mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-20 04:44:26 +08:00
b331bc20d9
gcc warns quite a bit about values returned from allocate_resources() in cpufreq-dt.c: cpufreq-dt.c: In function 'cpufreq_init': cpufreq-dt.c:327:6: error: 'cpu_dev' may be used uninitialized in this function [-Werror=maybe-uninitialized] cpufreq-dt.c:197:17: note: 'cpu_dev' was declared here cpufreq-dt.c:376:2: error: 'cpu_clk' may be used uninitialized in this function [-Werror=maybe-uninitialized] cpufreq-dt.c:199:14: note: 'cpu_clk' was declared here cpufreq-dt.c: In function 'dt_cpufreq_probe': cpufreq-dt.c:461:2: error: 'cpu_clk' may be used uninitialized in this function [-Werror=maybe-uninitialized] cpufreq-dt.c:447:14: note: 'cpu_clk' was declared here The problem is that it's slightly hard for gcc to follow return codes across PTR_ERR() calls. This patch uses explicit assignments to the "ret" variable to make it easier for gcc to verify that the code is actually correct, without the need to add a bogus initialization. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
493 lines
12 KiB
C
493 lines
12 KiB
C
/*
|
|
* Copyright (C) 2012 Freescale Semiconductor, Inc.
|
|
*
|
|
* Copyright (C) 2014 Linaro.
|
|
* Viresh Kumar <viresh.kumar@linaro.org>
|
|
*
|
|
* The OPP code in function set_target() is reused from
|
|
* drivers/cpufreq/omap-cpufreq.c
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpu_cooling.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/cpufreq-dt.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/err.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/pm_opp.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/thermal.h>
|
|
|
|
struct private_data {
|
|
struct device *cpu_dev;
|
|
struct regulator *cpu_reg;
|
|
struct thermal_cooling_device *cdev;
|
|
unsigned int voltage_tolerance; /* in percentage */
|
|
};
|
|
|
|
static struct freq_attr *cpufreq_dt_attr[] = {
|
|
&cpufreq_freq_attr_scaling_available_freqs,
|
|
NULL, /* Extra space for boost-attr if required */
|
|
NULL,
|
|
};
|
|
|
|
static int set_target(struct cpufreq_policy *policy, unsigned int index)
|
|
{
|
|
struct dev_pm_opp *opp;
|
|
struct cpufreq_frequency_table *freq_table = policy->freq_table;
|
|
struct clk *cpu_clk = policy->clk;
|
|
struct private_data *priv = policy->driver_data;
|
|
struct device *cpu_dev = priv->cpu_dev;
|
|
struct regulator *cpu_reg = priv->cpu_reg;
|
|
unsigned long volt = 0, tol = 0;
|
|
int volt_old = 0;
|
|
unsigned int old_freq, new_freq;
|
|
long freq_Hz, freq_exact;
|
|
int ret;
|
|
|
|
freq_Hz = clk_round_rate(cpu_clk, freq_table[index].frequency * 1000);
|
|
if (freq_Hz <= 0)
|
|
freq_Hz = freq_table[index].frequency * 1000;
|
|
|
|
freq_exact = freq_Hz;
|
|
new_freq = freq_Hz / 1000;
|
|
old_freq = clk_get_rate(cpu_clk) / 1000;
|
|
|
|
if (!IS_ERR(cpu_reg)) {
|
|
unsigned long opp_freq;
|
|
|
|
rcu_read_lock();
|
|
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_Hz);
|
|
if (IS_ERR(opp)) {
|
|
rcu_read_unlock();
|
|
dev_err(cpu_dev, "failed to find OPP for %ld\n",
|
|
freq_Hz);
|
|
return PTR_ERR(opp);
|
|
}
|
|
volt = dev_pm_opp_get_voltage(opp);
|
|
opp_freq = dev_pm_opp_get_freq(opp);
|
|
rcu_read_unlock();
|
|
tol = volt * priv->voltage_tolerance / 100;
|
|
volt_old = regulator_get_voltage(cpu_reg);
|
|
dev_dbg(cpu_dev, "Found OPP: %ld kHz, %ld uV\n",
|
|
opp_freq / 1000, volt);
|
|
}
|
|
|
|
dev_dbg(cpu_dev, "%u MHz, %d mV --> %u MHz, %ld mV\n",
|
|
old_freq / 1000, (volt_old > 0) ? volt_old / 1000 : -1,
|
|
new_freq / 1000, volt ? volt / 1000 : -1);
|
|
|
|
/* scaling up? scale voltage before frequency */
|
|
if (!IS_ERR(cpu_reg) && new_freq > old_freq) {
|
|
ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
|
|
if (ret) {
|
|
dev_err(cpu_dev, "failed to scale voltage up: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = clk_set_rate(cpu_clk, freq_exact);
|
|
if (ret) {
|
|
dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
|
|
if (!IS_ERR(cpu_reg) && volt_old > 0)
|
|
regulator_set_voltage_tol(cpu_reg, volt_old, tol);
|
|
return ret;
|
|
}
|
|
|
|
/* scaling down? scale voltage after frequency */
|
|
if (!IS_ERR(cpu_reg) && new_freq < old_freq) {
|
|
ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
|
|
if (ret) {
|
|
dev_err(cpu_dev, "failed to scale voltage down: %d\n",
|
|
ret);
|
|
clk_set_rate(cpu_clk, old_freq * 1000);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int allocate_resources(int cpu, struct device **cdev,
|
|
struct regulator **creg, struct clk **cclk)
|
|
{
|
|
struct device *cpu_dev;
|
|
struct regulator *cpu_reg;
|
|
struct clk *cpu_clk;
|
|
int ret = 0;
|
|
char *reg_cpu0 = "cpu0", *reg_cpu = "cpu", *reg;
|
|
|
|
cpu_dev = get_cpu_device(cpu);
|
|
if (!cpu_dev) {
|
|
pr_err("failed to get cpu%d device\n", cpu);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Try "cpu0" for older DTs */
|
|
if (!cpu)
|
|
reg = reg_cpu0;
|
|
else
|
|
reg = reg_cpu;
|
|
|
|
try_again:
|
|
cpu_reg = regulator_get_optional(cpu_dev, reg);
|
|
ret = PTR_ERR_OR_ZERO(cpu_reg);
|
|
if (ret) {
|
|
/*
|
|
* If cpu's regulator supply node is present, but regulator is
|
|
* not yet registered, we should try defering probe.
|
|
*/
|
|
if (ret == -EPROBE_DEFER) {
|
|
dev_dbg(cpu_dev, "cpu%d regulator not ready, retry\n",
|
|
cpu);
|
|
return ret;
|
|
}
|
|
|
|
/* Try with "cpu-supply" */
|
|
if (reg == reg_cpu0) {
|
|
reg = reg_cpu;
|
|
goto try_again;
|
|
}
|
|
|
|
dev_dbg(cpu_dev, "no regulator for cpu%d: %d\n", cpu, ret);
|
|
}
|
|
|
|
cpu_clk = clk_get(cpu_dev, NULL);
|
|
ret = PTR_ERR_OR_ZERO(cpu_clk);
|
|
if (ret) {
|
|
/* put regulator */
|
|
if (!IS_ERR(cpu_reg))
|
|
regulator_put(cpu_reg);
|
|
|
|
/*
|
|
* If cpu's clk node is present, but clock is not yet
|
|
* registered, we should try defering probe.
|
|
*/
|
|
if (ret == -EPROBE_DEFER)
|
|
dev_dbg(cpu_dev, "cpu%d clock not ready, retry\n", cpu);
|
|
else
|
|
dev_err(cpu_dev, "failed to get cpu%d clock: %d\n", cpu,
|
|
ret);
|
|
} else {
|
|
*cdev = cpu_dev;
|
|
*creg = cpu_reg;
|
|
*cclk = cpu_clk;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cpufreq_init(struct cpufreq_policy *policy)
|
|
{
|
|
struct cpufreq_frequency_table *freq_table;
|
|
struct device_node *np;
|
|
struct private_data *priv;
|
|
struct device *cpu_dev;
|
|
struct regulator *cpu_reg;
|
|
struct clk *cpu_clk;
|
|
struct dev_pm_opp *suspend_opp;
|
|
unsigned long min_uV = ~0, max_uV = 0;
|
|
unsigned int transition_latency;
|
|
bool need_update = false;
|
|
int ret;
|
|
|
|
ret = allocate_resources(policy->cpu, &cpu_dev, &cpu_reg, &cpu_clk);
|
|
if (ret) {
|
|
pr_err("%s: Failed to allocate resources: %d\n", __func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
np = of_node_get(cpu_dev->of_node);
|
|
if (!np) {
|
|
dev_err(cpu_dev, "failed to find cpu%d node\n", policy->cpu);
|
|
ret = -ENOENT;
|
|
goto out_put_reg_clk;
|
|
}
|
|
|
|
/* Get OPP-sharing information from "operating-points-v2" bindings */
|
|
ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, policy->cpus);
|
|
if (ret) {
|
|
/*
|
|
* operating-points-v2 not supported, fallback to old method of
|
|
* finding shared-OPPs for backward compatibility.
|
|
*/
|
|
if (ret == -ENOENT)
|
|
need_update = true;
|
|
else
|
|
goto out_node_put;
|
|
}
|
|
|
|
/*
|
|
* Initialize OPP tables for all policy->cpus. They will be shared by
|
|
* all CPUs which have marked their CPUs shared with OPP bindings.
|
|
*
|
|
* For platforms not using operating-points-v2 bindings, we do this
|
|
* before updating policy->cpus. Otherwise, we will end up creating
|
|
* duplicate OPPs for policy->cpus.
|
|
*
|
|
* OPPs might be populated at runtime, don't check for error here
|
|
*/
|
|
dev_pm_opp_of_cpumask_add_table(policy->cpus);
|
|
|
|
/*
|
|
* But we need OPP table to function so if it is not there let's
|
|
* give platform code chance to provide it for us.
|
|
*/
|
|
ret = dev_pm_opp_get_opp_count(cpu_dev);
|
|
if (ret <= 0) {
|
|
pr_debug("OPP table is not ready, deferring probe\n");
|
|
ret = -EPROBE_DEFER;
|
|
goto out_free_opp;
|
|
}
|
|
|
|
if (need_update) {
|
|
struct cpufreq_dt_platform_data *pd = cpufreq_get_driver_data();
|
|
|
|
if (!pd || !pd->independent_clocks)
|
|
cpumask_setall(policy->cpus);
|
|
|
|
/*
|
|
* OPP tables are initialized only for policy->cpu, do it for
|
|
* others as well.
|
|
*/
|
|
ret = dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus);
|
|
if (ret)
|
|
dev_err(cpu_dev, "%s: failed to mark OPPs as shared: %d\n",
|
|
__func__, ret);
|
|
|
|
of_property_read_u32(np, "clock-latency", &transition_latency);
|
|
} else {
|
|
transition_latency = dev_pm_opp_get_max_clock_latency(cpu_dev);
|
|
}
|
|
|
|
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
|
|
if (!priv) {
|
|
ret = -ENOMEM;
|
|
goto out_free_opp;
|
|
}
|
|
|
|
of_property_read_u32(np, "voltage-tolerance", &priv->voltage_tolerance);
|
|
|
|
if (!transition_latency)
|
|
transition_latency = CPUFREQ_ETERNAL;
|
|
|
|
if (!IS_ERR(cpu_reg)) {
|
|
unsigned long opp_freq = 0;
|
|
|
|
/*
|
|
* Disable any OPPs where the connected regulator isn't able to
|
|
* provide the specified voltage and record minimum and maximum
|
|
* voltage levels.
|
|
*/
|
|
while (1) {
|
|
struct dev_pm_opp *opp;
|
|
unsigned long opp_uV, tol_uV;
|
|
|
|
rcu_read_lock();
|
|
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &opp_freq);
|
|
if (IS_ERR(opp)) {
|
|
rcu_read_unlock();
|
|
break;
|
|
}
|
|
opp_uV = dev_pm_opp_get_voltage(opp);
|
|
rcu_read_unlock();
|
|
|
|
tol_uV = opp_uV * priv->voltage_tolerance / 100;
|
|
if (regulator_is_supported_voltage(cpu_reg,
|
|
opp_uV - tol_uV,
|
|
opp_uV + tol_uV)) {
|
|
if (opp_uV < min_uV)
|
|
min_uV = opp_uV;
|
|
if (opp_uV > max_uV)
|
|
max_uV = opp_uV;
|
|
} else {
|
|
dev_pm_opp_disable(cpu_dev, opp_freq);
|
|
}
|
|
|
|
opp_freq++;
|
|
}
|
|
|
|
ret = regulator_set_voltage_time(cpu_reg, min_uV, max_uV);
|
|
if (ret > 0)
|
|
transition_latency += ret * 1000;
|
|
}
|
|
|
|
ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
|
|
if (ret) {
|
|
pr_err("failed to init cpufreq table: %d\n", ret);
|
|
goto out_free_priv;
|
|
}
|
|
|
|
priv->cpu_dev = cpu_dev;
|
|
priv->cpu_reg = cpu_reg;
|
|
policy->driver_data = priv;
|
|
|
|
policy->clk = cpu_clk;
|
|
|
|
rcu_read_lock();
|
|
suspend_opp = dev_pm_opp_get_suspend_opp(cpu_dev);
|
|
if (suspend_opp)
|
|
policy->suspend_freq = dev_pm_opp_get_freq(suspend_opp) / 1000;
|
|
rcu_read_unlock();
|
|
|
|
ret = cpufreq_table_validate_and_show(policy, freq_table);
|
|
if (ret) {
|
|
dev_err(cpu_dev, "%s: invalid frequency table: %d\n", __func__,
|
|
ret);
|
|
goto out_free_cpufreq_table;
|
|
}
|
|
|
|
/* Support turbo/boost mode */
|
|
if (policy_has_boost_freq(policy)) {
|
|
/* This gets disabled by core on driver unregister */
|
|
ret = cpufreq_enable_boost_support();
|
|
if (ret)
|
|
goto out_free_cpufreq_table;
|
|
cpufreq_dt_attr[1] = &cpufreq_freq_attr_scaling_boost_freqs;
|
|
}
|
|
|
|
policy->cpuinfo.transition_latency = transition_latency;
|
|
|
|
of_node_put(np);
|
|
|
|
return 0;
|
|
|
|
out_free_cpufreq_table:
|
|
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
|
|
out_free_priv:
|
|
kfree(priv);
|
|
out_free_opp:
|
|
dev_pm_opp_of_cpumask_remove_table(policy->cpus);
|
|
out_node_put:
|
|
of_node_put(np);
|
|
out_put_reg_clk:
|
|
clk_put(cpu_clk);
|
|
if (!IS_ERR(cpu_reg))
|
|
regulator_put(cpu_reg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cpufreq_exit(struct cpufreq_policy *policy)
|
|
{
|
|
struct private_data *priv = policy->driver_data;
|
|
|
|
cpufreq_cooling_unregister(priv->cdev);
|
|
dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
|
|
dev_pm_opp_of_cpumask_remove_table(policy->related_cpus);
|
|
clk_put(policy->clk);
|
|
if (!IS_ERR(priv->cpu_reg))
|
|
regulator_put(priv->cpu_reg);
|
|
kfree(priv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cpufreq_ready(struct cpufreq_policy *policy)
|
|
{
|
|
struct private_data *priv = policy->driver_data;
|
|
struct device_node *np = of_node_get(priv->cpu_dev->of_node);
|
|
|
|
if (WARN_ON(!np))
|
|
return;
|
|
|
|
/*
|
|
* For now, just loading the cooling device;
|
|
* thermal DT code takes care of matching them.
|
|
*/
|
|
if (of_find_property(np, "#cooling-cells", NULL)) {
|
|
u32 power_coefficient = 0;
|
|
|
|
of_property_read_u32(np, "dynamic-power-coefficient",
|
|
&power_coefficient);
|
|
|
|
priv->cdev = of_cpufreq_power_cooling_register(np,
|
|
policy->related_cpus, power_coefficient, NULL);
|
|
if (IS_ERR(priv->cdev)) {
|
|
dev_err(priv->cpu_dev,
|
|
"running cpufreq without cooling device: %ld\n",
|
|
PTR_ERR(priv->cdev));
|
|
|
|
priv->cdev = NULL;
|
|
}
|
|
}
|
|
|
|
of_node_put(np);
|
|
}
|
|
|
|
static struct cpufreq_driver dt_cpufreq_driver = {
|
|
.flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
|
|
.verify = cpufreq_generic_frequency_table_verify,
|
|
.target_index = set_target,
|
|
.get = cpufreq_generic_get,
|
|
.init = cpufreq_init,
|
|
.exit = cpufreq_exit,
|
|
.ready = cpufreq_ready,
|
|
.name = "cpufreq-dt",
|
|
.attr = cpufreq_dt_attr,
|
|
.suspend = cpufreq_generic_suspend,
|
|
};
|
|
|
|
static int dt_cpufreq_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *cpu_dev;
|
|
struct regulator *cpu_reg;
|
|
struct clk *cpu_clk;
|
|
int ret;
|
|
|
|
/*
|
|
* All per-cluster (CPUs sharing clock/voltages) initialization is done
|
|
* from ->init(). In probe(), we just need to make sure that clk and
|
|
* regulators are available. Else defer probe and retry.
|
|
*
|
|
* FIXME: Is checking this only for CPU0 sufficient ?
|
|
*/
|
|
ret = allocate_resources(0, &cpu_dev, &cpu_reg, &cpu_clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
clk_put(cpu_clk);
|
|
if (!IS_ERR(cpu_reg))
|
|
regulator_put(cpu_reg);
|
|
|
|
dt_cpufreq_driver.driver_data = dev_get_platdata(&pdev->dev);
|
|
|
|
ret = cpufreq_register_driver(&dt_cpufreq_driver);
|
|
if (ret)
|
|
dev_err(cpu_dev, "failed register driver: %d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dt_cpufreq_remove(struct platform_device *pdev)
|
|
{
|
|
cpufreq_unregister_driver(&dt_cpufreq_driver);
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver dt_cpufreq_platdrv = {
|
|
.driver = {
|
|
.name = "cpufreq-dt",
|
|
},
|
|
.probe = dt_cpufreq_probe,
|
|
.remove = dt_cpufreq_remove,
|
|
};
|
|
module_platform_driver(dt_cpufreq_platdrv);
|
|
|
|
MODULE_ALIAS("platform:cpufreq-dt");
|
|
MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
|
|
MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
|
|
MODULE_DESCRIPTION("Generic cpufreq driver");
|
|
MODULE_LICENSE("GPL");
|