
if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
|
|
!is_sched_load_balance(parent))
|
|
clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
|
|
|
|
cpuset_inc();
|
|
|
|
spin_lock_irq(&callback_lock);
|
|
if (is_in_v2_mode()) {
|
|
cpumask_copy(cs->effective_cpus, parent->effective_cpus);
|
|
cs->effective_mems = parent->effective_mems;
|
|
}
|
|
spin_unlock_irq(&callback_lock);
|
|
|
|
if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
|
|
* set. This flag handling is implemented in cgroup core for
|
|
* historical reasons - the flag may be specified during mount.
|
|
*
|
|
* Currently, if any sibling cpusets have exclusive cpus or mem, we
|
|
* refuse to clone the configuration - thereby refusing the task to
|
|
* be entered, and as a result refusing the sys_unshare() or
|
|
* clone() which initiated it. If this becomes a problem for some
|
|
* users who wish to allow that scenario, then this could be
|
|
* changed to grant parent->cpus_allowed-sibling_cpus_exclusive
|
|
* (and likewise for mems) to the new cgroup.
|
|
*/
|
|
rcu_read_lock();
|
|
cpuset_for_each_child(tmp_cs, pos_css, parent) {
|
|
if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
|
|
rcu_read_unlock();
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
spin_lock_irq(&callback_lock);
|
|
cs->mems_allowed = parent->mems_allowed;
|
|
cs->effective_mems = parent->mems_allowed;
|
|
cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
|
|
cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
|
|
spin_unlock_irq(&callback_lock);
|
|
out_unlock:
|
|
mutex_unlock(&cpuset_mutex);
|
|
cpus_read_unlock();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If the cpuset being removed has its flag 'sched_load_balance'
|
|
* enabled, then simulate turning sched_load_balance off, which
|
|
* will call rebuild_sched_domains_locked(). That is not needed
|
|
* in the default hierarchy where only changes in partition
|
|
* will cause repartitioning.
|
|
*
|
|
* If the cpuset has the 'sched.partition' flag enabled, simulate
|
|
* turning 'sched.partition" off.
|
|
*/
|
|
|
|
static void cpuset_css_offline(struct cgroup_subsys_state *css)
|
|
{
|
|
struct cpuset *cs = css_cs(css);
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&cpuset_mutex);
|
|
|
|
if (is_partition_valid(cs))
|
|
update_prstate(cs, 0);
|
|
|
|
if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
|
|
is_sched_load_balance(cs))
|
|
cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
|
|
|
|
cpuset_dec();
|
|
clear_bit(CS_ONLINE, &cs->flags);
|
|
|
|
mutex_unlock(&cpuset_mutex);
|
|
cpus_read_unlock();
|
|
}
|
|
|
|
static void cpuset_css_free(struct cgroup_subsys_state *css)
|
|
{
|
|
struct cpuset *cs = css_cs(css);
|
|
|
|
free_cpuset(cs);
|
|
}
|
|
|
|
static void cpuset_bind(struct cgroup_subsys_state *root_css)
|
|
{
|
|
mutex_lock(&cpuset_mutex);
|
|
spin_lock_irq(&callback_lock);
|
|
|
|
if (is_in_v2_mode()) {
|
|
cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
|
|
cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
|
|
top_cpuset.mems_allowed = node_possible_map;
|
|
} else {
|
|
cpumask_copy(top_cpuset.cpus_allowed,
|
|
top_cpuset.effective_cpus);
|
|
top_cpuset.mems_allowed = top_cpuset.effective_mems;
|
|
}
|
|
|
|
spin_unlock_irq(&callback_lock);
|
|
mutex_unlock(&cpuset_mutex);
|
|
}
|
|
|
|
/*
|
|
* In case the child is cloned into a cpuset different from its parent,
|
|
* additional checks are done to see if the move is allowed.
|
|
*/
|
|
static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
|
|
{
|
|
struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
|
|
bool same_cs;
|
|
int ret;
|
|
|
|
rcu_read_lock();
|
|
same_cs = (cs == task_cs(current));
|
|
rcu_read_unlock();
|
|
|
|
if (same_cs)
|
|
return 0;
|
|
|
|
lockdep_assert_held(&cgroup_mutex);
|
|
mutex_lock(&cpuset_mutex);
|
|
|
|
/* Check to see if task is allowed in the cpuset */
|
|
ret = cpuset_can_attach_check(cs);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = task_can_attach(task);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = security_task_setscheduler(task);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Mark attach is in progress. This makes validate_change() fail
|
|
* changes which zero cpus/mems_allowed.
|
|
*/
|
|
cs->attach_in_progress++;
|
|
out_unlock:
|
|
mutex_unlock(&cpuset_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
|
|
{
|
|
struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
|
|
bool same_cs;
|
|
|
|
rcu_read_lock();
|
|
same_cs = (cs == task_cs(current));
|
|
rcu_read_unlock();
|
|
|
|
if (same_cs)
|
|
return;
|
|
|
|
dec_attach_in_progress(cs);
|
|
}
|
|
|
|
/*
|
|
* Make sure the new task conform to the current state of its parent,
|
|
* which could have been changed by cpuset just after it inherits the
|
|
* state from the parent and before it sits on the cgroup's task list.
|
|
*/
|
|
static void cpuset_fork(struct task_struct *task)
|
|
{
|
|
struct cpuset *cs;
|
|
bool same_cs;
|
|
|
|
rcu_read_lock();
|
|
cs = task_cs(task);
|
|
same_cs = (cs == task_cs(current));
|
|
rcu_read_unlock();
|
|
|
|
if (same_cs) {
|
|
if (cs == &top_cpuset)
|
|
return;
|
|
|
|
set_cpus_allowed_ptr(task, current->cpus_ptr);
|
|
task->mems_allowed = current->mems_allowed;
|
|
return;
|
|
}
|
|
|
|
/* CLONE_INTO_CGROUP */
|
|
mutex_lock(&cpuset_mutex);
|
|
guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
|
|
cpuset_attach_task(cs, task);
|
|
|
|
dec_attach_in_progress_locked(cs);
|
|
mutex_unlock(&cpuset_mutex);
|
|
}
|
|
|
|
struct cgroup_subsys cpuset_cgrp_subsys = {
|
|
.css_alloc = cpuset_css_alloc,
|
|
.css_online = cpuset_css_online,
|
|
.css_offline = cpuset_css_offline,
|
|
.css_free = cpuset_css_free,
|
|
.can_attach = cpuset_can_attach,
|
|
.cancel_attach = cpuset_cancel_attach,
|
|
.attach = cpuset_attach,
|
|
.post_attach = cpuset_post_attach,
|
|
.bind = cpuset_bind,
|
|
.can_fork = cpuset_can_fork,
|
|
.cancel_fork = cpuset_cancel_fork,
|
|
.fork = cpuset_fork,
|
|
.legacy_cftypes = cpuset1_files,
|
|
.dfl_cftypes = dfl_files,
|
|
.early_init = true,
|
|
.threaded = true,
|
|
};
|
|
|
|
/**
|
|
* cpuset_init - initialize cpusets at system boot
|
|
*
|
|
* Description: Initialize top_cpuset
|
|
**/
|
|
|
|
int __init cpuset_init(void)
|
|
{
|
|
BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
|
|
BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
|
|
BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
|
|
BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
|
|
BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
|
|
BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
|
|
|
|
cpumask_setall(top_cpuset.cpus_allowed);
|
|
nodes_setall(top_cpuset.mems_allowed);
|
|
cpumask_setall(top_cpuset.effective_cpus);
|
|
cpumask_setall(top_cpuset.effective_xcpus);
|
|
cpumask_setall(top_cpuset.exclusive_cpus);
|
|
nodes_setall(top_cpuset.effective_mems);
|
|
|
|
fmeter_init(&top_cpuset.fmeter);
|
|
INIT_LIST_HEAD(&remote_children);
|
|
|
|
BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
|
|
|
|
have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN);
|
|
if (have_boot_isolcpus) {
|
|
BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL));
|
|
cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN));
|
|
cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
hotplug_update_tasks(struct cpuset *cs,
|
|
struct cpumask *new_cpus, nodemask_t *new_mems,
|
|
bool cpus_updated, bool mems_updated)
|
|
{
|
|
/* A partition root is allowed to have empty effective cpus */
|
|
if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
|
|
cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
|
|
if (nodes_empty(*new_mems))
|
|
*new_mems = parent_cs(cs)->effective_mems;
|
|
|
|
spin_lock_irq(&callback_lock);
|
|
cpumask_copy(cs->effective_cpus, new_cpus);
|
|
cs->effective_mems = *new_mems;
|
|
spin_unlock_irq(&callback_lock);
|
|
|
|
if (cpus_updated)
|
|
cpuset_update_tasks_cpumask(cs, new_cpus);
|
|
if (mems_updated)
|
|
cpuset_update_tasks_nodemask(cs);
|
|
}
|
|
|
|
void cpuset_force_rebuild(void)
|
|
{
|
|
force_sd_rebuild = true;
|
|
}
|
|
|
|
/**
|
|
* cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
|
|
* @cs: cpuset in interest
|
|
* @tmp: the tmpmasks structure pointer
|
|
*
|
|
* Compare @cs's cpu and mem masks against top_cpuset and if some have gone
|
|
* offline, update @cs accordingly. If @cs ends up with no CPU or memory,
|
|
* all its tasks are moved to the nearest ancestor with both resources.
|
|
*/
|
|
static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
|
|
{
|
|
static cpumask_t new_cpus;
|
|
static nodemask_t new_mems;
|
|
bool cpus_updated;
|
|
bool mems_updated;
|
|
bool remote;
|
|
int partcmd = -1;
|
|
struct cpuset *parent;
|
|
retry:
|
|
wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
|
|
|
|
mutex_lock(&cpuset_mutex);
|
|
|
|
/*
|
|
* We have raced with task attaching. We wait until attaching
|
|
* is finished, so we won't attach a task to an empty cpuset.
|
|
*/
|
|
if (cs->attach_in_progress) {
|
|
mutex_unlock(&cpuset_mutex);
|
|
goto retry;
|
|
}
|
|
|
|
parent = parent_cs(cs);
|
|
compute_effective_cpumask(&new_cpus, cs, parent);
|
|
nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
|
|
|
|
if (!tmp || !cs->partition_root_state)
|
|
goto update_tasks;
|
|
|
|
/*
|
|
* Compute effective_cpus for valid partition root, may invalidate
|
|
* child partition roots if necessary.
|
|
*/
|
|
remote = is_remote_partition(cs);
|
|
if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
|
|
compute_partition_effective_cpumask(cs, &new_cpus);
|
|
|
|
if (remote && cpumask_empty(&new_cpus) &&
|
|
partition_is_populated(cs, NULL)) {
|
|
remote_partition_disable(cs, tmp);
|
|
compute_effective_cpumask(&new_cpus, cs, parent);
|
|
remote = false;
|
|
cpuset_force_rebuild();
|
|
}
|
|
|
|
/*
|
|
* Force the partition to become invalid if either one of
|
|
* the following conditions hold:
|
|
* 1) empty effective cpus but not valid empty partition.
|
|
* 2) parent is invalid or doesn't grant any cpus to child
|
|
* partitions.
|
|
*/
|
|
if (is_local_partition(cs) && (!is_partition_valid(parent) ||
|
|
tasks_nocpu_error(parent, cs, &new_cpus)))
|
|
partcmd = partcmd_invalidate;
|
|
/*
|
|
* On the other hand, an invalid partition root may be transitioned
|
|
* back to a regular one.
|
|
*/
|
|
else if (is_partition_valid(parent) && is_partition_invalid(cs))
|
|
partcmd = partcmd_update;
|
|
|
|
if (partcmd >= 0) {
|
|
update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
|
|
if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
|
|
compute_partition_effective_cpumask(cs, &new_cpus);
|
|
cpuset_force_rebuild();
|
|
}
|
|
}
|
|
|
|
update_tasks:
|
|
cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
|
|
mems_updated = !nodes_equal(new_mems, cs->effective_mems);
|
|
if (!cpus_updated && !mems_updated)
|
|
goto unlock; /* Hotplug doesn't affect this cpuset */
|
|
|
|
if (mems_updated)
|
|
check_insane_mems_config(&new_mems);
|
|
|
|
if (is_in_v2_mode())
|
|
hotplug_update_tasks(cs, &new_cpus, &new_mems,
|
|
cpus_updated, mems_updated);
|
|
else
|
|
cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems,
|
|
cpus_updated, mems_updated);
|
|
|
|
unlock:
|
|
mutex_unlock(&cpuset_mutex);
|
|
}
|
|
|
|
/**
|
|
* cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset
|
|
*
|
|
* This function is called after either CPU or memory configuration has
|
|
* changed and updates cpuset accordingly. The top_cpuset is always
|
|
* synchronized to cpu_active_mask and N_MEMORY, which is necessary in
|
|
* order to make cpusets transparent (of no affect) on systems that are
|
|
* actively using CPU hotplug but making no active use of cpusets.
|
|
*
|
|
* Non-root cpusets are only affected by offlining. If any CPUs or memory
|
|
* nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
|
|
* all descendants.
|
|
*
|
|
* Note that CPU offlining during suspend is ignored. We don't modify
|
|
* cpusets across suspend/resume cycles at all.
|
|
*
|
|
* CPU / memory hotplug is handled synchronously.
|
|
*/
|
|
static void cpuset_handle_hotplug(void)
|
|
{
|
|
static cpumask_t new_cpus;
|
|
static nodemask_t new_mems;
|
|
bool cpus_updated, mems_updated;
|
|
bool on_dfl = is_in_v2_mode();
|
|
struct tmpmasks tmp, *ptmp = NULL;
|
|
|
|
if (on_dfl && !alloc_cpumasks(NULL, &tmp))
|
|
ptmp = &tmp;
|
|
|
|
lockdep_assert_cpus_held();
|
|
mutex_lock(&cpuset_mutex);
|
|
|
|
/* fetch the available cpus/mems and find out which changed how */
|
|
cpumask_copy(&new_cpus, cpu_active_mask);
|
|
new_mems = node_states[N_MEMORY];
|
|
|
|
/*
|
|
* If subpartitions_cpus is populated, it is likely that the check
|
|
* below will produce a false positive on cpus_updated when the cpu
|
|
* list isn't changed. It is extra work, but it is better to be safe.
|
|
*/
|
|
cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
|
|
!cpumask_empty(subpartitions_cpus);
|
|
mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
|
|
|
|
/* For v1, synchronize cpus_allowed to cpu_active_mask */
|
|
if (cpus_updated) {
|
|
cpuset_force_rebuild();
|
|
spin_lock_irq(&callback_lock);
|
|
if (!on_dfl)
|
|
cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
|
|
/*
|
|
* Make sure that CPUs allocated to child partitions
|
|
* do not show up in effective_cpus. If no CPU is left,
|
|
* we clear the subpartitions_cpus & let the child partitions
|
|
* fight for the CPUs again.
|
|
*/
|
|
if (!cpumask_empty(subpartitions_cpus)) {
|
|
if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
|
|
top_cpuset.nr_subparts = 0;
|
|
cpumask_clear(subpartitions_cpus);
|
|
} else {
|
|
cpumask_andnot(&new_cpus, &new_cpus,
|
|
subpartitions_cpus);
|
|
}
|
|
}
|
|
cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
|
|
spin_unlock_irq(&callback_lock);
|
|
/* we don't mess with cpumasks of tasks in top_cpuset */
|
|
}
|
|
|
|
/* synchronize mems_allowed to N_MEMORY */
|
|
if (mems_updated) {
|
|
spin_lock_irq(&callback_lock);
|
|
if (!on_dfl)
|
|
top_cpuset.mems_allowed = new_mems;
|
|
top_cpuset.effective_mems = new_mems;
|
|
spin_unlock_irq(&callback_lock);
|
|
cpuset_update_tasks_nodemask(&top_cpuset);
|
|
}
|
|
|
|
mutex_unlock(&cpuset_mutex);
|
|
|
|
/* if cpus or mems changed, we need to propagate to descendants */
|
|
if (cpus_updated || mems_updated) {
|
|
struct cpuset *cs;
|
|
struct cgroup_subsys_state *pos_css;
|
|
|
|
rcu_read_lock();
|
|
cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
|
|
if (cs == &top_cpuset || !css_tryget_online(&cs->css))
|
|
continue;
|
|
rcu_read_unlock();
|
|
|
|
cpuset_hotplug_update_tasks(cs, ptmp);
|
|
|
|
rcu_read_lock();
|
|
css_put(&cs->css);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* rebuild sched domains if cpus_allowed has changed */
|
|
if (force_sd_rebuild) {
|
|
force_sd_rebuild = false;
|
|
rebuild_sched_domains_cpuslocked();
|
|
}
|
|
|
|
free_cpumasks(NULL, ptmp);
|
|
}
|
|
|
|
void cpuset_update_active_cpus(void)
|
|
{
|
|
/*
|
|
* We're inside cpu hotplug critical region which usually nests
|
|
* inside cgroup synchronization. Bounce actual hotplug processing
|
|
* to a work item to avoid reverse locking order.
|
|
*/
|
|
cpuset_handle_hotplug();
|
|
}
|
|
|
|
/*
|
|
* Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
|
|
* Call this routine anytime after node_states[N_MEMORY] changes.
|
|
* See cpuset_update_active_cpus() for CPU hotplug handling.
|
|
*/
|
|
static int cpuset_track_online_nodes(struct notifier_block *self,
|
|
unsigned long action, void *arg)
|
|
{
|
|
cpuset_handle_hotplug();
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
/**
|
|
* cpuset_init_smp - initialize cpus_allowed
|
|
*
|
|
* Description: Finish top cpuset after cpu, node maps are initialized
|
|
*/
|
|
void __init cpuset_init_smp(void)
|
|
{
|
|
/*
|
|
* cpus_allowd/mems_allowed set to v2 values in the initial
|
|
* cpuset_bind() call will be reset to v1 values in another
|
|
* cpuset_bind() call when v1 cpuset is mounted.
|
|
*/
|
|
top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
|
|
|
|
cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
|
|
top_cpuset.effective_mems = node_states[N_MEMORY];
|
|
|
|
hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
|
|
|
|
cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
|
|
BUG_ON(!cpuset_migrate_mm_wq);
|
|
}
|
|
|
|
/**
|
|
* cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
|
|
* @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
|
|
* @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
|
|
*
|
|
* Description: Returns the cpumask_var_t cpus_allowed of the cpuset
|
|
* attached to the specified @tsk. Guaranteed to return some non-empty
|
|
* subset of cpu_online_mask, even if this means going outside the
|
|
* tasks cpuset, except when the task is in the top cpuset.
|
|
**/
|
|
|
|
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
|
|
{
|
|
unsigned long flags;
|
|
struct cpuset *cs;
|
|
|
|
spin_lock_irqsave(&callback_lock, flags);
|
|
rcu_read_lock();
|
|
|
|
cs = task_cs(tsk);
|
|
if (cs != &top_cpuset)
|
|
guarantee_online_cpus(tsk, pmask);
|
|
/*
|
|
* Tasks in the top cpuset won't get update to their cpumasks
|
|
* when a hotplug online/offline event happens. So we include all
|
|
* offline cpus in the allowed cpu list.
|
|
*/
|
|
if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
|
|
const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
|
|
|
|
/*
|
|
* We first exclude cpus allocated to partitions. If there is no
|
|
* allowable online cpu left, we fall back to all possible cpus.
|
|
*/
|
|
cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
|
|
if (!cpumask_intersects(pmask, cpu_online_mask))
|
|
cpumask_copy(pmask, possible_mask);
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
spin_unlock_irqrestore(&callback_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
|
|
* @tsk: pointer to task_struct with which the scheduler is struggling
|
|
*
|
|
* Description: In the case that the scheduler cannot find an allowed cpu in
|
|
* tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
|
|
* mode however, this value is the same as task_cs(tsk)->effective_cpus,
|
|
* which will not contain a sane cpumask during cases such as cpu hotplugging.
|
|
* This is the absolute last resort for the scheduler and it is only used if
|
|
* _every_ other avenue has been traveled.
|
|
*
|
|
* Returns true if the affinity of @tsk was changed, false otherwise.
|
|
**/
|
|
|
|
bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
|
|
{
|
|
const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
|
|
const struct cpumask *cs_mask;
|
|
bool changed = false;
|
|
|
|
rcu_read_lock();
|
|
cs_mask = task_cs(tsk)->cpus_allowed;
|
|
if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
|
|
do_set_cpus_allowed(tsk, cs_mask);
|
|
changed = true;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* We own tsk->cpus_allowed, nobody can change it under us.
|
|
*
|
|
* But we used cs && cs->cpus_allowed lockless and thus can
|
|
* race with cgroup_attach_task() or update_cpumask() and get
|
|
* the wrong tsk->cpus_allowed. However, both cases imply the
|
|
* subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
|
|
* which takes task_rq_lock().
|
|
*
|
|
* If we are called after it dropped the lock we must see all
|
|
* changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
|
|
* set any mask even if it is not right from task_cs() pov,
|
|
* the pending set_cpus_allowed_ptr() will fix things.
|
|
*
|
|
* select_fallback_rq() will fix things ups and set cpu_possible_mask
|
|
* if required.
|
|
*/
|
|
return changed;
|
|
}
|
|
|
|
void __init cpuset_init_current_mems_allowed(void)
|
|
{
|
|
nodes_setall(current->mems_allowed);
|
|
}
|
|
|
|
/**
|
|
* cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
|
|
* @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
|
|
*
|
|
* Description: Returns the nodemask_t mems_allowed of the cpuset
|
|
* attached to the specified @tsk. Guaranteed to return some non-empty
|
|
* subset of node_states[N_MEMORY], even if this means going outside the
|
|
* tasks cpuset.
|
|
**/
|
|
|
|
nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
|
|
{
|
|
nodemask_t mask;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&callback_lock, flags);
|
|
rcu_read_lock();
|
|
guarantee_online_mems(task_cs(tsk), &mask);
|
|
rcu_read_unlock();
|
|
spin_unlock_irqrestore(&callback_lock, flags);
|
|
|
|
return mask;
|
|
}
|
|
|
|
/**
|
|
* cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
|
|
* @nodemask: the nodemask to be checked
|
|
*
|
|
* Are any of the nodes in the nodemask allowed in current->mems_allowed?
|
|
*/
|
|
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
|
|
{
|
|
return nodes_intersects(*nodemask, current->mems_allowed);
|
|
}
|
|
|
|
/*
|
|
* nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
|
|
* mem_hardwall ancestor to the specified cpuset. Call holding
|
|
* callback_lock. If no ancestor is mem_exclusive or mem_hardwall
|
|
* (an unusual configuration), then returns the root cpuset.
|
|
*/
|
|
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
|
|
{
|
|
while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
|
|
cs = parent_cs(cs);
|
|
return cs;
|
|
}
|
|
|
|
/*
|
|
* cpuset_node_allowed - Can we allocate on a memory node?
|
|
* @node: is this an allowed node?
|
|
* @gfp_mask: memory allocation flags
|
|
*
|
|
* If we're in interrupt, yes, we can always allocate. If @node is set in
|
|
* current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
|
|
* node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
|
|
* yes. If current has access to memory reserves as an oom victim, yes.
|
|
* Otherwise, no.
|
|
*
|
|
* GFP_USER allocations are marked with the __GFP_HARDWALL bit,
|
|
* and do not allow allocations outside the current tasks cpuset
|
|
* unless the task has been OOM killed.
|
|
* GFP_KERNEL allocations are not so marked, so can escape to the
|
|
* nearest enclosing hardwalled ancestor cpuset.
|
|
*
|
|
* Scanning up parent cpusets requires callback_lock. The
|
|
* __alloc_pages() routine only calls here with __GFP_HARDWALL bit
|
|
* _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
|
|
* current tasks mems_allowed came up empty on the first pass over
|
|
* the zonelist. So only GFP_KERNEL allocations, if all nodes in the
|
|
* cpuset are short of memory, might require taking the callback_lock.
|
|
*
|
|
* The first call here from mm/page_alloc:get_page_from_freelist()
|
|
* has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
|
|
* so no allocation on a node outside the cpuset is allowed (unless
|
|
* in interrupt, of course).
|
|
*
|
|
* The second pass through get_page_from_freelist() doesn't even call
|
|
* here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
|
|
* variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
|
|
* in alloc_flags. That logic and the checks below have the combined
|
|
* affect that:
|
|
* in_interrupt - any node ok (current task context irrelevant)
|
|
* GFP_ATOMIC - any node ok
|
|
* tsk_is_oom_victim - any node ok
|
|
* GFP_KERNEL - any node in enclosing hardwalled cpuset ok
|
|
* GFP_USER - only nodes in current tasks mems allowed ok.
|
|
*/
|
|
bool cpuset_node_allowed(int node, gfp_t gfp_mask)
|
|
{
|
|
struct cpuset *cs; /* current cpuset ancestors */
|
|
bool allowed; /* is allocation in zone z allowed? */
|
|
unsigned long flags;
|
|
|
|
if (in_interrupt())
|
|
return true;
|
|
if (node_isset(node, current->mems_allowed))
|
|
return true;
|
|
/*
|
|
* Allow tasks that have access to memory reserves because they have
|
|
* been OOM killed to get memory anywhere.
|
|
*/
|
|
if (unlikely(tsk_is_oom_victim(current)))
|
|
return true;
|
|
if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
|
|
return false;
|
|
|
|
if (current->flags & PF_EXITING) /* Let dying task have memory */
|
|
return true;
|
|
|
|
/* Not hardwall and node outside mems_allowed: scan up cpusets */
|
|
spin_lock_irqsave(&callback_lock, flags);
|
|
|
|
rcu_read_lock();
|
|
cs = nearest_hardwall_ancestor(task_cs(current));
|
|
allowed = node_isset(node, cs->mems_allowed);
|
|
rcu_read_unlock();
|
|
|
|
spin_unlock_irqrestore(&callback_lock, flags);
|
|
return allowed;
|
|
}
|
|
|
|
/**
|
|
* cpuset_spread_node() - On which node to begin search for a page
|
|
* @rotor: round robin rotor
|
|
*
|
|
* If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
|
|
* tasks in a cpuset with is_spread_page or is_spread_slab set),
|
|
* and if the memory allocation used cpuset_mem_spread_node()
|
|
* to determine on which node to start looking, as it will for
|
|
* certain page cache or slab cache pages such as used for file
|
|
* system buffers and inode caches, then instead of starting on the
|
|
* local node to look for a free page, rather spread the starting
|
|
* node around the tasks mems_allowed nodes.
|
|
*
|
|
* We don't have to worry about the returned node being offline
|
|
* because "it can't happen", and even if it did, it would be ok.
|
|
*
|
|
* The routines calling guarantee_online_mems() are careful to
|
|
* only set nodes in task->mems_allowed that are online. So it
|
|
* should not be possible for the following code to return an
|
|
* offline node. But if it did, that would be ok, as this routine
|
|
* is not returning the node where the allocation must be, only
|
|
* the node where the search should start. The zonelist passed to
|
|
* __alloc_pages() will include all nodes. If the slab allocator
|
|
* is passed an offline node, it will fall back to the local node.
|
|
* See kmem_cache_alloc_node().
|
|
*/
|
|
static int cpuset_spread_node(int *rotor)
|
|
{
|
|
return *rotor = next_node_in(*rotor, current->mems_allowed);
|
|
}
|
|
|
|
/**
|
|
* cpuset_mem_spread_node() - On which node to begin search for a file page
|
|
*/
|
|
int cpuset_mem_spread_node(void)
|
|
{
|
|
if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
|
|
current->cpuset_mem_spread_rotor =
|
|
node_random(¤t->mems_allowed);
|
|
|
|
return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
|
|
}
|
|
|
|
/**
|
|
* cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
|
|
* @tsk1: pointer to task_struct of some task.
|
|
* @tsk2: pointer to task_struct of some other task.
|
|
*
|
|
* Description: Return true if @tsk1's mems_allowed intersects the
|
|
* mems_allowed of @tsk2. Used by the OOM killer to determine if
|
|
* one of the task's memory usage might impact the memory available
|
|
* to the other.
|
|
**/
|
|
|
|
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
|
|
const struct task_struct *tsk2)
|
|
{
|
|
return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
|
|
}
|
|
|
|
/**
|
|
* cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
|
|
*
|
|
* Description: Prints current's name, cpuset name, and cached copy of its
|
|
* mems_allowed to the kernel log.
|
|
*/
|
|
void cpuset_print_current_mems_allowed(void)
|
|
{
|
|
struct cgroup *cgrp;
|
|
|
|
rcu_read_lock();
|
|
|
|
cgrp = task_cs(current)->css.cgroup;
|
|
pr_cont(",cpuset=");
|
|
pr_cont_cgroup_name(cgrp);
|
|
pr_cont(",mems_allowed=%*pbl",
|
|
nodemask_pr_args(¤t->mems_allowed));
|
|
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_PID_CPUSET
|
|
/*
|
|
* proc_cpuset_show()
|
|
* - Print tasks cpuset path into seq_file.
|
|
* - Used for /proc/<pid>/cpuset.
|
|
* - No need to task_lock(tsk) on this tsk->cpuset reference, as it
|
|
* doesn't really matter if tsk->cpuset changes after we read it,
|
|
* and we take cpuset_mutex, keeping cpuset_attach() from changing it
|
|
* anyway.
|
|
*/
|
|
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
|
|
struct pid *pid, struct task_struct *tsk)
|
|
{
|
|
char *buf;
|
|
struct cgroup_subsys_state *css;
|
|
int retval;
|
|
|
|
retval = -ENOMEM;
|
|
buf = kmalloc(PATH_MAX, GFP_KERNEL);
|
|
if (!buf)
|
|
goto out;
|
|
|
|
rcu_read_lock();
|
|
spin_lock_irq(&css_set_lock);
|
|
css = task_css(tsk, cpuset_cgrp_id);
|
|
retval = cgroup_path_ns_locked(css->cgroup, buf, PATH_MAX,
|
|
current->nsproxy->cgroup_ns);
|
|
spin_unlock_irq(&css_set_lock);
|
|
rcu_read_unlock();
|
|
|
|
if (retval == -E2BIG)
|
|
retval = -ENAMETOOLONG;
|
|
if (retval < 0)
|
|
goto out_free;
|
|
seq_puts(m, buf);
|
|
seq_putc(m, '\n');
|
|
retval = 0;
|
|
out_free:
|
|
kfree(buf);
|
|
out:
|
|
return retval;
|
|
}
|
|
#endif /* CONFIG_PROC_PID_CPUSET */
|
|
|
|
/* Display task mems_allowed in /proc/<pid>/status file. */
|
|
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
|
|
{
|
|
seq_printf(m, "Mems_allowed:\t%*pb\n",
|
|
nodemask_pr_args(&task->mems_allowed));
|
|
seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
|
|
nodemask_pr_args(&task->mems_allowed));
|
|
}
|