mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-28 21:45:01 +08:00
a620865edf
To achieve maximal throughput, it is very important to react to interrupts as soon as possible. Currently the interrupt handler wakes up a worker for handling interrupts in process context. A cleaner and more efficient design would be to request a threaded interrupt handler. This handler's priority is very high, and can do blocking operations such as SDIO/SPI transactions. Some work can be deferred, mostly calls to mac80211 APIs (ieee80211_rx_ni and ieee80211_tx_status). By deferring such work to a different worker, we can keep the irq handler thread more I/O responsive. In addition, on multi-core systems the two threads can be scheduled on different cores, which will improve overall performance. The use of WL1271_FLAG_IRQ_PENDING & WL1271_FLAG_IRQ_RUNNING was changed. For simplicity, always query the FW for more pending interrupts. Since there are relatively long bursts of interrupts, the extra FW status read overhead is negligible. In addition, this enables registering the IRQ handler with the ONESHOT option. Signed-off-by: Ido Yariv <ido@wizery.com> Reviewed-by: Luciano Coelho <coelho@ti.com> Signed-off-by: Luciano Coelho <coelho@ti.com>
174 lines
4.9 KiB
C
174 lines
4.9 KiB
C
/*
|
|
* This file is part of wl1271
|
|
*
|
|
* Copyright (C) 1998-2009 Texas Instruments. All rights reserved.
|
|
* Copyright (C) 2008-2010 Nokia Corporation
|
|
*
|
|
* Contact: Luciano Coelho <luciano.coelho@nokia.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
|
|
* 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
#ifndef __IO_H__
|
|
#define __IO_H__
|
|
|
|
#include "reg.h"
|
|
|
|
#define HW_ACCESS_MEMORY_MAX_RANGE 0x1FFC0
|
|
|
|
#define HW_PARTITION_REGISTERS_ADDR 0x1FFC0
|
|
#define HW_PART0_SIZE_ADDR (HW_PARTITION_REGISTERS_ADDR)
|
|
#define HW_PART0_START_ADDR (HW_PARTITION_REGISTERS_ADDR + 4)
|
|
#define HW_PART1_SIZE_ADDR (HW_PARTITION_REGISTERS_ADDR + 8)
|
|
#define HW_PART1_START_ADDR (HW_PARTITION_REGISTERS_ADDR + 12)
|
|
#define HW_PART2_SIZE_ADDR (HW_PARTITION_REGISTERS_ADDR + 16)
|
|
#define HW_PART2_START_ADDR (HW_PARTITION_REGISTERS_ADDR + 20)
|
|
#define HW_PART3_START_ADDR (HW_PARTITION_REGISTERS_ADDR + 24)
|
|
|
|
#define HW_ACCESS_REGISTER_SIZE 4
|
|
|
|
#define HW_ACCESS_PRAM_MAX_RANGE 0x3c000
|
|
|
|
struct wl1271;
|
|
|
|
void wl1271_disable_interrupts(struct wl1271 *wl);
|
|
void wl1271_enable_interrupts(struct wl1271 *wl);
|
|
|
|
void wl1271_io_reset(struct wl1271 *wl);
|
|
void wl1271_io_init(struct wl1271 *wl);
|
|
|
|
static inline struct device *wl1271_wl_to_dev(struct wl1271 *wl)
|
|
{
|
|
return wl->if_ops->dev(wl);
|
|
}
|
|
|
|
|
|
/* Raw target IO, address is not translated */
|
|
static inline void wl1271_raw_write(struct wl1271 *wl, int addr, void *buf,
|
|
size_t len, bool fixed)
|
|
{
|
|
wl->if_ops->write(wl, addr, buf, len, fixed);
|
|
}
|
|
|
|
static inline void wl1271_raw_read(struct wl1271 *wl, int addr, void *buf,
|
|
size_t len, bool fixed)
|
|
{
|
|
wl->if_ops->read(wl, addr, buf, len, fixed);
|
|
}
|
|
|
|
static inline u32 wl1271_raw_read32(struct wl1271 *wl, int addr)
|
|
{
|
|
wl1271_raw_read(wl, addr, &wl->buffer_32,
|
|
sizeof(wl->buffer_32), false);
|
|
|
|
return le32_to_cpu(wl->buffer_32);
|
|
}
|
|
|
|
static inline void wl1271_raw_write32(struct wl1271 *wl, int addr, u32 val)
|
|
{
|
|
wl->buffer_32 = cpu_to_le32(val);
|
|
wl1271_raw_write(wl, addr, &wl->buffer_32,
|
|
sizeof(wl->buffer_32), false);
|
|
}
|
|
|
|
/* Translated target IO */
|
|
static inline int wl1271_translate_addr(struct wl1271 *wl, int addr)
|
|
{
|
|
/*
|
|
* To translate, first check to which window of addresses the
|
|
* particular address belongs. Then subtract the starting address
|
|
* of that window from the address. Then, add offset of the
|
|
* translated region.
|
|
*
|
|
* The translated regions occur next to each other in physical device
|
|
* memory, so just add the sizes of the preceeding address regions to
|
|
* get the offset to the new region.
|
|
*
|
|
* Currently, only the two first regions are addressed, and the
|
|
* assumption is that all addresses will fall into either of those
|
|
* two.
|
|
*/
|
|
if ((addr >= wl->part.reg.start) &&
|
|
(addr < wl->part.reg.start + wl->part.reg.size))
|
|
return addr - wl->part.reg.start + wl->part.mem.size;
|
|
else
|
|
return addr - wl->part.mem.start;
|
|
}
|
|
|
|
static inline void wl1271_read(struct wl1271 *wl, int addr, void *buf,
|
|
size_t len, bool fixed)
|
|
{
|
|
int physical;
|
|
|
|
physical = wl1271_translate_addr(wl, addr);
|
|
|
|
wl1271_raw_read(wl, physical, buf, len, fixed);
|
|
}
|
|
|
|
static inline void wl1271_write(struct wl1271 *wl, int addr, void *buf,
|
|
size_t len, bool fixed)
|
|
{
|
|
int physical;
|
|
|
|
physical = wl1271_translate_addr(wl, addr);
|
|
|
|
wl1271_raw_write(wl, physical, buf, len, fixed);
|
|
}
|
|
|
|
static inline u32 wl1271_read32(struct wl1271 *wl, int addr)
|
|
{
|
|
return wl1271_raw_read32(wl, wl1271_translate_addr(wl, addr));
|
|
}
|
|
|
|
static inline void wl1271_write32(struct wl1271 *wl, int addr, u32 val)
|
|
{
|
|
wl1271_raw_write32(wl, wl1271_translate_addr(wl, addr), val);
|
|
}
|
|
|
|
static inline void wl1271_power_off(struct wl1271 *wl)
|
|
{
|
|
wl->if_ops->power(wl, false);
|
|
clear_bit(WL1271_FLAG_GPIO_POWER, &wl->flags);
|
|
}
|
|
|
|
static inline int wl1271_power_on(struct wl1271 *wl)
|
|
{
|
|
int ret = wl->if_ops->power(wl, true);
|
|
if (ret == 0)
|
|
set_bit(WL1271_FLAG_GPIO_POWER, &wl->flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* Top Register IO */
|
|
void wl1271_top_reg_write(struct wl1271 *wl, int addr, u16 val);
|
|
u16 wl1271_top_reg_read(struct wl1271 *wl, int addr);
|
|
|
|
int wl1271_set_partition(struct wl1271 *wl,
|
|
struct wl1271_partition_set *p);
|
|
|
|
/* Functions from wl1271_main.c */
|
|
|
|
int wl1271_register_hw(struct wl1271 *wl);
|
|
void wl1271_unregister_hw(struct wl1271 *wl);
|
|
int wl1271_init_ieee80211(struct wl1271 *wl);
|
|
struct ieee80211_hw *wl1271_alloc_hw(void);
|
|
int wl1271_free_hw(struct wl1271 *wl);
|
|
irqreturn_t wl1271_irq(int irq, void *data);
|
|
|
|
#endif
|