linux/drivers/net/dsa/mt7530.c
Matthias Schiffer 3d49ee2127 net: dsa: mt7530: add support for bridge port isolation
Remove a pair of ports from the port matrix when both ports have the
isolated flag set.

Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
Reviewed-by: Wojciech Drewek <wojciech.drewek@intel.com>
Reviewed-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Tested-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2024-06-19 13:10:01 +01:00

3272 lines
87 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Mediatek MT7530 DSA Switch driver
* Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
*/
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/iopoll.h>
#include <linux/mdio.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <linux/phylink.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio/driver.h>
#include <net/dsa.h>
#include "mt7530.h"
static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
{
return container_of(pcs, struct mt753x_pcs, pcs);
}
/* String, offset, and register size in bytes if different from 4 bytes */
static const struct mt7530_mib_desc mt7530_mib[] = {
MIB_DESC(1, 0x00, "TxDrop"),
MIB_DESC(1, 0x04, "TxCrcErr"),
MIB_DESC(1, 0x08, "TxUnicast"),
MIB_DESC(1, 0x0c, "TxMulticast"),
MIB_DESC(1, 0x10, "TxBroadcast"),
MIB_DESC(1, 0x14, "TxCollision"),
MIB_DESC(1, 0x18, "TxSingleCollision"),
MIB_DESC(1, 0x1c, "TxMultipleCollision"),
MIB_DESC(1, 0x20, "TxDeferred"),
MIB_DESC(1, 0x24, "TxLateCollision"),
MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
MIB_DESC(1, 0x2c, "TxPause"),
MIB_DESC(1, 0x30, "TxPktSz64"),
MIB_DESC(1, 0x34, "TxPktSz65To127"),
MIB_DESC(1, 0x38, "TxPktSz128To255"),
MIB_DESC(1, 0x3c, "TxPktSz256To511"),
MIB_DESC(1, 0x40, "TxPktSz512To1023"),
MIB_DESC(1, 0x44, "Tx1024ToMax"),
MIB_DESC(2, 0x48, "TxBytes"),
MIB_DESC(1, 0x60, "RxDrop"),
MIB_DESC(1, 0x64, "RxFiltering"),
MIB_DESC(1, 0x68, "RxUnicast"),
MIB_DESC(1, 0x6c, "RxMulticast"),
MIB_DESC(1, 0x70, "RxBroadcast"),
MIB_DESC(1, 0x74, "RxAlignErr"),
MIB_DESC(1, 0x78, "RxCrcErr"),
MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
MIB_DESC(1, 0x80, "RxFragErr"),
MIB_DESC(1, 0x84, "RxOverSzErr"),
MIB_DESC(1, 0x88, "RxJabberErr"),
MIB_DESC(1, 0x8c, "RxPause"),
MIB_DESC(1, 0x90, "RxPktSz64"),
MIB_DESC(1, 0x94, "RxPktSz65To127"),
MIB_DESC(1, 0x98, "RxPktSz128To255"),
MIB_DESC(1, 0x9c, "RxPktSz256To511"),
MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
MIB_DESC(2, 0xa8, "RxBytes"),
MIB_DESC(1, 0xb0, "RxCtrlDrop"),
MIB_DESC(1, 0xb4, "RxIngressDrop"),
MIB_DESC(1, 0xb8, "RxArlDrop"),
};
static void
mt7530_mutex_lock(struct mt7530_priv *priv)
{
if (priv->bus)
mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
}
static void
mt7530_mutex_unlock(struct mt7530_priv *priv)
{
if (priv->bus)
mutex_unlock(&priv->bus->mdio_lock);
}
static void
core_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
struct mii_bus *bus = priv->bus;
int ret;
mt7530_mutex_lock(priv);
/* Write the desired MMD Devad */
ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
MII_MMD_CTRL, MDIO_MMD_VEND2);
if (ret < 0)
goto err;
/* Write the desired MMD register address */
ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
MII_MMD_DATA, reg);
if (ret < 0)
goto err;
/* Select the Function : DATA with no post increment */
ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
MII_MMD_CTRL, MDIO_MMD_VEND2 | MII_MMD_CTRL_NOINCR);
if (ret < 0)
goto err;
/* Write the data into MMD's selected register */
ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
MII_MMD_DATA, val);
err:
if (ret < 0)
dev_err(&bus->dev, "failed to write mmd register\n");
mt7530_mutex_unlock(priv);
}
static void
core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
{
struct mii_bus *bus = priv->bus;
u32 val;
int ret;
mt7530_mutex_lock(priv);
/* Write the desired MMD Devad */
ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
MII_MMD_CTRL, MDIO_MMD_VEND2);
if (ret < 0)
goto err;
/* Write the desired MMD register address */
ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
MII_MMD_DATA, reg);
if (ret < 0)
goto err;
/* Select the Function : DATA with no post increment */
ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
MII_MMD_CTRL, MDIO_MMD_VEND2 | MII_MMD_CTRL_NOINCR);
if (ret < 0)
goto err;
/* Read the content of the MMD's selected register */
val = bus->read(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
MII_MMD_DATA);
val &= ~mask;
val |= set;
/* Write the data into MMD's selected register */
ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
MII_MMD_DATA, val);
err:
if (ret < 0)
dev_err(&bus->dev, "failed to write mmd register\n");
mt7530_mutex_unlock(priv);
}
static void
core_set(struct mt7530_priv *priv, u32 reg, u32 val)
{
core_rmw(priv, reg, 0, val);
}
static void
core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
{
core_rmw(priv, reg, val, 0);
}
static int
mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
int ret;
ret = regmap_write(priv->regmap, reg, val);
if (ret < 0)
dev_err(priv->dev,
"failed to write mt7530 register\n");
return ret;
}
static u32
mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
{
int ret;
u32 val;
ret = regmap_read(priv->regmap, reg, &val);
if (ret) {
WARN_ON_ONCE(1);
dev_err(priv->dev,
"failed to read mt7530 register\n");
return 0;
}
return val;
}
static void
mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
mt7530_mutex_lock(priv);
mt7530_mii_write(priv, reg, val);
mt7530_mutex_unlock(priv);
}
static u32
_mt7530_unlocked_read(struct mt7530_dummy_poll *p)
{
return mt7530_mii_read(p->priv, p->reg);
}
static u32
_mt7530_read(struct mt7530_dummy_poll *p)
{
u32 val;
mt7530_mutex_lock(p->priv);
val = mt7530_mii_read(p->priv, p->reg);
mt7530_mutex_unlock(p->priv);
return val;
}
static u32
mt7530_read(struct mt7530_priv *priv, u32 reg)
{
struct mt7530_dummy_poll p;
INIT_MT7530_DUMMY_POLL(&p, priv, reg);
return _mt7530_read(&p);
}
static void
mt7530_rmw(struct mt7530_priv *priv, u32 reg,
u32 mask, u32 set)
{
mt7530_mutex_lock(priv);
regmap_update_bits(priv->regmap, reg, mask, set);
mt7530_mutex_unlock(priv);
}
static void
mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
{
mt7530_rmw(priv, reg, val, val);
}
static void
mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
{
mt7530_rmw(priv, reg, val, 0);
}
static int
mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
{
u32 val;
int ret;
struct mt7530_dummy_poll p;
/* Set the command operating upon the MAC address entries */
val = ATC_BUSY | ATC_MAT(0) | cmd;
mt7530_write(priv, MT7530_ATC, val);
INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
ret = readx_poll_timeout(_mt7530_read, &p, val,
!(val & ATC_BUSY), 20, 20000);
if (ret < 0) {
dev_err(priv->dev, "reset timeout\n");
return ret;
}
/* Additional sanity for read command if the specified
* entry is invalid
*/
val = mt7530_read(priv, MT7530_ATC);
if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
return -EINVAL;
if (rsp)
*rsp = val;
return 0;
}
static void
mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
{
u32 reg[3];
int i;
/* Read from ARL table into an array */
for (i = 0; i < 3; i++) {
reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
__func__, __LINE__, i, reg[i]);
}
fdb->vid = (reg[1] >> CVID) & CVID_MASK;
fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
}
static void
mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
u8 port_mask, const u8 *mac,
u8 aging, u8 type)
{
u32 reg[3] = { 0 };
int i;
reg[1] |= vid & CVID_MASK;
reg[1] |= ATA2_IVL;
reg[1] |= ATA2_FID(FID_BRIDGED);
reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
/* STATIC_ENT indicate that entry is static wouldn't
* be aged out and STATIC_EMP specified as erasing an
* entry
*/
reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
reg[1] |= mac[5] << MAC_BYTE_5;
reg[1] |= mac[4] << MAC_BYTE_4;
reg[0] |= mac[3] << MAC_BYTE_3;
reg[0] |= mac[2] << MAC_BYTE_2;
reg[0] |= mac[1] << MAC_BYTE_1;
reg[0] |= mac[0] << MAC_BYTE_0;
/* Write array into the ARL table */
for (i = 0; i < 3; i++)
mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
}
/* Set up switch core clock for MT7530 */
static void mt7530_pll_setup(struct mt7530_priv *priv)
{
/* Disable core clock */
core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
/* Disable PLL */
core_write(priv, CORE_GSWPLL_GRP1, 0);
/* Set core clock into 500Mhz */
core_write(priv, CORE_GSWPLL_GRP2,
RG_GSWPLL_POSDIV_500M(1) |
RG_GSWPLL_FBKDIV_500M(25));
/* Enable PLL */
core_write(priv, CORE_GSWPLL_GRP1,
RG_GSWPLL_EN_PRE |
RG_GSWPLL_POSDIV_200M(2) |
RG_GSWPLL_FBKDIV_200M(32));
udelay(20);
/* Enable core clock */
core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
}
/* If port 6 is available as a CPU port, always prefer that as the default,
* otherwise don't care.
*/
static struct dsa_port *
mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
{
struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
if (dsa_port_is_cpu(cpu_dp))
return cpu_dp;
return NULL;
}
/* Setup port 6 interface mode and TRGMII TX circuit */
static void
mt7530_setup_port6(struct dsa_switch *ds, phy_interface_t interface)
{
struct mt7530_priv *priv = ds->priv;
u32 ncpo1, ssc_delta, xtal;
/* Disable the MT7530 TRGMII clocks */
core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
if (interface == PHY_INTERFACE_MODE_RGMII) {
mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
P6_INTF_MODE(0));
return;
}
mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(1));
xtal = mt7530_read(priv, MT753X_MTRAP) & MT7530_XTAL_MASK;
if (xtal == MT7530_XTAL_25MHZ)
ssc_delta = 0x57;
else
ssc_delta = 0x87;
if (priv->id == ID_MT7621) {
/* PLL frequency: 125MHz: 1.0GBit */
if (xtal == MT7530_XTAL_40MHZ)
ncpo1 = 0x0640;
if (xtal == MT7530_XTAL_25MHZ)
ncpo1 = 0x0a00;
} else { /* PLL frequency: 250MHz: 2.0Gbit */
if (xtal == MT7530_XTAL_40MHZ)
ncpo1 = 0x0c80;
if (xtal == MT7530_XTAL_25MHZ)
ncpo1 = 0x1400;
}
/* Setup the MT7530 TRGMII Tx Clock */
core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN |
RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN);
core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL |
RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1));
core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG |
RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
/* Enable the MT7530 TRGMII clocks */
core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
}
static void
mt7531_pll_setup(struct mt7530_priv *priv)
{
enum mt7531_xtal_fsel xtal;
u32 top_sig;
u32 hwstrap;
u32 val;
val = mt7530_read(priv, MT7531_CREV);
top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
hwstrap = mt7530_read(priv, MT753X_TRAP);
if ((val & CHIP_REV_M) > 0)
xtal = (top_sig & PAD_MCM_SMI_EN) ? MT7531_XTAL_FSEL_40MHZ :
MT7531_XTAL_FSEL_25MHZ;
else
xtal = (hwstrap & MT7531_XTAL25) ? MT7531_XTAL_FSEL_25MHZ :
MT7531_XTAL_FSEL_40MHZ;
/* Step 1 : Disable MT7531 COREPLL */
val = mt7530_read(priv, MT7531_PLLGP_EN);
val &= ~EN_COREPLL;
mt7530_write(priv, MT7531_PLLGP_EN, val);
/* Step 2: switch to XTAL output */
val = mt7530_read(priv, MT7531_PLLGP_EN);
val |= SW_CLKSW;
mt7530_write(priv, MT7531_PLLGP_EN, val);
val = mt7530_read(priv, MT7531_PLLGP_CR0);
val &= ~RG_COREPLL_EN;
mt7530_write(priv, MT7531_PLLGP_CR0, val);
/* Step 3: disable PLLGP and enable program PLLGP */
val = mt7530_read(priv, MT7531_PLLGP_EN);
val |= SW_PLLGP;
mt7530_write(priv, MT7531_PLLGP_EN, val);
/* Step 4: program COREPLL output frequency to 500MHz */
val = mt7530_read(priv, MT7531_PLLGP_CR0);
val &= ~RG_COREPLL_POSDIV_M;
val |= 2 << RG_COREPLL_POSDIV_S;
mt7530_write(priv, MT7531_PLLGP_CR0, val);
usleep_range(25, 35);
switch (xtal) {
case MT7531_XTAL_FSEL_25MHZ:
val = mt7530_read(priv, MT7531_PLLGP_CR0);
val &= ~RG_COREPLL_SDM_PCW_M;
val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
mt7530_write(priv, MT7531_PLLGP_CR0, val);
break;
case MT7531_XTAL_FSEL_40MHZ:
val = mt7530_read(priv, MT7531_PLLGP_CR0);
val &= ~RG_COREPLL_SDM_PCW_M;
val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
mt7530_write(priv, MT7531_PLLGP_CR0, val);
break;
}
/* Set feedback divide ratio update signal to high */
val = mt7530_read(priv, MT7531_PLLGP_CR0);
val |= RG_COREPLL_SDM_PCW_CHG;
mt7530_write(priv, MT7531_PLLGP_CR0, val);
/* Wait for at least 16 XTAL clocks */
usleep_range(10, 20);
/* Step 5: set feedback divide ratio update signal to low */
val = mt7530_read(priv, MT7531_PLLGP_CR0);
val &= ~RG_COREPLL_SDM_PCW_CHG;
mt7530_write(priv, MT7531_PLLGP_CR0, val);
/* Enable 325M clock for SGMII */
mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
/* Enable 250SSC clock for RGMII */
mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
/* Step 6: Enable MT7531 PLL */
val = mt7530_read(priv, MT7531_PLLGP_CR0);
val |= RG_COREPLL_EN;
mt7530_write(priv, MT7531_PLLGP_CR0, val);
val = mt7530_read(priv, MT7531_PLLGP_EN);
val |= EN_COREPLL;
mt7530_write(priv, MT7531_PLLGP_EN, val);
usleep_range(25, 35);
}
static void
mt7530_mib_reset(struct dsa_switch *ds)
{
struct mt7530_priv *priv = ds->priv;
mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
}
static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
{
return mdiobus_read_nested(priv->bus, port, regnum);
}
static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
u16 val)
{
return mdiobus_write_nested(priv->bus, port, regnum, val);
}
static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
int devad, int regnum)
{
return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
}
static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
int regnum, u16 val)
{
return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
}
static int
mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
int regnum)
{
struct mt7530_dummy_poll p;
u32 reg, val;
int ret;
INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
mt7530_mutex_lock(priv);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
!(val & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
MT7531_MDIO_DEV_ADDR(devad) | regnum;
mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
!(val & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
MT7531_MDIO_DEV_ADDR(devad);
mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
!(val & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
ret = val & MT7531_MDIO_RW_DATA_MASK;
out:
mt7530_mutex_unlock(priv);
return ret;
}
static int
mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
int regnum, u16 data)
{
struct mt7530_dummy_poll p;
u32 val, reg;
int ret;
INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
mt7530_mutex_lock(priv);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
!(val & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
MT7531_MDIO_DEV_ADDR(devad) | regnum;
mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
!(val & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
MT7531_MDIO_DEV_ADDR(devad) | data;
mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
!(val & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
out:
mt7530_mutex_unlock(priv);
return ret;
}
static int
mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
{
struct mt7530_dummy_poll p;
int ret;
u32 val;
INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
mt7530_mutex_lock(priv);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
!(val & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
MT7531_MDIO_REG_ADDR(regnum);
mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
!(val & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
ret = val & MT7531_MDIO_RW_DATA_MASK;
out:
mt7530_mutex_unlock(priv);
return ret;
}
static int
mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
u16 data)
{
struct mt7530_dummy_poll p;
int ret;
u32 reg;
INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
mt7530_mutex_lock(priv);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
!(reg & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
MT7531_MDIO_REG_ADDR(regnum) | data;
mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
!(reg & MT7531_PHY_ACS_ST), 20, 100000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
goto out;
}
out:
mt7530_mutex_unlock(priv);
return ret;
}
static int
mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
{
struct mt7530_priv *priv = bus->priv;
return priv->info->phy_read_c22(priv, port, regnum);
}
static int
mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
{
struct mt7530_priv *priv = bus->priv;
return priv->info->phy_read_c45(priv, port, devad, regnum);
}
static int
mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
{
struct mt7530_priv *priv = bus->priv;
return priv->info->phy_write_c22(priv, port, regnum, val);
}
static int
mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
u16 val)
{
struct mt7530_priv *priv = bus->priv;
return priv->info->phy_write_c45(priv, port, devad, regnum, val);
}
static void
mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
uint8_t *data)
{
int i;
if (stringset != ETH_SS_STATS)
return;
for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
ethtool_puts(&data, mt7530_mib[i].name);
}
static void
mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
struct mt7530_priv *priv = ds->priv;
const struct mt7530_mib_desc *mib;
u32 reg, i;
u64 hi;
for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
mib = &mt7530_mib[i];
reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
data[i] = mt7530_read(priv, reg);
if (mib->size == 2) {
hi = mt7530_read(priv, reg + 4);
data[i] |= hi << 32;
}
}
}
static int
mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
{
if (sset != ETH_SS_STATS)
return 0;
return ARRAY_SIZE(mt7530_mib);
}
static int
mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
{
struct mt7530_priv *priv = ds->priv;
unsigned int secs = msecs / 1000;
unsigned int tmp_age_count;
unsigned int error = -1;
unsigned int age_count;
unsigned int age_unit;
/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
return -ERANGE;
/* iterate through all possible age_count to find the closest pair */
for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
if (tmp_age_unit <= AGE_UNIT_MAX) {
unsigned int tmp_error = secs -
(tmp_age_count + 1) * (tmp_age_unit + 1);
/* found a closer pair */
if (error > tmp_error) {
error = tmp_error;
age_count = tmp_age_count;
age_unit = tmp_age_unit;
}
/* found the exact match, so break the loop */
if (!error)
break;
}
}
mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
return 0;
}
static const char *mt7530_p5_mode_str(unsigned int mode)
{
switch (mode) {
case MUX_PHY_P0:
return "MUX PHY P0";
case MUX_PHY_P4:
return "MUX PHY P4";
default:
return "GMAC5";
}
}
static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
{
struct mt7530_priv *priv = ds->priv;
u8 tx_delay = 0;
int val;
mutex_lock(&priv->reg_mutex);
val = mt7530_read(priv, MT753X_MTRAP);
val &= ~MT7530_P5_PHY0_SEL & ~MT7530_P5_MAC_SEL & ~MT7530_P5_RGMII_MODE;
switch (priv->p5_mode) {
/* MUX_PHY_P0: P0 -> P5 -> SoC MAC */
case MUX_PHY_P0:
val |= MT7530_P5_PHY0_SEL;
fallthrough;
/* MUX_PHY_P4: P4 -> P5 -> SoC MAC */
case MUX_PHY_P4:
/* Setup the MAC by default for the cpu port */
mt7530_write(priv, MT753X_PMCR_P(5), 0x56300);
break;
/* GMAC5: P5 -> SoC MAC or external PHY */
default:
val |= MT7530_P5_MAC_SEL;
break;
}
/* Setup RGMII settings */
if (phy_interface_mode_is_rgmii(interface)) {
val |= MT7530_P5_RGMII_MODE;
/* P5 RGMII RX Clock Control: delay setting for 1000M */
mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
/* Don't set delay in DSA mode */
if (!dsa_is_dsa_port(priv->ds, 5) &&
(interface == PHY_INTERFACE_MODE_RGMII_TXID ||
interface == PHY_INTERFACE_MODE_RGMII_ID))
tx_delay = 4; /* n * 0.5 ns */
/* P5 RGMII TX Clock Control: delay x */
mt7530_write(priv, MT7530_P5RGMIITXCR,
CSR_RGMII_TXC_CFG(0x10 + tx_delay));
/* reduce P5 RGMII Tx driving, 8mA */
mt7530_write(priv, MT7530_IO_DRV_CR,
P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
}
mt7530_write(priv, MT753X_MTRAP, val);
dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, mode=%s, phy-mode=%s\n", val,
mt7530_p5_mode_str(priv->p5_mode), phy_modes(interface));
mutex_unlock(&priv->reg_mutex);
}
/* In Clause 5 of IEEE Std 802-2014, two sublayers of the data link layer (DLL)
* of the Open Systems Interconnection basic reference model (OSI/RM) are
* described; the medium access control (MAC) and logical link control (LLC)
* sublayers. The MAC sublayer is the one facing the physical layer.
*
* In 8.2 of IEEE Std 802.1Q-2022, the Bridge architecture is described. A
* Bridge component comprises a MAC Relay Entity for interconnecting the Ports
* of the Bridge, at least two Ports, and higher layer entities with at least a
* Spanning Tree Protocol Entity included.
*
* Each Bridge Port also functions as an end station and shall provide the MAC
* Service to an LLC Entity. Each instance of the MAC Service is provided to a
* distinct LLC Entity that supports protocol identification, multiplexing, and
* demultiplexing, for protocol data unit (PDU) transmission and reception by
* one or more higher layer entities.
*
* It is described in 8.13.9 of IEEE Std 802.1Q-2022 that in a Bridge, the LLC
* Entity associated with each Bridge Port is modeled as being directly
* connected to the attached Local Area Network (LAN).
*
* On the switch with CPU port architecture, CPU port functions as Management
* Port, and the Management Port functionality is provided by software which
* functions as an end station. Software is connected to an IEEE 802 LAN that is
* wholly contained within the system that incorporates the Bridge. Software
* provides access to the LLC Entity associated with each Bridge Port by the
* value of the source port field on the special tag on the frame received by
* software.
*
* We call frames that carry control information to determine the active
* topology and current extent of each Virtual Local Area Network (VLAN), i.e.,
* spanning tree or Shortest Path Bridging (SPB) and Multiple VLAN Registration
* Protocol Data Units (MVRPDUs), and frames from other link constrained
* protocols, such as Extensible Authentication Protocol over LAN (EAPOL) and
* Link Layer Discovery Protocol (LLDP), link-local frames. They are not
* forwarded by a Bridge. Permanently configured entries in the filtering
* database (FDB) ensure that such frames are discarded by the Forwarding
* Process. In 8.6.3 of IEEE Std 802.1Q-2022, this is described in detail:
*
* Each of the reserved MAC addresses specified in Table 8-1
* (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]) shall be
* permanently configured in the FDB in C-VLAN components and ERs.
*
* Each of the reserved MAC addresses specified in Table 8-2
* (01-80-C2-00-00-[01,02,03,04,05,06,07,08,09,0A,0E]) shall be permanently
* configured in the FDB in S-VLAN components.
*
* Each of the reserved MAC addresses specified in Table 8-3
* (01-80-C2-00-00-[01,02,04,0E]) shall be permanently configured in the FDB in
* TPMR components.
*
* The FDB entries for reserved MAC addresses shall specify filtering for all
* Bridge Ports and all VIDs. Management shall not provide the capability to
* modify or remove entries for reserved MAC addresses.
*
* The addresses in Table 8-1, Table 8-2, and Table 8-3 determine the scope of
* propagation of PDUs within a Bridged Network, as follows:
*
* The Nearest Bridge group address (01-80-C2-00-00-0E) is an address that no
* conformant Two-Port MAC Relay (TPMR) component, Service VLAN (S-VLAN)
* component, Customer VLAN (C-VLAN) component, or MAC Bridge can forward.
* PDUs transmitted using this destination address, or any other addresses
* that appear in Table 8-1, Table 8-2, and Table 8-3
* (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]), can
* therefore travel no further than those stations that can be reached via a
* single individual LAN from the originating station.
*
* The Nearest non-TPMR Bridge group address (01-80-C2-00-00-03), is an
* address that no conformant S-VLAN component, C-VLAN component, or MAC
* Bridge can forward; however, this address is relayed by a TPMR component.
* PDUs using this destination address, or any of the other addresses that
* appear in both Table 8-1 and Table 8-2 but not in Table 8-3
* (01-80-C2-00-00-[00,03,05,06,07,08,09,0A,0B,0C,0D,0F]), will be relayed by
* any TPMRs but will propagate no further than the nearest S-VLAN component,
* C-VLAN component, or MAC Bridge.
*
* The Nearest Customer Bridge group address (01-80-C2-00-00-00) is an address
* that no conformant C-VLAN component, MAC Bridge can forward; however, it is
* relayed by TPMR components and S-VLAN components. PDUs using this
* destination address, or any of the other addresses that appear in Table 8-1
* but not in either Table 8-2 or Table 8-3 (01-80-C2-00-00-[00,0B,0C,0D,0F]),
* will be relayed by TPMR components and S-VLAN components but will propagate
* no further than the nearest C-VLAN component or MAC Bridge.
*
* Because the LLC Entity associated with each Bridge Port is provided via CPU
* port, we must not filter these frames but forward them to CPU port.
*
* In a Bridge, the transmission Port is majorly decided by ingress and egress
* rules, FDB, and spanning tree Port State functions of the Forwarding Process.
* For link-local frames, only CPU port should be designated as destination port
* in the FDB, and the other functions of the Forwarding Process must not
* interfere with the decision of the transmission Port. We call this process
* trapping frames to CPU port.
*
* Therefore, on the switch with CPU port architecture, link-local frames must
* be trapped to CPU port, and certain link-local frames received by a Port of a
* Bridge comprising a TPMR component or an S-VLAN component must be excluded
* from it.
*
* A Bridge of the switch with CPU port architecture cannot comprise a Two-Port
* MAC Relay (TPMR) component as a TPMR component supports only a subset of the
* functionality of a MAC Bridge. A Bridge comprising two Ports (Management Port
* doesn't count) of this architecture will either function as a standard MAC
* Bridge or a standard VLAN Bridge.
*
* Therefore, a Bridge of this architecture can only comprise S-VLAN components,
* C-VLAN components, or MAC Bridge components. Since there's no TPMR component,
* we don't need to relay PDUs using the destination addresses specified on the
* Nearest non-TPMR section, and the proportion of the Nearest Customer Bridge
* section where they must be relayed by TPMR components.
*
* One option to trap link-local frames to CPU port is to add static FDB entries
* with CPU port designated as destination port. However, because that
* Independent VLAN Learning (IVL) is being used on every VID, each entry only
* applies to a single VLAN Identifier (VID). For a Bridge comprising a MAC
* Bridge component or a C-VLAN component, there would have to be 16 times 4096
* entries. This switch intellectual property can only hold a maximum of 2048
* entries. Using this option, there also isn't a mechanism to prevent
* link-local frames from being discarded when the spanning tree Port State of
* the reception Port is discarding.
*
* The remaining option is to utilise the BPC, RGAC1, RGAC2, RGAC3, and RGAC4
* registers. Whilst this applies to every VID, it doesn't contain all of the
* reserved MAC addresses without affecting the remaining Standard Group MAC
* Addresses. The REV_UN frame tag utilised using the RGAC4 register covers the
* remaining 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F] destination
* addresses. It also includes the 01-80-C2-00-00-22 to 01-80-C2-00-00-FF
* destination addresses which may be relayed by MAC Bridges or VLAN Bridges.
* The latter option provides better but not complete conformance.
*
* This switch intellectual property also does not provide a mechanism to trap
* link-local frames with specific destination addresses to CPU port by Bridge,
* to conform to the filtering rules for the distinct Bridge components.
*
* Therefore, regardless of the type of the Bridge component, link-local frames
* with these destination addresses will be trapped to CPU port:
*
* 01-80-C2-00-00-[00,01,02,03,0E]
*
* In a Bridge comprising a MAC Bridge component or a C-VLAN component:
*
* Link-local frames with these destination addresses won't be trapped to CPU
* port which won't conform to IEEE Std 802.1Q-2022:
*
* 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F]
*
* In a Bridge comprising an S-VLAN component:
*
* Link-local frames with these destination addresses will be trapped to CPU
* port which won't conform to IEEE Std 802.1Q-2022:
*
* 01-80-C2-00-00-00
*
* Link-local frames with these destination addresses won't be trapped to CPU
* port which won't conform to IEEE Std 802.1Q-2022:
*
* 01-80-C2-00-00-[04,05,06,07,08,09,0A]
*
* To trap link-local frames to CPU port as conformant as this switch
* intellectual property can allow, link-local frames are made to be regarded as
* Bridge Protocol Data Units (BPDUs). This is because this switch intellectual
* property only lets the frames regarded as BPDUs bypass the spanning tree Port
* State function of the Forwarding Process.
*
* The only remaining interference is the ingress rules. When the reception Port
* has no PVID assigned on software, VLAN-untagged frames won't be allowed in.
* There doesn't seem to be a mechanism on the switch intellectual property to
* have link-local frames bypass this function of the Forwarding Process.
*/
static void
mt753x_trap_frames(struct mt7530_priv *priv)
{
/* Trap 802.1X PAE frames and BPDUs to the CPU port(s) and egress them
* VLAN-untagged.
*/
mt7530_rmw(priv, MT753X_BPC,
PAE_BPDU_FR | PAE_EG_TAG_MASK | PAE_PORT_FW_MASK |
BPDU_EG_TAG_MASK | BPDU_PORT_FW_MASK,
PAE_BPDU_FR | PAE_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
PAE_PORT_FW(TO_CPU_FW_CPU_ONLY) |
BPDU_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
TO_CPU_FW_CPU_ONLY);
/* Trap frames with :01 and :02 MAC DAs to the CPU port(s) and egress
* them VLAN-untagged.
*/
mt7530_rmw(priv, MT753X_RGAC1,
R02_BPDU_FR | R02_EG_TAG_MASK | R02_PORT_FW_MASK |
R01_BPDU_FR | R01_EG_TAG_MASK | R01_PORT_FW_MASK,
R02_BPDU_FR | R02_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
R02_PORT_FW(TO_CPU_FW_CPU_ONLY) | R01_BPDU_FR |
R01_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
TO_CPU_FW_CPU_ONLY);
/* Trap frames with :03 and :0E MAC DAs to the CPU port(s) and egress
* them VLAN-untagged.
*/
mt7530_rmw(priv, MT753X_RGAC2,
R0E_BPDU_FR | R0E_EG_TAG_MASK | R0E_PORT_FW_MASK |
R03_BPDU_FR | R03_EG_TAG_MASK | R03_PORT_FW_MASK,
R0E_BPDU_FR | R0E_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
R0E_PORT_FW(TO_CPU_FW_CPU_ONLY) | R03_BPDU_FR |
R03_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
TO_CPU_FW_CPU_ONLY);
}
static void
mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
{
struct mt7530_priv *priv = ds->priv;
/* Enable Mediatek header mode on the cpu port */
mt7530_write(priv, MT7530_PVC_P(port),
PORT_SPEC_TAG);
/* Enable flooding on the CPU port */
mt7530_set(priv, MT753X_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
UNU_FFP(BIT(port)));
/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
* the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
* is affine to the inbound user port.
*/
if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
/* CPU port gets connected to all user ports of
* the switch.
*/
mt7530_write(priv, MT7530_PCR_P(port),
PCR_MATRIX(dsa_user_ports(priv->ds)));
/* Set to fallback mode for independent VLAN learning */
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
MT7530_PORT_FALLBACK_MODE);
}
static int
mt7530_port_enable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct dsa_port *dp = dsa_to_port(ds, port);
struct mt7530_priv *priv = ds->priv;
mutex_lock(&priv->reg_mutex);
/* Allow the user port gets connected to the cpu port and also
* restore the port matrix if the port is the member of a certain
* bridge.
*/
if (dsa_port_is_user(dp)) {
struct dsa_port *cpu_dp = dp->cpu_dp;
priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
}
priv->ports[port].enable = true;
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
priv->ports[port].pm);
mutex_unlock(&priv->reg_mutex);
if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
return 0;
if (port == 5)
mt7530_clear(priv, MT753X_MTRAP, MT7530_P5_DIS);
else if (port == 6)
mt7530_clear(priv, MT753X_MTRAP, MT7530_P6_DIS);
return 0;
}
static void
mt7530_port_disable(struct dsa_switch *ds, int port)
{
struct mt7530_priv *priv = ds->priv;
mutex_lock(&priv->reg_mutex);
/* Clear up all port matrix which could be restored in the next
* enablement for the port.
*/
priv->ports[port].enable = false;
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
PCR_MATRIX_CLR);
mutex_unlock(&priv->reg_mutex);
if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
return;
/* Do not set MT7530_P5_DIS when port 5 is being used for PHY muxing. */
if (port == 5 && priv->p5_mode == GMAC5)
mt7530_set(priv, MT753X_MTRAP, MT7530_P5_DIS);
else if (port == 6)
mt7530_set(priv, MT753X_MTRAP, MT7530_P6_DIS);
}
static int
mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
{
struct mt7530_priv *priv = ds->priv;
int length;
u32 val;
/* When a new MTU is set, DSA always set the CPU port's MTU to the
* largest MTU of the user ports. Because the switch only has a global
* RX length register, only allowing CPU port here is enough.
*/
if (!dsa_is_cpu_port(ds, port))
return 0;
mt7530_mutex_lock(priv);
val = mt7530_mii_read(priv, MT7530_GMACCR);
val &= ~MAX_RX_PKT_LEN_MASK;
/* RX length also includes Ethernet header, MTK tag, and FCS length */
length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
if (length <= 1522) {
val |= MAX_RX_PKT_LEN_1522;
} else if (length <= 1536) {
val |= MAX_RX_PKT_LEN_1536;
} else if (length <= 1552) {
val |= MAX_RX_PKT_LEN_1552;
} else {
val &= ~MAX_RX_JUMBO_MASK;
val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
val |= MAX_RX_PKT_LEN_JUMBO;
}
mt7530_mii_write(priv, MT7530_GMACCR, val);
mt7530_mutex_unlock(priv);
return 0;
}
static int
mt7530_port_max_mtu(struct dsa_switch *ds, int port)
{
return MT7530_MAX_MTU;
}
static void
mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
struct mt7530_priv *priv = ds->priv;
u32 stp_state;
switch (state) {
case BR_STATE_DISABLED:
stp_state = MT7530_STP_DISABLED;
break;
case BR_STATE_BLOCKING:
stp_state = MT7530_STP_BLOCKING;
break;
case BR_STATE_LISTENING:
stp_state = MT7530_STP_LISTENING;
break;
case BR_STATE_LEARNING:
stp_state = MT7530_STP_LEARNING;
break;
case BR_STATE_FORWARDING:
default:
stp_state = MT7530_STP_FORWARDING;
break;
}
mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
FID_PST(FID_BRIDGED, stp_state));
}
static void mt7530_update_port_member(struct mt7530_priv *priv, int port,
const struct net_device *bridge_dev,
bool join) __must_hold(&priv->reg_mutex)
{
struct dsa_port *dp = dsa_to_port(priv->ds, port), *other_dp;
struct mt7530_port *p = &priv->ports[port], *other_p;
struct dsa_port *cpu_dp = dp->cpu_dp;
u32 port_bitmap = BIT(cpu_dp->index);
int other_port;
bool isolated;
dsa_switch_for_each_user_port(other_dp, priv->ds) {
other_port = other_dp->index;
other_p = &priv->ports[other_port];
if (dp == other_dp)
continue;
/* Add/remove this port to/from the port matrix of the other
* ports in the same bridge. If the port is disabled, port
* matrix is kept and not being setup until the port becomes
* enabled.
*/
if (!dsa_port_offloads_bridge_dev(other_dp, bridge_dev))
continue;
isolated = p->isolated && other_p->isolated;
if (join && !isolated) {
other_p->pm |= PCR_MATRIX(BIT(port));
port_bitmap |= BIT(other_port);
} else {
other_p->pm &= ~PCR_MATRIX(BIT(port));
}
if (other_p->enable)
mt7530_rmw(priv, MT7530_PCR_P(other_port),
PCR_MATRIX_MASK, other_p->pm);
}
/* Add/remove the all other ports to this port matrix. For !join
* (leaving the bridge), only the CPU port will remain in the port matrix
* of this port.
*/
p->pm = PCR_MATRIX(port_bitmap);
if (priv->ports[port].enable)
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, p->pm);
}
static int
mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
BR_BCAST_FLOOD | BR_ISOLATED))
return -EINVAL;
return 0;
}
static int
mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
struct mt7530_priv *priv = ds->priv;
if (flags.mask & BR_LEARNING)
mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
flags.val & BR_LEARNING ? 0 : SA_DIS);
if (flags.mask & BR_FLOOD)
mt7530_rmw(priv, MT753X_MFC, UNU_FFP(BIT(port)),
flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
if (flags.mask & BR_MCAST_FLOOD)
mt7530_rmw(priv, MT753X_MFC, UNM_FFP(BIT(port)),
flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
if (flags.mask & BR_BCAST_FLOOD)
mt7530_rmw(priv, MT753X_MFC, BC_FFP(BIT(port)),
flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
if (flags.mask & BR_ISOLATED) {
struct dsa_port *dp = dsa_to_port(ds, port);
struct net_device *bridge_dev = dsa_port_bridge_dev_get(dp);
priv->ports[port].isolated = !!(flags.val & BR_ISOLATED);
mutex_lock(&priv->reg_mutex);
mt7530_update_port_member(priv, port, bridge_dev, true);
mutex_unlock(&priv->reg_mutex);
}
return 0;
}
static int
mt7530_port_bridge_join(struct dsa_switch *ds, int port,
struct dsa_bridge bridge, bool *tx_fwd_offload,
struct netlink_ext_ack *extack)
{
struct mt7530_priv *priv = ds->priv;
mutex_lock(&priv->reg_mutex);
mt7530_update_port_member(priv, port, bridge.dev, true);
/* Set to fallback mode for independent VLAN learning */
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
MT7530_PORT_FALLBACK_MODE);
mutex_unlock(&priv->reg_mutex);
return 0;
}
static void
mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
{
struct mt7530_priv *priv = ds->priv;
bool all_user_ports_removed = true;
int i;
/* This is called after .port_bridge_leave when leaving a VLAN-aware
* bridge. Don't set standalone ports to fallback mode.
*/
if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
MT7530_PORT_FALLBACK_MODE);
mt7530_rmw(priv, MT7530_PVC_P(port),
VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
MT7530_VLAN_ACC_ALL);
/* Set PVID to 0 */
mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
G0_PORT_VID_DEF);
for (i = 0; i < priv->ds->num_ports; i++) {
if (dsa_is_user_port(ds, i) &&
dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
all_user_ports_removed = false;
break;
}
}
/* CPU port also does the same thing until all user ports belonging to
* the CPU port get out of VLAN filtering mode.
*/
if (all_user_ports_removed) {
struct dsa_port *dp = dsa_to_port(ds, port);
struct dsa_port *cpu_dp = dp->cpu_dp;
mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
PCR_MATRIX(dsa_user_ports(priv->ds)));
mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
| PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
}
}
static void
mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
{
struct mt7530_priv *priv = ds->priv;
/* Trapped into security mode allows packet forwarding through VLAN
* table lookup.
*/
if (dsa_is_user_port(ds, port)) {
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
MT7530_PORT_SECURITY_MODE);
mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
G0_PORT_VID(priv->ports[port].pvid));
/* Only accept tagged frames if PVID is not set */
if (!priv->ports[port].pvid)
mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
MT7530_VLAN_ACC_TAGGED);
/* Set the port as a user port which is to be able to recognize
* VID from incoming packets before fetching entry within the
* VLAN table.
*/
mt7530_rmw(priv, MT7530_PVC_P(port),
VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
VLAN_ATTR(MT7530_VLAN_USER) |
PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
} else {
/* Also set CPU ports to the "user" VLAN port attribute, to
* allow VLAN classification, but keep the EG_TAG attribute as
* "consistent" (i.o.w. don't change its value) for packets
* received by the switch from the CPU, so that tagged packets
* are forwarded to user ports as tagged, and untagged as
* untagged.
*/
mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
VLAN_ATTR(MT7530_VLAN_USER));
}
}
static void
mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
struct dsa_bridge bridge)
{
struct mt7530_priv *priv = ds->priv;
mutex_lock(&priv->reg_mutex);
mt7530_update_port_member(priv, port, bridge.dev, false);
/* When a port is removed from the bridge, the port would be set up
* back to the default as is at initial boot which is a VLAN-unaware
* port.
*/
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
MT7530_PORT_MATRIX_MODE);
mutex_unlock(&priv->reg_mutex);
}
static int
mt7530_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid,
struct dsa_db db)
{
struct mt7530_priv *priv = ds->priv;
int ret;
u8 port_mask = BIT(port);
mutex_lock(&priv->reg_mutex);
mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
mt7530_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid,
struct dsa_db db)
{
struct mt7530_priv *priv = ds->priv;
int ret;
u8 port_mask = BIT(port);
mutex_lock(&priv->reg_mutex);
mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct mt7530_priv *priv = ds->priv;
struct mt7530_fdb _fdb = { 0 };
int cnt = MT7530_NUM_FDB_RECORDS;
int ret = 0;
u32 rsp = 0;
mutex_lock(&priv->reg_mutex);
ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
if (ret < 0)
goto err;
do {
if (rsp & ATC_SRCH_HIT) {
mt7530_fdb_read(priv, &_fdb);
if (_fdb.port_mask & BIT(port)) {
ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
data);
if (ret < 0)
break;
}
}
} while (--cnt &&
!(rsp & ATC_SRCH_END) &&
!mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
err:
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
mt7530_port_mdb_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb,
struct dsa_db db)
{
struct mt7530_priv *priv = ds->priv;
const u8 *addr = mdb->addr;
u16 vid = mdb->vid;
u8 port_mask = 0;
int ret;
mutex_lock(&priv->reg_mutex);
mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
& PORT_MAP_MASK;
port_mask |= BIT(port);
mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
mt7530_port_mdb_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb,
struct dsa_db db)
{
struct mt7530_priv *priv = ds->priv;
const u8 *addr = mdb->addr;
u16 vid = mdb->vid;
u8 port_mask = 0;
int ret;
mutex_lock(&priv->reg_mutex);
mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
& PORT_MAP_MASK;
port_mask &= ~BIT(port);
mt7530_fdb_write(priv, vid, port_mask, addr, -1,
port_mask ? STATIC_ENT : STATIC_EMP);
ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
{
struct mt7530_dummy_poll p;
u32 val;
int ret;
val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
mt7530_write(priv, MT7530_VTCR, val);
INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
ret = readx_poll_timeout(_mt7530_read, &p, val,
!(val & VTCR_BUSY), 20, 20000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
return ret;
}
val = mt7530_read(priv, MT7530_VTCR);
if (val & VTCR_INVALID) {
dev_err(priv->dev, "read VTCR invalid\n");
return -EINVAL;
}
return 0;
}
static int
mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
struct netlink_ext_ack *extack)
{
struct dsa_port *dp = dsa_to_port(ds, port);
struct dsa_port *cpu_dp = dp->cpu_dp;
if (vlan_filtering) {
/* The port is being kept as VLAN-unaware port when bridge is
* set up with vlan_filtering not being set, Otherwise, the
* port and the corresponding CPU port is required the setup
* for becoming a VLAN-aware port.
*/
mt7530_port_set_vlan_aware(ds, port);
mt7530_port_set_vlan_aware(ds, cpu_dp->index);
} else {
mt7530_port_set_vlan_unaware(ds, port);
}
return 0;
}
static void
mt7530_hw_vlan_add(struct mt7530_priv *priv,
struct mt7530_hw_vlan_entry *entry)
{
struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
u8 new_members;
u32 val;
new_members = entry->old_members | BIT(entry->port);
/* Validate the entry with independent learning, create egress tag per
* VLAN and joining the port as one of the port members.
*/
val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
VLAN_VALID;
mt7530_write(priv, MT7530_VAWD1, val);
/* Decide whether adding tag or not for those outgoing packets from the
* port inside the VLAN.
* CPU port is always taken as a tagged port for serving more than one
* VLANs across and also being applied with egress type stack mode for
* that VLAN tags would be appended after hardware special tag used as
* DSA tag.
*/
if (dsa_port_is_cpu(dp))
val = MT7530_VLAN_EGRESS_STACK;
else if (entry->untagged)
val = MT7530_VLAN_EGRESS_UNTAG;
else
val = MT7530_VLAN_EGRESS_TAG;
mt7530_rmw(priv, MT7530_VAWD2,
ETAG_CTRL_P_MASK(entry->port),
ETAG_CTRL_P(entry->port, val));
}
static void
mt7530_hw_vlan_del(struct mt7530_priv *priv,
struct mt7530_hw_vlan_entry *entry)
{
u8 new_members;
u32 val;
new_members = entry->old_members & ~BIT(entry->port);
val = mt7530_read(priv, MT7530_VAWD1);
if (!(val & VLAN_VALID)) {
dev_err(priv->dev,
"Cannot be deleted due to invalid entry\n");
return;
}
if (new_members) {
val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
VLAN_VALID;
mt7530_write(priv, MT7530_VAWD1, val);
} else {
mt7530_write(priv, MT7530_VAWD1, 0);
mt7530_write(priv, MT7530_VAWD2, 0);
}
}
static void
mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
struct mt7530_hw_vlan_entry *entry,
mt7530_vlan_op vlan_op)
{
u32 val;
/* Fetch entry */
mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
val = mt7530_read(priv, MT7530_VAWD1);
entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
/* Manipulate entry */
vlan_op(priv, entry);
/* Flush result to hardware */
mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
}
static int
mt7530_setup_vlan0(struct mt7530_priv *priv)
{
u32 val;
/* Validate the entry with independent learning, keep the original
* ingress tag attribute.
*/
val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
VLAN_VALID;
mt7530_write(priv, MT7530_VAWD1, val);
return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
}
static int
mt7530_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct netlink_ext_ack *extack)
{
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
struct mt7530_hw_vlan_entry new_entry;
struct mt7530_priv *priv = ds->priv;
mutex_lock(&priv->reg_mutex);
mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
if (pvid) {
priv->ports[port].pvid = vlan->vid;
/* Accept all frames if PVID is set */
mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
MT7530_VLAN_ACC_ALL);
/* Only configure PVID if VLAN filtering is enabled */
if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
mt7530_rmw(priv, MT7530_PPBV1_P(port),
G0_PORT_VID_MASK,
G0_PORT_VID(vlan->vid));
} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
/* This VLAN is overwritten without PVID, so unset it */
priv->ports[port].pvid = G0_PORT_VID_DEF;
/* Only accept tagged frames if the port is VLAN-aware */
if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
MT7530_VLAN_ACC_TAGGED);
mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
G0_PORT_VID_DEF);
}
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
mt7530_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct mt7530_hw_vlan_entry target_entry;
struct mt7530_priv *priv = ds->priv;
mutex_lock(&priv->reg_mutex);
mt7530_hw_vlan_entry_init(&target_entry, port, 0);
mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
mt7530_hw_vlan_del);
/* PVID is being restored to the default whenever the PVID port
* is being removed from the VLAN.
*/
if (priv->ports[port].pvid == vlan->vid) {
priv->ports[port].pvid = G0_PORT_VID_DEF;
/* Only accept tagged frames if the port is VLAN-aware */
if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
MT7530_VLAN_ACC_TAGGED);
mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
G0_PORT_VID_DEF);
}
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror,
bool ingress, struct netlink_ext_ack *extack)
{
struct mt7530_priv *priv = ds->priv;
int monitor_port;
u32 val;
/* Check for existent entry */
if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
return -EEXIST;
val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
/* MT7530 only supports one monitor port */
monitor_port = MT753X_MIRROR_PORT_GET(priv->id, val);
if (val & MT753X_MIRROR_EN(priv->id) &&
monitor_port != mirror->to_local_port)
return -EEXIST;
val |= MT753X_MIRROR_EN(priv->id);
val &= ~MT753X_MIRROR_PORT_MASK(priv->id);
val |= MT753X_MIRROR_PORT_SET(priv->id, mirror->to_local_port);
mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
val = mt7530_read(priv, MT7530_PCR_P(port));
if (ingress) {
val |= PORT_RX_MIR;
priv->mirror_rx |= BIT(port);
} else {
val |= PORT_TX_MIR;
priv->mirror_tx |= BIT(port);
}
mt7530_write(priv, MT7530_PCR_P(port), val);
return 0;
}
static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror)
{
struct mt7530_priv *priv = ds->priv;
u32 val;
val = mt7530_read(priv, MT7530_PCR_P(port));
if (mirror->ingress) {
val &= ~PORT_RX_MIR;
priv->mirror_rx &= ~BIT(port);
} else {
val &= ~PORT_TX_MIR;
priv->mirror_tx &= ~BIT(port);
}
mt7530_write(priv, MT7530_PCR_P(port), val);
if (!priv->mirror_rx && !priv->mirror_tx) {
val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
val &= ~MT753X_MIRROR_EN(priv->id);
mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
}
}
static enum dsa_tag_protocol
mtk_get_tag_protocol(struct dsa_switch *ds, int port,
enum dsa_tag_protocol mp)
{
return DSA_TAG_PROTO_MTK;
}
#ifdef CONFIG_GPIOLIB
static inline u32
mt7530_gpio_to_bit(unsigned int offset)
{
/* Map GPIO offset to register bit
* [ 2: 0] port 0 LED 0..2 as GPIO 0..2
* [ 6: 4] port 1 LED 0..2 as GPIO 3..5
* [10: 8] port 2 LED 0..2 as GPIO 6..8
* [14:12] port 3 LED 0..2 as GPIO 9..11
* [18:16] port 4 LED 0..2 as GPIO 12..14
*/
return BIT(offset + offset / 3);
}
static int
mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
{
struct mt7530_priv *priv = gpiochip_get_data(gc);
u32 bit = mt7530_gpio_to_bit(offset);
return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
}
static void
mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
{
struct mt7530_priv *priv = gpiochip_get_data(gc);
u32 bit = mt7530_gpio_to_bit(offset);
if (value)
mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
else
mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
}
static int
mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
{
struct mt7530_priv *priv = gpiochip_get_data(gc);
u32 bit = mt7530_gpio_to_bit(offset);
return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
}
static int
mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
{
struct mt7530_priv *priv = gpiochip_get_data(gc);
u32 bit = mt7530_gpio_to_bit(offset);
mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
return 0;
}
static int
mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
{
struct mt7530_priv *priv = gpiochip_get_data(gc);
u32 bit = mt7530_gpio_to_bit(offset);
mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
if (value)
mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
else
mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
return 0;
}
static int
mt7530_setup_gpio(struct mt7530_priv *priv)
{
struct device *dev = priv->dev;
struct gpio_chip *gc;
gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
if (!gc)
return -ENOMEM;
mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
mt7530_write(priv, MT7530_LED_IO_MODE, 0);
gc->label = "mt7530";
gc->parent = dev;
gc->owner = THIS_MODULE;
gc->get_direction = mt7530_gpio_get_direction;
gc->direction_input = mt7530_gpio_direction_input;
gc->direction_output = mt7530_gpio_direction_output;
gc->get = mt7530_gpio_get;
gc->set = mt7530_gpio_set;
gc->base = -1;
gc->ngpio = 15;
gc->can_sleep = true;
return devm_gpiochip_add_data(dev, gc, priv);
}
#endif /* CONFIG_GPIOLIB */
static irqreturn_t
mt7530_irq_thread_fn(int irq, void *dev_id)
{
struct mt7530_priv *priv = dev_id;
bool handled = false;
u32 val;
int p;
mt7530_mutex_lock(priv);
val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
mt7530_mutex_unlock(priv);
for (p = 0; p < MT7530_NUM_PHYS; p++) {
if (BIT(p) & val) {
unsigned int irq;
irq = irq_find_mapping(priv->irq_domain, p);
handle_nested_irq(irq);
handled = true;
}
}
return IRQ_RETVAL(handled);
}
static void
mt7530_irq_mask(struct irq_data *d)
{
struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
priv->irq_enable &= ~BIT(d->hwirq);
}
static void
mt7530_irq_unmask(struct irq_data *d)
{
struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
priv->irq_enable |= BIT(d->hwirq);
}
static void
mt7530_irq_bus_lock(struct irq_data *d)
{
struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
mt7530_mutex_lock(priv);
}
static void
mt7530_irq_bus_sync_unlock(struct irq_data *d)
{
struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
mt7530_mutex_unlock(priv);
}
static struct irq_chip mt7530_irq_chip = {
.name = KBUILD_MODNAME,
.irq_mask = mt7530_irq_mask,
.irq_unmask = mt7530_irq_unmask,
.irq_bus_lock = mt7530_irq_bus_lock,
.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
};
static int
mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_data(irq, domain->host_data);
irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
irq_set_nested_thread(irq, true);
irq_set_noprobe(irq);
return 0;
}
static const struct irq_domain_ops mt7530_irq_domain_ops = {
.map = mt7530_irq_map,
.xlate = irq_domain_xlate_onecell,
};
static void
mt7988_irq_mask(struct irq_data *d)
{
struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
priv->irq_enable &= ~BIT(d->hwirq);
mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
}
static void
mt7988_irq_unmask(struct irq_data *d)
{
struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
priv->irq_enable |= BIT(d->hwirq);
mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
}
static struct irq_chip mt7988_irq_chip = {
.name = KBUILD_MODNAME,
.irq_mask = mt7988_irq_mask,
.irq_unmask = mt7988_irq_unmask,
};
static int
mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_data(irq, domain->host_data);
irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
irq_set_nested_thread(irq, true);
irq_set_noprobe(irq);
return 0;
}
static const struct irq_domain_ops mt7988_irq_domain_ops = {
.map = mt7988_irq_map,
.xlate = irq_domain_xlate_onecell,
};
static void
mt7530_setup_mdio_irq(struct mt7530_priv *priv)
{
struct dsa_switch *ds = priv->ds;
int p;
for (p = 0; p < MT7530_NUM_PHYS; p++) {
if (BIT(p) & ds->phys_mii_mask) {
unsigned int irq;
irq = irq_create_mapping(priv->irq_domain, p);
ds->user_mii_bus->irq[p] = irq;
}
}
}
static int
mt7530_setup_irq(struct mt7530_priv *priv)
{
struct device *dev = priv->dev;
struct device_node *np = dev->of_node;
int ret;
if (!of_property_read_bool(np, "interrupt-controller")) {
dev_info(dev, "no interrupt support\n");
return 0;
}
priv->irq = of_irq_get(np, 0);
if (priv->irq <= 0) {
dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
return priv->irq ? : -EINVAL;
}
if (priv->id == ID_MT7988)
priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
&mt7988_irq_domain_ops,
priv);
else
priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
&mt7530_irq_domain_ops,
priv);
if (!priv->irq_domain) {
dev_err(dev, "failed to create IRQ domain\n");
return -ENOMEM;
}
/* This register must be set for MT7530 to properly fire interrupts */
if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
IRQF_ONESHOT, KBUILD_MODNAME, priv);
if (ret) {
irq_domain_remove(priv->irq_domain);
dev_err(dev, "failed to request IRQ: %d\n", ret);
return ret;
}
return 0;
}
static void
mt7530_free_mdio_irq(struct mt7530_priv *priv)
{
int p;
for (p = 0; p < MT7530_NUM_PHYS; p++) {
if (BIT(p) & priv->ds->phys_mii_mask) {
unsigned int irq;
irq = irq_find_mapping(priv->irq_domain, p);
irq_dispose_mapping(irq);
}
}
}
static void
mt7530_free_irq_common(struct mt7530_priv *priv)
{
free_irq(priv->irq, priv);
irq_domain_remove(priv->irq_domain);
}
static void
mt7530_free_irq(struct mt7530_priv *priv)
{
struct device_node *mnp, *np = priv->dev->of_node;
mnp = of_get_child_by_name(np, "mdio");
if (!mnp)
mt7530_free_mdio_irq(priv);
of_node_put(mnp);
mt7530_free_irq_common(priv);
}
static int
mt7530_setup_mdio(struct mt7530_priv *priv)
{
struct device_node *mnp, *np = priv->dev->of_node;
struct dsa_switch *ds = priv->ds;
struct device *dev = priv->dev;
struct mii_bus *bus;
static int idx;
int ret = 0;
mnp = of_get_child_by_name(np, "mdio");
if (mnp && !of_device_is_available(mnp))
goto out;
bus = devm_mdiobus_alloc(dev);
if (!bus) {
ret = -ENOMEM;
goto out;
}
if (!mnp)
ds->user_mii_bus = bus;
bus->priv = priv;
bus->name = KBUILD_MODNAME "-mii";
snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
bus->read = mt753x_phy_read_c22;
bus->write = mt753x_phy_write_c22;
bus->read_c45 = mt753x_phy_read_c45;
bus->write_c45 = mt753x_phy_write_c45;
bus->parent = dev;
bus->phy_mask = ~ds->phys_mii_mask;
if (priv->irq && !mnp)
mt7530_setup_mdio_irq(priv);
ret = devm_of_mdiobus_register(dev, bus, mnp);
if (ret) {
dev_err(dev, "failed to register MDIO bus: %d\n", ret);
if (priv->irq && !mnp)
mt7530_free_mdio_irq(priv);
}
out:
of_node_put(mnp);
return ret;
}
static int
mt7530_setup(struct dsa_switch *ds)
{
struct mt7530_priv *priv = ds->priv;
struct device_node *dn = NULL;
struct device_node *phy_node;
struct device_node *mac_np;
struct mt7530_dummy_poll p;
phy_interface_t interface;
struct dsa_port *cpu_dp;
u32 id, val;
int ret, i;
/* The parent node of conduit netdev which holds the common system
* controller also is the container for two GMACs nodes representing
* as two netdev instances.
*/
dsa_switch_for_each_cpu_port(cpu_dp, ds) {
dn = cpu_dp->conduit->dev.of_node->parent;
/* It doesn't matter which CPU port is found first,
* their conduits should share the same parent OF node
*/
break;
}
if (!dn) {
dev_err(ds->dev, "parent OF node of DSA conduit not found");
return -EINVAL;
}
ds->assisted_learning_on_cpu_port = true;
ds->mtu_enforcement_ingress = true;
if (priv->id == ID_MT7530) {
regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
ret = regulator_enable(priv->core_pwr);
if (ret < 0) {
dev_err(priv->dev,
"Failed to enable core power: %d\n", ret);
return ret;
}
regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
ret = regulator_enable(priv->io_pwr);
if (ret < 0) {
dev_err(priv->dev, "Failed to enable io pwr: %d\n",
ret);
return ret;
}
}
/* Reset whole chip through gpio pin or memory-mapped registers for
* different type of hardware
*/
if (priv->mcm) {
reset_control_assert(priv->rstc);
usleep_range(5000, 5100);
reset_control_deassert(priv->rstc);
} else {
gpiod_set_value_cansleep(priv->reset, 0);
usleep_range(5000, 5100);
gpiod_set_value_cansleep(priv->reset, 1);
}
/* Waiting for MT7530 got to stable */
INIT_MT7530_DUMMY_POLL(&p, priv, MT753X_TRAP);
ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
20, 1000000);
if (ret < 0) {
dev_err(priv->dev, "reset timeout\n");
return ret;
}
id = mt7530_read(priv, MT7530_CREV);
id >>= CHIP_NAME_SHIFT;
if (id != MT7530_ID) {
dev_err(priv->dev, "chip %x can't be supported\n", id);
return -ENODEV;
}
if ((val & MT7530_XTAL_MASK) == MT7530_XTAL_20MHZ) {
dev_err(priv->dev,
"MT7530 with a 20MHz XTAL is not supported!\n");
return -EINVAL;
}
/* Reset the switch through internal reset */
mt7530_write(priv, MT7530_SYS_CTRL,
SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
SYS_CTRL_REG_RST);
/* Lower Tx driving for TRGMII path */
for (i = 0; i < NUM_TRGMII_CTRL; i++)
mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
TD_DM_DRVP(8) | TD_DM_DRVN(8));
for (i = 0; i < NUM_TRGMII_CTRL; i++)
mt7530_rmw(priv, MT7530_TRGMII_RD(i),
RD_TAP_MASK, RD_TAP(16));
/* Allow modifying the trap and directly access PHY registers via the
* MDIO bus the switch is on.
*/
mt7530_rmw(priv, MT753X_MTRAP, MT7530_CHG_TRAP |
MT7530_PHY_INDIRECT_ACCESS, MT7530_CHG_TRAP);
if ((val & MT7530_XTAL_MASK) == MT7530_XTAL_40MHZ)
mt7530_pll_setup(priv);
mt753x_trap_frames(priv);
/* Enable and reset MIB counters */
mt7530_mib_reset(ds);
for (i = 0; i < priv->ds->num_ports; i++) {
/* Clear link settings and enable force mode to force link down
* on all ports until they're enabled later.
*/
mt7530_rmw(priv, MT753X_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
MT7530_FORCE_MODE, MT7530_FORCE_MODE);
/* Disable forwarding by default on all ports */
mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
PCR_MATRIX_CLR);
/* Disable learning by default on all ports */
mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
if (dsa_is_cpu_port(ds, i)) {
mt753x_cpu_port_enable(ds, i);
} else {
mt7530_port_disable(ds, i);
/* Set default PVID to 0 on all user ports */
mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
G0_PORT_VID_DEF);
}
/* Enable consistent egress tag */
mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
}
/* Allow mirroring frames received on the local port (monitor port). */
mt7530_set(priv, MT753X_AGC, LOCAL_EN);
/* Setup VLAN ID 0 for VLAN-unaware bridges */
ret = mt7530_setup_vlan0(priv);
if (ret)
return ret;
/* Check for PHY muxing on port 5 */
if (dsa_is_unused_port(ds, 5)) {
/* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY.
* Set priv->p5_mode to the appropriate value if PHY muxing is
* detected.
*/
for_each_child_of_node(dn, mac_np) {
if (!of_device_is_compatible(mac_np,
"mediatek,eth-mac"))
continue;
ret = of_property_read_u32(mac_np, "reg", &id);
if (ret < 0 || id != 1)
continue;
phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
if (!phy_node)
continue;
if (phy_node->parent == priv->dev->of_node->parent ||
phy_node->parent->parent == priv->dev->of_node) {
ret = of_get_phy_mode(mac_np, &interface);
if (ret && ret != -ENODEV) {
of_node_put(mac_np);
of_node_put(phy_node);
return ret;
}
id = of_mdio_parse_addr(ds->dev, phy_node);
if (id == 0)
priv->p5_mode = MUX_PHY_P0;
if (id == 4)
priv->p5_mode = MUX_PHY_P4;
}
of_node_put(mac_np);
of_node_put(phy_node);
break;
}
if (priv->p5_mode == MUX_PHY_P0 ||
priv->p5_mode == MUX_PHY_P4) {
mt7530_clear(priv, MT753X_MTRAP, MT7530_P5_DIS);
mt7530_setup_port5(ds, interface);
}
}
#ifdef CONFIG_GPIOLIB
if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
ret = mt7530_setup_gpio(priv);
if (ret)
return ret;
}
#endif /* CONFIG_GPIOLIB */
/* Flush the FDB table */
ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
if (ret < 0)
return ret;
return 0;
}
static int
mt7531_setup_common(struct dsa_switch *ds)
{
struct mt7530_priv *priv = ds->priv;
int ret, i;
mt753x_trap_frames(priv);
/* Enable and reset MIB counters */
mt7530_mib_reset(ds);
/* Disable flooding on all ports */
mt7530_clear(priv, MT753X_MFC, BC_FFP_MASK | UNM_FFP_MASK |
UNU_FFP_MASK);
for (i = 0; i < priv->ds->num_ports; i++) {
/* Clear link settings and enable force mode to force link down
* on all ports until they're enabled later.
*/
mt7530_rmw(priv, MT753X_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
MT7531_FORCE_MODE_MASK, MT7531_FORCE_MODE_MASK);
/* Disable forwarding by default on all ports */
mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
PCR_MATRIX_CLR);
/* Disable learning by default on all ports */
mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
if (dsa_is_cpu_port(ds, i)) {
mt753x_cpu_port_enable(ds, i);
} else {
mt7530_port_disable(ds, i);
/* Set default PVID to 0 on all user ports */
mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
G0_PORT_VID_DEF);
}
/* Enable consistent egress tag */
mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
}
/* Allow mirroring frames received on the local port (monitor port). */
mt7530_set(priv, MT753X_AGC, LOCAL_EN);
/* Flush the FDB table */
ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
if (ret < 0)
return ret;
return 0;
}
static int
mt7531_setup(struct dsa_switch *ds)
{
struct mt7530_priv *priv = ds->priv;
struct mt7530_dummy_poll p;
u32 val, id;
int ret, i;
/* Reset whole chip through gpio pin or memory-mapped registers for
* different type of hardware
*/
if (priv->mcm) {
reset_control_assert(priv->rstc);
usleep_range(5000, 5100);
reset_control_deassert(priv->rstc);
} else {
gpiod_set_value_cansleep(priv->reset, 0);
usleep_range(5000, 5100);
gpiod_set_value_cansleep(priv->reset, 1);
}
/* Waiting for MT7530 got to stable */
INIT_MT7530_DUMMY_POLL(&p, priv, MT753X_TRAP);
ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
20, 1000000);
if (ret < 0) {
dev_err(priv->dev, "reset timeout\n");
return ret;
}
id = mt7530_read(priv, MT7531_CREV);
id >>= CHIP_NAME_SHIFT;
if (id != MT7531_ID) {
dev_err(priv->dev, "chip %x can't be supported\n", id);
return -ENODEV;
}
/* MT7531AE has got two SGMII units. One for port 5, one for port 6.
* MT7531BE has got only one SGMII unit which is for port 6.
*/
val = mt7530_read(priv, MT7531_TOP_SIG_SR);
priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN);
/* Force link down on all ports before internal reset */
for (i = 0; i < priv->ds->num_ports; i++)
mt7530_write(priv, MT753X_PMCR_P(i), MT7531_FORCE_MODE_LNK);
/* Reset the switch through internal reset */
mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_SW_RST | SYS_CTRL_REG_RST);
if (!priv->p5_sgmii) {
mt7531_pll_setup(priv);
} else {
/* Unlike MT7531BE, the GPIO 6-12 pins are not used for RGMII on
* MT7531AE. Set the GPIO 11-12 pins to function as MDC and MDIO
* to expose the MDIO bus of the switch.
*/
mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
MT7531_EXT_P_MDC_11);
mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
MT7531_EXT_P_MDIO_12);
}
mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
MT7531_GPIO0_INTERRUPT);
/* Enable Energy-Efficient Ethernet (EEE) and PHY core PLL, since
* phy_device has not yet been created provided for
* phy_[read,write]_mmd_indirect is called, we provide our own
* mt7531_ind_mmd_phy_[read,write] to complete this function.
*/
val = mt7531_ind_c45_phy_read(priv,
MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
MDIO_MMD_VEND2, CORE_PLL_GROUP4);
val |= MT7531_RG_SYSPLL_DMY2 | MT7531_PHY_PLL_BYPASS_MODE;
val &= ~MT7531_PHY_PLL_OFF;
mt7531_ind_c45_phy_write(priv,
MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
MDIO_MMD_VEND2, CORE_PLL_GROUP4, val);
/* Disable EEE advertisement on the switch PHYs. */
for (i = MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr);
i < MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr) + MT7530_NUM_PHYS;
i++) {
mt7531_ind_c45_phy_write(priv, i, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
0);
}
ret = mt7531_setup_common(ds);
if (ret)
return ret;
/* Setup VLAN ID 0 for VLAN-unaware bridges */
ret = mt7530_setup_vlan0(priv);
if (ret)
return ret;
ds->assisted_learning_on_cpu_port = true;
ds->mtu_enforcement_ingress = true;
return 0;
}
static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
struct phylink_config *config)
{
config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
switch (port) {
/* Ports which are connected to switch PHYs. There is no MII pinout. */
case 0 ... 4:
__set_bit(PHY_INTERFACE_MODE_GMII,
config->supported_interfaces);
break;
/* Port 5 supports rgmii with delays, mii, and gmii. */
case 5:
phy_interface_set_rgmii(config->supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_MII,
config->supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_GMII,
config->supported_interfaces);
break;
/* Port 6 supports rgmii and trgmii. */
case 6:
__set_bit(PHY_INTERFACE_MODE_RGMII,
config->supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_TRGMII,
config->supported_interfaces);
break;
}
}
static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
struct phylink_config *config)
{
struct mt7530_priv *priv = ds->priv;
config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
switch (port) {
/* Ports which are connected to switch PHYs. There is no MII pinout. */
case 0 ... 4:
__set_bit(PHY_INTERFACE_MODE_GMII,
config->supported_interfaces);
break;
/* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on
* MT7531AE.
*/
case 5:
if (!priv->p5_sgmii) {
phy_interface_set_rgmii(config->supported_interfaces);
break;
}
fallthrough;
/* Port 6 supports sgmii/802.3z. */
case 6:
__set_bit(PHY_INTERFACE_MODE_SGMII,
config->supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_1000BASEX,
config->supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_2500BASEX,
config->supported_interfaces);
config->mac_capabilities |= MAC_2500FD;
break;
}
}
static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
struct phylink_config *config)
{
switch (port) {
/* Ports which are connected to switch PHYs. There is no MII pinout. */
case 0 ... 3:
__set_bit(PHY_INTERFACE_MODE_INTERNAL,
config->supported_interfaces);
config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
break;
/* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
case 6:
__set_bit(PHY_INTERFACE_MODE_INTERNAL,
config->supported_interfaces);
config->mac_capabilities |= MAC_10000FD;
break;
}
}
static void
mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
phy_interface_t interface)
{
struct mt7530_priv *priv = ds->priv;
if (port == 5)
mt7530_setup_port5(priv->ds, interface);
else if (port == 6)
mt7530_setup_port6(priv->ds, interface);
}
static void mt7531_rgmii_setup(struct mt7530_priv *priv,
phy_interface_t interface,
struct phy_device *phydev)
{
u32 val;
val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
val |= GP_CLK_EN;
val &= ~GP_MODE_MASK;
val |= GP_MODE(MT7531_GP_MODE_RGMII);
val &= ~CLK_SKEW_IN_MASK;
val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
val &= ~CLK_SKEW_OUT_MASK;
val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
/* Do not adjust rgmii delay when vendor phy driver presents. */
if (!phydev || phy_driver_is_genphy(phydev)) {
val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
switch (interface) {
case PHY_INTERFACE_MODE_RGMII:
val |= TXCLK_NO_REVERSE;
val |= RXCLK_NO_DELAY;
break;
case PHY_INTERFACE_MODE_RGMII_RXID:
val |= TXCLK_NO_REVERSE;
break;
case PHY_INTERFACE_MODE_RGMII_TXID:
val |= RXCLK_NO_DELAY;
break;
case PHY_INTERFACE_MODE_RGMII_ID:
break;
default:
break;
}
}
mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
}
static void
mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
phy_interface_t interface)
{
struct mt7530_priv *priv = ds->priv;
struct phy_device *phydev;
struct dsa_port *dp;
if (phy_interface_mode_is_rgmii(interface)) {
dp = dsa_to_port(ds, port);
phydev = dp->user->phydev;
mt7531_rgmii_setup(priv, interface, phydev);
}
}
static struct phylink_pcs *
mt753x_phylink_mac_select_pcs(struct phylink_config *config,
phy_interface_t interface)
{
struct dsa_port *dp = dsa_phylink_to_port(config);
struct mt7530_priv *priv = dp->ds->priv;
switch (interface) {
case PHY_INTERFACE_MODE_TRGMII:
return &priv->pcs[dp->index].pcs;
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_2500BASEX:
return priv->ports[dp->index].sgmii_pcs;
default:
return NULL;
}
}
static void
mt753x_phylink_mac_config(struct phylink_config *config, unsigned int mode,
const struct phylink_link_state *state)
{
struct dsa_port *dp = dsa_phylink_to_port(config);
struct dsa_switch *ds = dp->ds;
struct mt7530_priv *priv;
int port = dp->index;
priv = ds->priv;
if ((port == 5 || port == 6) && priv->info->mac_port_config)
priv->info->mac_port_config(ds, port, mode, state->interface);
/* Are we connected to external phy */
if (port == 5 && dsa_is_user_port(ds, 5))
mt7530_set(priv, MT753X_PMCR_P(port), PMCR_EXT_PHY);
}
static void mt753x_phylink_mac_link_down(struct phylink_config *config,
unsigned int mode,
phy_interface_t interface)
{
struct dsa_port *dp = dsa_phylink_to_port(config);
struct mt7530_priv *priv = dp->ds->priv;
mt7530_clear(priv, MT753X_PMCR_P(dp->index), PMCR_LINK_SETTINGS_MASK);
}
static void mt753x_phylink_mac_link_up(struct phylink_config *config,
struct phy_device *phydev,
unsigned int mode,
phy_interface_t interface,
int speed, int duplex,
bool tx_pause, bool rx_pause)
{
struct dsa_port *dp = dsa_phylink_to_port(config);
struct mt7530_priv *priv = dp->ds->priv;
u32 mcr;
mcr = PMCR_MAC_RX_EN | PMCR_MAC_TX_EN | PMCR_FORCE_LNK;
switch (speed) {
case SPEED_1000:
case SPEED_2500:
case SPEED_10000:
mcr |= PMCR_FORCE_SPEED_1000;
break;
case SPEED_100:
mcr |= PMCR_FORCE_SPEED_100;
break;
}
if (duplex == DUPLEX_FULL) {
mcr |= PMCR_FORCE_FDX;
if (tx_pause)
mcr |= PMCR_FORCE_TX_FC_EN;
if (rx_pause)
mcr |= PMCR_FORCE_RX_FC_EN;
}
if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
switch (speed) {
case SPEED_1000:
case SPEED_2500:
mcr |= PMCR_FORCE_EEE1G;
break;
case SPEED_100:
mcr |= PMCR_FORCE_EEE100;
break;
}
}
mt7530_set(priv, MT753X_PMCR_P(dp->index), mcr);
}
static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
struct phylink_config *config)
{
struct mt7530_priv *priv = ds->priv;
config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE;
priv->info->mac_port_get_caps(ds, port, config);
}
static int mt753x_pcs_validate(struct phylink_pcs *pcs,
unsigned long *supported,
const struct phylink_link_state *state)
{
/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
phy_interface_mode_is_8023z(state->interface))
phylink_clear(supported, Autoneg);
return 0;
}
static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
struct phylink_link_state *state)
{
struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
int port = pcs_to_mt753x_pcs(pcs)->port;
u32 pmsr;
pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
state->link = (pmsr & PMSR_LINK);
state->an_complete = state->link;
state->duplex = !!(pmsr & PMSR_DPX);
switch (pmsr & PMSR_SPEED_MASK) {
case PMSR_SPEED_10:
state->speed = SPEED_10;
break;
case PMSR_SPEED_100:
state->speed = SPEED_100;
break;
case PMSR_SPEED_1000:
state->speed = SPEED_1000;
break;
default:
state->speed = SPEED_UNKNOWN;
break;
}
state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
if (pmsr & PMSR_RX_FC)
state->pause |= MLO_PAUSE_RX;
if (pmsr & PMSR_TX_FC)
state->pause |= MLO_PAUSE_TX;
}
static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
phy_interface_t interface,
const unsigned long *advertising,
bool permit_pause_to_mac)
{
return 0;
}
static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
{
}
static const struct phylink_pcs_ops mt7530_pcs_ops = {
.pcs_validate = mt753x_pcs_validate,
.pcs_get_state = mt7530_pcs_get_state,
.pcs_config = mt753x_pcs_config,
.pcs_an_restart = mt7530_pcs_an_restart,
};
static int
mt753x_setup(struct dsa_switch *ds)
{
struct mt7530_priv *priv = ds->priv;
int ret = priv->info->sw_setup(ds);
int i;
if (ret)
return ret;
ret = mt7530_setup_irq(priv);
if (ret)
return ret;
ret = mt7530_setup_mdio(priv);
if (ret && priv->irq)
mt7530_free_irq_common(priv);
if (ret)
return ret;
/* Initialise the PCS devices */
for (i = 0; i < priv->ds->num_ports; i++) {
priv->pcs[i].pcs.ops = priv->info->pcs_ops;
priv->pcs[i].pcs.neg_mode = true;
priv->pcs[i].priv = priv;
priv->pcs[i].port = i;
}
if (priv->create_sgmii) {
ret = priv->create_sgmii(priv);
if (ret && priv->irq)
mt7530_free_irq(priv);
}
return ret;
}
static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
struct ethtool_keee *e)
{
struct mt7530_priv *priv = ds->priv;
u32 eeecr = mt7530_read(priv, MT753X_PMEEECR_P(port));
e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
e->tx_lpi_timer = LPI_THRESH_GET(eeecr);
return 0;
}
static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
struct ethtool_keee *e)
{
struct mt7530_priv *priv = ds->priv;
u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
if (e->tx_lpi_timer > 0xFFF)
return -EINVAL;
set = LPI_THRESH_SET(e->tx_lpi_timer);
if (!e->tx_lpi_enabled)
/* Force LPI Mode without a delay */
set |= LPI_MODE_EN;
mt7530_rmw(priv, MT753X_PMEEECR_P(port), mask, set);
return 0;
}
static void
mt753x_conduit_state_change(struct dsa_switch *ds,
const struct net_device *conduit,
bool operational)
{
struct dsa_port *cpu_dp = conduit->dsa_ptr;
struct mt7530_priv *priv = ds->priv;
int val = 0;
u8 mask;
/* Set the CPU port to trap frames to for MT7530. Trapped frames will be
* forwarded to the numerically smallest CPU port whose conduit
* interface is up.
*/
if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
return;
mask = BIT(cpu_dp->index);
if (operational)
priv->active_cpu_ports |= mask;
else
priv->active_cpu_ports &= ~mask;
if (priv->active_cpu_ports) {
val = MT7530_CPU_EN |
MT7530_CPU_PORT(__ffs(priv->active_cpu_ports));
}
mt7530_rmw(priv, MT753X_MFC, MT7530_CPU_EN | MT7530_CPU_PORT_MASK, val);
}
static int mt7988_setup(struct dsa_switch *ds)
{
struct mt7530_priv *priv = ds->priv;
/* Reset the switch */
reset_control_assert(priv->rstc);
usleep_range(20, 50);
reset_control_deassert(priv->rstc);
usleep_range(20, 50);
/* Reset the switch PHYs */
mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
return mt7531_setup_common(ds);
}
const struct dsa_switch_ops mt7530_switch_ops = {
.get_tag_protocol = mtk_get_tag_protocol,
.setup = mt753x_setup,
.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
.get_strings = mt7530_get_strings,
.get_ethtool_stats = mt7530_get_ethtool_stats,
.get_sset_count = mt7530_get_sset_count,
.set_ageing_time = mt7530_set_ageing_time,
.port_enable = mt7530_port_enable,
.port_disable = mt7530_port_disable,
.port_change_mtu = mt7530_port_change_mtu,
.port_max_mtu = mt7530_port_max_mtu,
.port_stp_state_set = mt7530_stp_state_set,
.port_pre_bridge_flags = mt7530_port_pre_bridge_flags,
.port_bridge_flags = mt7530_port_bridge_flags,
.port_bridge_join = mt7530_port_bridge_join,
.port_bridge_leave = mt7530_port_bridge_leave,
.port_fdb_add = mt7530_port_fdb_add,
.port_fdb_del = mt7530_port_fdb_del,
.port_fdb_dump = mt7530_port_fdb_dump,
.port_mdb_add = mt7530_port_mdb_add,
.port_mdb_del = mt7530_port_mdb_del,
.port_vlan_filtering = mt7530_port_vlan_filtering,
.port_vlan_add = mt7530_port_vlan_add,
.port_vlan_del = mt7530_port_vlan_del,
.port_mirror_add = mt753x_port_mirror_add,
.port_mirror_del = mt753x_port_mirror_del,
.phylink_get_caps = mt753x_phylink_get_caps,
.get_mac_eee = mt753x_get_mac_eee,
.set_mac_eee = mt753x_set_mac_eee,
.conduit_state_change = mt753x_conduit_state_change,
};
EXPORT_SYMBOL_GPL(mt7530_switch_ops);
static const struct phylink_mac_ops mt753x_phylink_mac_ops = {
.mac_select_pcs = mt753x_phylink_mac_select_pcs,
.mac_config = mt753x_phylink_mac_config,
.mac_link_down = mt753x_phylink_mac_link_down,
.mac_link_up = mt753x_phylink_mac_link_up,
};
const struct mt753x_info mt753x_table[] = {
[ID_MT7621] = {
.id = ID_MT7621,
.pcs_ops = &mt7530_pcs_ops,
.sw_setup = mt7530_setup,
.phy_read_c22 = mt7530_phy_read_c22,
.phy_write_c22 = mt7530_phy_write_c22,
.phy_read_c45 = mt7530_phy_read_c45,
.phy_write_c45 = mt7530_phy_write_c45,
.mac_port_get_caps = mt7530_mac_port_get_caps,
.mac_port_config = mt7530_mac_config,
},
[ID_MT7530] = {
.id = ID_MT7530,
.pcs_ops = &mt7530_pcs_ops,
.sw_setup = mt7530_setup,
.phy_read_c22 = mt7530_phy_read_c22,
.phy_write_c22 = mt7530_phy_write_c22,
.phy_read_c45 = mt7530_phy_read_c45,
.phy_write_c45 = mt7530_phy_write_c45,
.mac_port_get_caps = mt7530_mac_port_get_caps,
.mac_port_config = mt7530_mac_config,
},
[ID_MT7531] = {
.id = ID_MT7531,
.pcs_ops = &mt7530_pcs_ops,
.sw_setup = mt7531_setup,
.phy_read_c22 = mt7531_ind_c22_phy_read,
.phy_write_c22 = mt7531_ind_c22_phy_write,
.phy_read_c45 = mt7531_ind_c45_phy_read,
.phy_write_c45 = mt7531_ind_c45_phy_write,
.mac_port_get_caps = mt7531_mac_port_get_caps,
.mac_port_config = mt7531_mac_config,
},
[ID_MT7988] = {
.id = ID_MT7988,
.pcs_ops = &mt7530_pcs_ops,
.sw_setup = mt7988_setup,
.phy_read_c22 = mt7531_ind_c22_phy_read,
.phy_write_c22 = mt7531_ind_c22_phy_write,
.phy_read_c45 = mt7531_ind_c45_phy_read,
.phy_write_c45 = mt7531_ind_c45_phy_write,
.mac_port_get_caps = mt7988_mac_port_get_caps,
},
};
EXPORT_SYMBOL_GPL(mt753x_table);
int
mt7530_probe_common(struct mt7530_priv *priv)
{
struct device *dev = priv->dev;
priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
if (!priv->ds)
return -ENOMEM;
priv->ds->dev = dev;
priv->ds->num_ports = MT7530_NUM_PORTS;
/* Get the hardware identifier from the devicetree node.
* We will need it for some of the clock and regulator setup.
*/
priv->info = of_device_get_match_data(dev);
if (!priv->info)
return -EINVAL;
priv->id = priv->info->id;
priv->dev = dev;
priv->ds->priv = priv;
priv->ds->ops = &mt7530_switch_ops;
priv->ds->phylink_mac_ops = &mt753x_phylink_mac_ops;
mutex_init(&priv->reg_mutex);
dev_set_drvdata(dev, priv);
return 0;
}
EXPORT_SYMBOL_GPL(mt7530_probe_common);
void
mt7530_remove_common(struct mt7530_priv *priv)
{
if (priv->irq)
mt7530_free_irq(priv);
dsa_unregister_switch(priv->ds);
mutex_destroy(&priv->reg_mutex);
}
EXPORT_SYMBOL_GPL(mt7530_remove_common);
MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
MODULE_LICENSE("GPL");