mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-29 14:05:19 +08:00
46ddfb9d1e
[ Upstream commit8d56e5c5a9
] In the initial release of the ARM Architecture Reference Manual for ARMv8-A, the ESR_ELx registers were defined as 32-bit registers. This changed in 2018 with version D.a (ARM DDI 0487D.a) of the architecture, when they became 64-bit registers, with bits [63:32] defined as RES0. In version G.a, a new field was added to ESR_ELx, ISS2, which covers bits [36:32]. This field is used when the Armv8.7 extension FEAT_LS64 is implemented. As a result of the evolution of the register width, Linux stores it as both a 64-bit value and a 32-bit value, which hasn't affected correctness so far as Linux only uses the lower 32 bits of the register. Make the register type consistent and always treat it as 64-bit wide. The register is redefined as an "unsigned long", which is an unsigned double-word (64-bit quantity) for the LP64 machine (aapcs64 [1], Table 1, page 14). The type was chosen because "unsigned int" is the most frequent type for ESR_ELx and because FAR_ELx, which is used together with ESR_ELx in exception handling, is also declared as "unsigned long". The 64-bit type also makes adding support for architectural features that use fields above bit 31 easier in the future. The KVM hypervisor will receive a similar update in a subsequent patch. [1] https://github.com/ARM-software/abi-aa/releases/download/2021Q3/aapcs64.pdf Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20220425114444.368693-4-alexandru.elisei@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Stable-dep-of:0bb1fbffc6
("arm64: mm: kfence: only handle translation faults") Signed-off-by: Sasha Levin <sashal@kernel.org>
842 lines
20 KiB
C
842 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Exception handling code
|
|
*
|
|
* Copyright (C) 2019 ARM Ltd.
|
|
*/
|
|
|
|
#include <linux/context_tracking.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/thread_info.h>
|
|
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/daifflags.h>
|
|
#include <asm/esr.h>
|
|
#include <asm/exception.h>
|
|
#include <asm/kprobes.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sdei.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/sysreg.h>
|
|
#include <asm/system_misc.h>
|
|
|
|
/*
|
|
* Handle IRQ/context state management when entering from kernel mode.
|
|
* Before this function is called it is not safe to call regular kernel code,
|
|
* intrumentable code, or any code which may trigger an exception.
|
|
*
|
|
* This is intended to match the logic in irqentry_enter(), handling the kernel
|
|
* mode transitions only.
|
|
*/
|
|
static __always_inline void __enter_from_kernel_mode(struct pt_regs *regs)
|
|
{
|
|
regs->exit_rcu = false;
|
|
|
|
if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) {
|
|
lockdep_hardirqs_off(CALLER_ADDR0);
|
|
rcu_irq_enter();
|
|
trace_hardirqs_off_finish();
|
|
|
|
regs->exit_rcu = true;
|
|
return;
|
|
}
|
|
|
|
lockdep_hardirqs_off(CALLER_ADDR0);
|
|
rcu_irq_enter_check_tick();
|
|
trace_hardirqs_off_finish();
|
|
}
|
|
|
|
static void noinstr enter_from_kernel_mode(struct pt_regs *regs)
|
|
{
|
|
__enter_from_kernel_mode(regs);
|
|
mte_check_tfsr_entry();
|
|
}
|
|
|
|
/*
|
|
* Handle IRQ/context state management when exiting to kernel mode.
|
|
* After this function returns it is not safe to call regular kernel code,
|
|
* intrumentable code, or any code which may trigger an exception.
|
|
*
|
|
* This is intended to match the logic in irqentry_exit(), handling the kernel
|
|
* mode transitions only, and with preemption handled elsewhere.
|
|
*/
|
|
static __always_inline void __exit_to_kernel_mode(struct pt_regs *regs)
|
|
{
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
if (interrupts_enabled(regs)) {
|
|
if (regs->exit_rcu) {
|
|
trace_hardirqs_on_prepare();
|
|
lockdep_hardirqs_on_prepare();
|
|
rcu_irq_exit();
|
|
lockdep_hardirqs_on(CALLER_ADDR0);
|
|
return;
|
|
}
|
|
|
|
trace_hardirqs_on();
|
|
} else {
|
|
if (regs->exit_rcu)
|
|
rcu_irq_exit();
|
|
}
|
|
}
|
|
|
|
static void noinstr exit_to_kernel_mode(struct pt_regs *regs)
|
|
{
|
|
mte_check_tfsr_exit();
|
|
__exit_to_kernel_mode(regs);
|
|
}
|
|
|
|
/*
|
|
* Handle IRQ/context state management when entering from user mode.
|
|
* Before this function is called it is not safe to call regular kernel code,
|
|
* intrumentable code, or any code which may trigger an exception.
|
|
*/
|
|
static __always_inline void __enter_from_user_mode(void)
|
|
{
|
|
lockdep_hardirqs_off(CALLER_ADDR0);
|
|
CT_WARN_ON(ct_state() != CONTEXT_USER);
|
|
user_exit_irqoff();
|
|
trace_hardirqs_off_finish();
|
|
}
|
|
|
|
static __always_inline void enter_from_user_mode(struct pt_regs *regs)
|
|
{
|
|
__enter_from_user_mode();
|
|
}
|
|
|
|
/*
|
|
* Handle IRQ/context state management when exiting to user mode.
|
|
* After this function returns it is not safe to call regular kernel code,
|
|
* intrumentable code, or any code which may trigger an exception.
|
|
*/
|
|
static __always_inline void __exit_to_user_mode(void)
|
|
{
|
|
trace_hardirqs_on_prepare();
|
|
lockdep_hardirqs_on_prepare();
|
|
user_enter_irqoff();
|
|
lockdep_hardirqs_on(CALLER_ADDR0);
|
|
}
|
|
|
|
static __always_inline void prepare_exit_to_user_mode(struct pt_regs *regs)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_daif_mask();
|
|
|
|
flags = READ_ONCE(current_thread_info()->flags);
|
|
if (unlikely(flags & _TIF_WORK_MASK))
|
|
do_notify_resume(regs, flags);
|
|
}
|
|
|
|
static __always_inline void exit_to_user_mode(struct pt_regs *regs)
|
|
{
|
|
prepare_exit_to_user_mode(regs);
|
|
mte_check_tfsr_exit();
|
|
__exit_to_user_mode();
|
|
}
|
|
|
|
asmlinkage void noinstr asm_exit_to_user_mode(struct pt_regs *regs)
|
|
{
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
/*
|
|
* Handle IRQ/context state management when entering an NMI from user/kernel
|
|
* mode. Before this function is called it is not safe to call regular kernel
|
|
* code, intrumentable code, or any code which may trigger an exception.
|
|
*/
|
|
static void noinstr arm64_enter_nmi(struct pt_regs *regs)
|
|
{
|
|
regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
|
|
|
|
__nmi_enter();
|
|
lockdep_hardirqs_off(CALLER_ADDR0);
|
|
lockdep_hardirq_enter();
|
|
rcu_nmi_enter();
|
|
|
|
trace_hardirqs_off_finish();
|
|
ftrace_nmi_enter();
|
|
}
|
|
|
|
/*
|
|
* Handle IRQ/context state management when exiting an NMI from user/kernel
|
|
* mode. After this function returns it is not safe to call regular kernel
|
|
* code, intrumentable code, or any code which may trigger an exception.
|
|
*/
|
|
static void noinstr arm64_exit_nmi(struct pt_regs *regs)
|
|
{
|
|
bool restore = regs->lockdep_hardirqs;
|
|
|
|
ftrace_nmi_exit();
|
|
if (restore) {
|
|
trace_hardirqs_on_prepare();
|
|
lockdep_hardirqs_on_prepare();
|
|
}
|
|
|
|
rcu_nmi_exit();
|
|
lockdep_hardirq_exit();
|
|
if (restore)
|
|
lockdep_hardirqs_on(CALLER_ADDR0);
|
|
__nmi_exit();
|
|
}
|
|
|
|
/*
|
|
* Handle IRQ/context state management when entering a debug exception from
|
|
* kernel mode. Before this function is called it is not safe to call regular
|
|
* kernel code, intrumentable code, or any code which may trigger an exception.
|
|
*/
|
|
static void noinstr arm64_enter_el1_dbg(struct pt_regs *regs)
|
|
{
|
|
regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
|
|
|
|
lockdep_hardirqs_off(CALLER_ADDR0);
|
|
rcu_nmi_enter();
|
|
|
|
trace_hardirqs_off_finish();
|
|
}
|
|
|
|
/*
|
|
* Handle IRQ/context state management when exiting a debug exception from
|
|
* kernel mode. After this function returns it is not safe to call regular
|
|
* kernel code, intrumentable code, or any code which may trigger an exception.
|
|
*/
|
|
static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs)
|
|
{
|
|
bool restore = regs->lockdep_hardirqs;
|
|
|
|
if (restore) {
|
|
trace_hardirqs_on_prepare();
|
|
lockdep_hardirqs_on_prepare();
|
|
}
|
|
|
|
rcu_nmi_exit();
|
|
if (restore)
|
|
lockdep_hardirqs_on(CALLER_ADDR0);
|
|
}
|
|
|
|
static void noinstr enter_el1_irq_or_nmi(struct pt_regs *regs)
|
|
{
|
|
if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs))
|
|
arm64_enter_nmi(regs);
|
|
else
|
|
enter_from_kernel_mode(regs);
|
|
}
|
|
|
|
static void noinstr exit_el1_irq_or_nmi(struct pt_regs *regs)
|
|
{
|
|
if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs))
|
|
arm64_exit_nmi(regs);
|
|
else
|
|
exit_to_kernel_mode(regs);
|
|
}
|
|
|
|
static void __sched arm64_preempt_schedule_irq(void)
|
|
{
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
/*
|
|
* DAIF.DA are cleared at the start of IRQ/FIQ handling, and when GIC
|
|
* priority masking is used the GIC irqchip driver will clear DAIF.IF
|
|
* using gic_arch_enable_irqs() for normal IRQs. If anything is set in
|
|
* DAIF we must have handled an NMI, so skip preemption.
|
|
*/
|
|
if (system_uses_irq_prio_masking() && read_sysreg(daif))
|
|
return;
|
|
|
|
/*
|
|
* Preempting a task from an IRQ means we leave copies of PSTATE
|
|
* on the stack. cpufeature's enable calls may modify PSTATE, but
|
|
* resuming one of these preempted tasks would undo those changes.
|
|
*
|
|
* Only allow a task to be preempted once cpufeatures have been
|
|
* enabled.
|
|
*/
|
|
if (system_capabilities_finalized())
|
|
preempt_schedule_irq();
|
|
}
|
|
|
|
static void do_interrupt_handler(struct pt_regs *regs,
|
|
void (*handler)(struct pt_regs *))
|
|
{
|
|
if (on_thread_stack())
|
|
call_on_irq_stack(regs, handler);
|
|
else
|
|
handler(regs);
|
|
}
|
|
|
|
extern void (*handle_arch_irq)(struct pt_regs *);
|
|
extern void (*handle_arch_fiq)(struct pt_regs *);
|
|
|
|
static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector,
|
|
unsigned long esr)
|
|
{
|
|
arm64_enter_nmi(regs);
|
|
|
|
console_verbose();
|
|
|
|
pr_crit("Unhandled %s exception on CPU%d, ESR 0x%016lx -- %s\n",
|
|
vector, smp_processor_id(), esr,
|
|
esr_get_class_string(esr));
|
|
|
|
__show_regs(regs);
|
|
panic("Unhandled exception");
|
|
}
|
|
|
|
#define UNHANDLED(el, regsize, vector) \
|
|
asmlinkage void noinstr el##_##regsize##_##vector##_handler(struct pt_regs *regs) \
|
|
{ \
|
|
const char *desc = #regsize "-bit " #el " " #vector; \
|
|
__panic_unhandled(regs, desc, read_sysreg(esr_el1)); \
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_ERRATUM_1463225
|
|
static DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
|
|
|
|
static void cortex_a76_erratum_1463225_svc_handler(void)
|
|
{
|
|
u32 reg, val;
|
|
|
|
if (!unlikely(test_thread_flag(TIF_SINGLESTEP)))
|
|
return;
|
|
|
|
if (!unlikely(this_cpu_has_cap(ARM64_WORKAROUND_1463225)))
|
|
return;
|
|
|
|
__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 1);
|
|
reg = read_sysreg(mdscr_el1);
|
|
val = reg | DBG_MDSCR_SS | DBG_MDSCR_KDE;
|
|
write_sysreg(val, mdscr_el1);
|
|
asm volatile("msr daifclr, #8");
|
|
isb();
|
|
|
|
/* We will have taken a single-step exception by this point */
|
|
|
|
write_sysreg(reg, mdscr_el1);
|
|
__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 0);
|
|
}
|
|
|
|
static __always_inline bool
|
|
cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
|
|
{
|
|
if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
|
|
return false;
|
|
|
|
/*
|
|
* We've taken a dummy step exception from the kernel to ensure
|
|
* that interrupts are re-enabled on the syscall path. Return back
|
|
* to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
|
|
* masked so that we can safely restore the mdscr and get on with
|
|
* handling the syscall.
|
|
*/
|
|
regs->pstate |= PSR_D_BIT;
|
|
return true;
|
|
}
|
|
#else /* CONFIG_ARM64_ERRATUM_1463225 */
|
|
static void cortex_a76_erratum_1463225_svc_handler(void) { }
|
|
static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
|
|
{
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_ARM64_ERRATUM_1463225 */
|
|
|
|
UNHANDLED(el1t, 64, sync)
|
|
UNHANDLED(el1t, 64, irq)
|
|
UNHANDLED(el1t, 64, fiq)
|
|
UNHANDLED(el1t, 64, error)
|
|
|
|
static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
unsigned long far = read_sysreg(far_el1);
|
|
|
|
enter_from_kernel_mode(regs);
|
|
local_daif_inherit(regs);
|
|
do_mem_abort(far, esr, regs);
|
|
local_daif_mask();
|
|
exit_to_kernel_mode(regs);
|
|
}
|
|
|
|
static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
unsigned long far = read_sysreg(far_el1);
|
|
|
|
enter_from_kernel_mode(regs);
|
|
local_daif_inherit(regs);
|
|
do_sp_pc_abort(far, esr, regs);
|
|
local_daif_mask();
|
|
exit_to_kernel_mode(regs);
|
|
}
|
|
|
|
static void noinstr el1_undef(struct pt_regs *regs)
|
|
{
|
|
enter_from_kernel_mode(regs);
|
|
local_daif_inherit(regs);
|
|
do_undefinstr(regs);
|
|
local_daif_mask();
|
|
exit_to_kernel_mode(regs);
|
|
}
|
|
|
|
static void noinstr el1_dbg(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
unsigned long far = read_sysreg(far_el1);
|
|
|
|
arm64_enter_el1_dbg(regs);
|
|
if (!cortex_a76_erratum_1463225_debug_handler(regs))
|
|
do_debug_exception(far, esr, regs);
|
|
arm64_exit_el1_dbg(regs);
|
|
}
|
|
|
|
static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
enter_from_kernel_mode(regs);
|
|
local_daif_inherit(regs);
|
|
do_ptrauth_fault(regs, esr);
|
|
local_daif_mask();
|
|
exit_to_kernel_mode(regs);
|
|
}
|
|
|
|
asmlinkage void noinstr el1h_64_sync_handler(struct pt_regs *regs)
|
|
{
|
|
unsigned long esr = read_sysreg(esr_el1);
|
|
|
|
switch (ESR_ELx_EC(esr)) {
|
|
case ESR_ELx_EC_DABT_CUR:
|
|
case ESR_ELx_EC_IABT_CUR:
|
|
el1_abort(regs, esr);
|
|
break;
|
|
/*
|
|
* We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a
|
|
* recursive exception when trying to push the initial pt_regs.
|
|
*/
|
|
case ESR_ELx_EC_PC_ALIGN:
|
|
el1_pc(regs, esr);
|
|
break;
|
|
case ESR_ELx_EC_SYS64:
|
|
case ESR_ELx_EC_UNKNOWN:
|
|
el1_undef(regs);
|
|
break;
|
|
case ESR_ELx_EC_BREAKPT_CUR:
|
|
case ESR_ELx_EC_SOFTSTP_CUR:
|
|
case ESR_ELx_EC_WATCHPT_CUR:
|
|
case ESR_ELx_EC_BRK64:
|
|
el1_dbg(regs, esr);
|
|
break;
|
|
case ESR_ELx_EC_FPAC:
|
|
el1_fpac(regs, esr);
|
|
break;
|
|
default:
|
|
__panic_unhandled(regs, "64-bit el1h sync", esr);
|
|
}
|
|
}
|
|
|
|
static void noinstr el1_interrupt(struct pt_regs *regs,
|
|
void (*handler)(struct pt_regs *))
|
|
{
|
|
write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
|
|
|
|
enter_el1_irq_or_nmi(regs);
|
|
do_interrupt_handler(regs, handler);
|
|
|
|
/*
|
|
* Note: thread_info::preempt_count includes both thread_info::count
|
|
* and thread_info::need_resched, and is not equivalent to
|
|
* preempt_count().
|
|
*/
|
|
if (IS_ENABLED(CONFIG_PREEMPTION) &&
|
|
READ_ONCE(current_thread_info()->preempt_count) == 0)
|
|
arm64_preempt_schedule_irq();
|
|
|
|
exit_el1_irq_or_nmi(regs);
|
|
}
|
|
|
|
asmlinkage void noinstr el1h_64_irq_handler(struct pt_regs *regs)
|
|
{
|
|
el1_interrupt(regs, handle_arch_irq);
|
|
}
|
|
|
|
asmlinkage void noinstr el1h_64_fiq_handler(struct pt_regs *regs)
|
|
{
|
|
el1_interrupt(regs, handle_arch_fiq);
|
|
}
|
|
|
|
asmlinkage void noinstr el1h_64_error_handler(struct pt_regs *regs)
|
|
{
|
|
unsigned long esr = read_sysreg(esr_el1);
|
|
|
|
local_daif_restore(DAIF_ERRCTX);
|
|
arm64_enter_nmi(regs);
|
|
do_serror(regs, esr);
|
|
arm64_exit_nmi(regs);
|
|
}
|
|
|
|
static void noinstr el0_da(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
unsigned long far = read_sysreg(far_el1);
|
|
|
|
enter_from_user_mode(regs);
|
|
local_daif_restore(DAIF_PROCCTX);
|
|
do_mem_abort(far, esr, regs);
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
unsigned long far = read_sysreg(far_el1);
|
|
|
|
/*
|
|
* We've taken an instruction abort from userspace and not yet
|
|
* re-enabled IRQs. If the address is a kernel address, apply
|
|
* BP hardening prior to enabling IRQs and pre-emption.
|
|
*/
|
|
if (!is_ttbr0_addr(far))
|
|
arm64_apply_bp_hardening();
|
|
|
|
enter_from_user_mode(regs);
|
|
local_daif_restore(DAIF_PROCCTX);
|
|
do_mem_abort(far, esr, regs);
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
enter_from_user_mode(regs);
|
|
local_daif_restore(DAIF_PROCCTX);
|
|
do_fpsimd_acc(esr, regs);
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
enter_from_user_mode(regs);
|
|
local_daif_restore(DAIF_PROCCTX);
|
|
do_sve_acc(esr, regs);
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
enter_from_user_mode(regs);
|
|
local_daif_restore(DAIF_PROCCTX);
|
|
do_fpsimd_exc(esr, regs);
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
enter_from_user_mode(regs);
|
|
local_daif_restore(DAIF_PROCCTX);
|
|
do_sysinstr(esr, regs);
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
unsigned long far = read_sysreg(far_el1);
|
|
|
|
if (!is_ttbr0_addr(instruction_pointer(regs)))
|
|
arm64_apply_bp_hardening();
|
|
|
|
enter_from_user_mode(regs);
|
|
local_daif_restore(DAIF_PROCCTX);
|
|
do_sp_pc_abort(far, esr, regs);
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
enter_from_user_mode(regs);
|
|
local_daif_restore(DAIF_PROCCTX);
|
|
do_sp_pc_abort(regs->sp, esr, regs);
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
static void noinstr el0_undef(struct pt_regs *regs)
|
|
{
|
|
enter_from_user_mode(regs);
|
|
local_daif_restore(DAIF_PROCCTX);
|
|
do_undefinstr(regs);
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
static void noinstr el0_bti(struct pt_regs *regs)
|
|
{
|
|
enter_from_user_mode(regs);
|
|
local_daif_restore(DAIF_PROCCTX);
|
|
do_bti(regs);
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
enter_from_user_mode(regs);
|
|
local_daif_restore(DAIF_PROCCTX);
|
|
bad_el0_sync(regs, 0, esr);
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
static void noinstr el0_dbg(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
/* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */
|
|
unsigned long far = read_sysreg(far_el1);
|
|
|
|
enter_from_user_mode(regs);
|
|
do_debug_exception(far, esr, regs);
|
|
local_daif_restore(DAIF_PROCCTX);
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
static void noinstr el0_svc(struct pt_regs *regs)
|
|
{
|
|
enter_from_user_mode(regs);
|
|
cortex_a76_erratum_1463225_svc_handler();
|
|
do_el0_svc(regs);
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
enter_from_user_mode(regs);
|
|
local_daif_restore(DAIF_PROCCTX);
|
|
do_ptrauth_fault(regs, esr);
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs)
|
|
{
|
|
unsigned long esr = read_sysreg(esr_el1);
|
|
|
|
switch (ESR_ELx_EC(esr)) {
|
|
case ESR_ELx_EC_SVC64:
|
|
el0_svc(regs);
|
|
break;
|
|
case ESR_ELx_EC_DABT_LOW:
|
|
el0_da(regs, esr);
|
|
break;
|
|
case ESR_ELx_EC_IABT_LOW:
|
|
el0_ia(regs, esr);
|
|
break;
|
|
case ESR_ELx_EC_FP_ASIMD:
|
|
el0_fpsimd_acc(regs, esr);
|
|
break;
|
|
case ESR_ELx_EC_SVE:
|
|
el0_sve_acc(regs, esr);
|
|
break;
|
|
case ESR_ELx_EC_FP_EXC64:
|
|
el0_fpsimd_exc(regs, esr);
|
|
break;
|
|
case ESR_ELx_EC_SYS64:
|
|
case ESR_ELx_EC_WFx:
|
|
el0_sys(regs, esr);
|
|
break;
|
|
case ESR_ELx_EC_SP_ALIGN:
|
|
el0_sp(regs, esr);
|
|
break;
|
|
case ESR_ELx_EC_PC_ALIGN:
|
|
el0_pc(regs, esr);
|
|
break;
|
|
case ESR_ELx_EC_UNKNOWN:
|
|
el0_undef(regs);
|
|
break;
|
|
case ESR_ELx_EC_BTI:
|
|
el0_bti(regs);
|
|
break;
|
|
case ESR_ELx_EC_BREAKPT_LOW:
|
|
case ESR_ELx_EC_SOFTSTP_LOW:
|
|
case ESR_ELx_EC_WATCHPT_LOW:
|
|
case ESR_ELx_EC_BRK64:
|
|
el0_dbg(regs, esr);
|
|
break;
|
|
case ESR_ELx_EC_FPAC:
|
|
el0_fpac(regs, esr);
|
|
break;
|
|
default:
|
|
el0_inv(regs, esr);
|
|
}
|
|
}
|
|
|
|
static void noinstr el0_interrupt(struct pt_regs *regs,
|
|
void (*handler)(struct pt_regs *))
|
|
{
|
|
enter_from_user_mode(regs);
|
|
|
|
write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
|
|
|
|
if (regs->pc & BIT(55))
|
|
arm64_apply_bp_hardening();
|
|
|
|
do_interrupt_handler(regs, handler);
|
|
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
static void noinstr __el0_irq_handler_common(struct pt_regs *regs)
|
|
{
|
|
el0_interrupt(regs, handle_arch_irq);
|
|
}
|
|
|
|
asmlinkage void noinstr el0t_64_irq_handler(struct pt_regs *regs)
|
|
{
|
|
__el0_irq_handler_common(regs);
|
|
}
|
|
|
|
static void noinstr __el0_fiq_handler_common(struct pt_regs *regs)
|
|
{
|
|
el0_interrupt(regs, handle_arch_fiq);
|
|
}
|
|
|
|
asmlinkage void noinstr el0t_64_fiq_handler(struct pt_regs *regs)
|
|
{
|
|
__el0_fiq_handler_common(regs);
|
|
}
|
|
|
|
static void noinstr __el0_error_handler_common(struct pt_regs *regs)
|
|
{
|
|
unsigned long esr = read_sysreg(esr_el1);
|
|
|
|
enter_from_user_mode(regs);
|
|
local_daif_restore(DAIF_ERRCTX);
|
|
arm64_enter_nmi(regs);
|
|
do_serror(regs, esr);
|
|
arm64_exit_nmi(regs);
|
|
local_daif_restore(DAIF_PROCCTX);
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
asmlinkage void noinstr el0t_64_error_handler(struct pt_regs *regs)
|
|
{
|
|
__el0_error_handler_common(regs);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr)
|
|
{
|
|
enter_from_user_mode(regs);
|
|
local_daif_restore(DAIF_PROCCTX);
|
|
do_cp15instr(esr, regs);
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
static void noinstr el0_svc_compat(struct pt_regs *regs)
|
|
{
|
|
enter_from_user_mode(regs);
|
|
cortex_a76_erratum_1463225_svc_handler();
|
|
do_el0_svc_compat(regs);
|
|
exit_to_user_mode(regs);
|
|
}
|
|
|
|
asmlinkage void noinstr el0t_32_sync_handler(struct pt_regs *regs)
|
|
{
|
|
unsigned long esr = read_sysreg(esr_el1);
|
|
|
|
switch (ESR_ELx_EC(esr)) {
|
|
case ESR_ELx_EC_SVC32:
|
|
el0_svc_compat(regs);
|
|
break;
|
|
case ESR_ELx_EC_DABT_LOW:
|
|
el0_da(regs, esr);
|
|
break;
|
|
case ESR_ELx_EC_IABT_LOW:
|
|
el0_ia(regs, esr);
|
|
break;
|
|
case ESR_ELx_EC_FP_ASIMD:
|
|
el0_fpsimd_acc(regs, esr);
|
|
break;
|
|
case ESR_ELx_EC_FP_EXC32:
|
|
el0_fpsimd_exc(regs, esr);
|
|
break;
|
|
case ESR_ELx_EC_PC_ALIGN:
|
|
el0_pc(regs, esr);
|
|
break;
|
|
case ESR_ELx_EC_UNKNOWN:
|
|
case ESR_ELx_EC_CP14_MR:
|
|
case ESR_ELx_EC_CP14_LS:
|
|
case ESR_ELx_EC_CP14_64:
|
|
el0_undef(regs);
|
|
break;
|
|
case ESR_ELx_EC_CP15_32:
|
|
case ESR_ELx_EC_CP15_64:
|
|
el0_cp15(regs, esr);
|
|
break;
|
|
case ESR_ELx_EC_BREAKPT_LOW:
|
|
case ESR_ELx_EC_SOFTSTP_LOW:
|
|
case ESR_ELx_EC_WATCHPT_LOW:
|
|
case ESR_ELx_EC_BKPT32:
|
|
el0_dbg(regs, esr);
|
|
break;
|
|
default:
|
|
el0_inv(regs, esr);
|
|
}
|
|
}
|
|
|
|
asmlinkage void noinstr el0t_32_irq_handler(struct pt_regs *regs)
|
|
{
|
|
__el0_irq_handler_common(regs);
|
|
}
|
|
|
|
asmlinkage void noinstr el0t_32_fiq_handler(struct pt_regs *regs)
|
|
{
|
|
__el0_fiq_handler_common(regs);
|
|
}
|
|
|
|
asmlinkage void noinstr el0t_32_error_handler(struct pt_regs *regs)
|
|
{
|
|
__el0_error_handler_common(regs);
|
|
}
|
|
#else /* CONFIG_COMPAT */
|
|
UNHANDLED(el0t, 32, sync)
|
|
UNHANDLED(el0t, 32, irq)
|
|
UNHANDLED(el0t, 32, fiq)
|
|
UNHANDLED(el0t, 32, error)
|
|
#endif /* CONFIG_COMPAT */
|
|
|
|
#ifdef CONFIG_VMAP_STACK
|
|
asmlinkage void noinstr handle_bad_stack(struct pt_regs *regs)
|
|
{
|
|
unsigned long esr = read_sysreg(esr_el1);
|
|
unsigned long far = read_sysreg(far_el1);
|
|
|
|
arm64_enter_nmi(regs);
|
|
panic_bad_stack(regs, esr, far);
|
|
}
|
|
#endif /* CONFIG_VMAP_STACK */
|
|
|
|
#ifdef CONFIG_ARM_SDE_INTERFACE
|
|
asmlinkage noinstr unsigned long
|
|
__sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
|
|
{
|
|
unsigned long ret;
|
|
|
|
/*
|
|
* We didn't take an exception to get here, so the HW hasn't
|
|
* set/cleared bits in PSTATE that we may rely on.
|
|
*
|
|
* The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to
|
|
* whether PSTATE bits are inherited unchanged or generated from
|
|
* scratch, and the TF-A implementation always clears PAN and always
|
|
* clears UAO. There are no other known implementations.
|
|
*
|
|
* Subsequent revisions (ARM DEN 0054B) follow the usual rules for how
|
|
* PSTATE is modified upon architectural exceptions, and so PAN is
|
|
* either inherited or set per SCTLR_ELx.SPAN, and UAO is always
|
|
* cleared.
|
|
*
|
|
* We must explicitly reset PAN to the expected state, including
|
|
* clearing it when the host isn't using it, in case a VM had it set.
|
|
*/
|
|
if (system_uses_hw_pan())
|
|
set_pstate_pan(1);
|
|
else if (cpu_has_pan())
|
|
set_pstate_pan(0);
|
|
|
|
arm64_enter_nmi(regs);
|
|
ret = do_sdei_event(regs, arg);
|
|
arm64_exit_nmi(regs);
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_ARM_SDE_INTERFACE */
|