linux/fs/btrfs/transaction.h
Filipe Manana eafa4fd0ad btrfs: fix exhaustion of the system chunk array due to concurrent allocations
When we are running out of space for updating the chunk tree, that is,
when we are low on available space in the system space info, if we have
many task concurrently allocating block groups, via fallocate for example,
many of them can end up all allocating new system chunks when only one is
needed. In extreme cases this can lead to exhaustion of the system chunk
array, which has a size limit of 2048 bytes, and results in a transaction
abort with errno EFBIG, producing a trace in dmesg like the following,
which was triggered on a PowerPC machine with a node/leaf size of 64K:

  [1359.518899] ------------[ cut here ]------------
  [1359.518980] BTRFS: Transaction aborted (error -27)
  [1359.519135] WARNING: CPU: 3 PID: 16463 at ../fs/btrfs/block-group.c:1968 btrfs_create_pending_block_groups+0x340/0x3c0 [btrfs]
  [1359.519152] Modules linked in: (...)
  [1359.519239] Supported: Yes, External
  [1359.519252] CPU: 3 PID: 16463 Comm: stress-ng Tainted: G               X    5.3.18-47-default #1 SLE15-SP3
  [1359.519274] NIP:  c008000000e36fe8 LR: c008000000e36fe4 CTR: 00000000006de8e8
  [1359.519293] REGS: c00000056890b700 TRAP: 0700   Tainted: G               X     (5.3.18-47-default)
  [1359.519317] MSR:  800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE>  CR: 48008222  XER: 00000007
  [1359.519356] CFAR: c00000000013e170 IRQMASK: 0
  [1359.519356] GPR00: c008000000e36fe4 c00000056890b990 c008000000e83200 0000000000000026
  [1359.519356] GPR04: 0000000000000000 0000000000000000 0000d52a3b027651 0000000000000007
  [1359.519356] GPR08: 0000000000000003 0000000000000001 0000000000000007 0000000000000000
  [1359.519356] GPR12: 0000000000008000 c00000063fe44600 000000001015e028 000000001015dfd0
  [1359.519356] GPR16: 000000000000404f 0000000000000001 0000000000010000 0000dd1e287affff
  [1359.519356] GPR20: 0000000000000001 c000000637c9a000 ffffffffffffffe5 0000000000000000
  [1359.519356] GPR24: 0000000000000004 0000000000000000 0000000000000100 ffffffffffffffc0
  [1359.519356] GPR28: c000000637c9a000 c000000630e09230 c000000630e091d8 c000000562188b08
  [1359.519561] NIP [c008000000e36fe8] btrfs_create_pending_block_groups+0x340/0x3c0 [btrfs]
  [1359.519613] LR [c008000000e36fe4] btrfs_create_pending_block_groups+0x33c/0x3c0 [btrfs]
  [1359.519626] Call Trace:
  [1359.519671] [c00000056890b990] [c008000000e36fe4] btrfs_create_pending_block_groups+0x33c/0x3c0 [btrfs] (unreliable)
  [1359.519729] [c00000056890ba90] [c008000000d68d44] __btrfs_end_transaction+0xbc/0x2f0 [btrfs]
  [1359.519782] [c00000056890bae0] [c008000000e309ac] btrfs_alloc_data_chunk_ondemand+0x154/0x610 [btrfs]
  [1359.519844] [c00000056890bba0] [c008000000d8a0fc] btrfs_fallocate+0xe4/0x10e0 [btrfs]
  [1359.519891] [c00000056890bd00] [c0000000004a23b4] vfs_fallocate+0x174/0x350
  [1359.519929] [c00000056890bd50] [c0000000004a3cf8] ksys_fallocate+0x68/0xf0
  [1359.519957] [c00000056890bda0] [c0000000004a3da8] sys_fallocate+0x28/0x40
  [1359.519988] [c00000056890bdc0] [c000000000038968] system_call_exception+0xe8/0x170
  [1359.520021] [c00000056890be20] [c00000000000cb70] system_call_common+0xf0/0x278
  [1359.520037] Instruction dump:
  [1359.520049] 7d0049ad 40c2fff4 7c0004ac 71490004 40820024 2f83fffb 419e0048 3c620000
  [1359.520082] e863bcb8 7ec4b378 48010d91 e8410018 <0fe00000> 3c820000 e884bcc8 7ec6b378
  [1359.520122] ---[ end trace d6c186e151022e20 ]---

The following steps explain how we can end up in this situation:

1) Task A is at check_system_chunk(), either because it is allocating a
   new data or metadata block group, at btrfs_chunk_alloc(), or because
   it is removing a block group or turning a block group RO. It does not
   matter why;

2) Task A sees that there is not enough free space in the system
   space_info object, that is 'left' is < 'thresh'. And at this point
   the system space_info has a value of 0 for its 'bytes_may_use'
   counter;

3) As a consequence task A calls btrfs_alloc_chunk() in order to allocate
   a new system block group (chunk) and then reserves 'thresh' bytes in
   the chunk block reserve with the call to btrfs_block_rsv_add(). This
   changes the chunk block reserve's 'reserved' and 'size' counters by an
   amount of 'thresh', and changes the 'bytes_may_use' counter of the
   system space_info object from 0 to 'thresh'.

   Also during its call to btrfs_alloc_chunk(), we end up increasing the
   value of the 'total_bytes' counter of the system space_info object by
   8MiB (the size of a system chunk stripe). This happens through the
   call chain:

   btrfs_alloc_chunk()
       create_chunk()
           btrfs_make_block_group()
               btrfs_update_space_info()

4) After it finishes the first phase of the block group allocation, at
   btrfs_chunk_alloc(), task A unlocks the chunk mutex;

5) At this point the new system block group was added to the transaction
   handle's list of new block groups, but its block group item, device
   items and chunk item were not yet inserted in the extent, device and
   chunk trees, respectively. That only happens later when we call
   btrfs_finish_chunk_alloc() through a call to
   btrfs_create_pending_block_groups();

   Note that only when we update the chunk tree, through the call to
   btrfs_finish_chunk_alloc(), we decrement the 'reserved' counter
   of the chunk block reserve as we COW/allocate extent buffers,
   through:

   btrfs_alloc_tree_block()
      btrfs_use_block_rsv()
         btrfs_block_rsv_use_bytes()

   And the system space_info's 'bytes_may_use' is decremented everytime
   we allocate an extent buffer for COW operations on the chunk tree,
   through:

   btrfs_alloc_tree_block()
      btrfs_reserve_extent()
         find_free_extent()
            btrfs_add_reserved_bytes()

   If we end up COWing less chunk btree nodes/leaves than expected, which
   is the typical case since the amount of space we reserve is always
   pessimistic to account for the worst possible case, we release the
   unused space through:

   btrfs_create_pending_block_groups()
      btrfs_trans_release_chunk_metadata()
         btrfs_block_rsv_release()
            block_rsv_release_bytes()
                btrfs_space_info_free_bytes_may_use()

   But before task A gets into btrfs_create_pending_block_groups()...

6) Many other tasks start allocating new block groups through fallocate,
   each one does the first phase of block group allocation in a
   serialized way, since btrfs_chunk_alloc() takes the chunk mutex
   before calling check_system_chunk() and btrfs_alloc_chunk().

   However before everyone enters the final phase of the block group
   allocation, that is, before calling btrfs_create_pending_block_groups(),
   new tasks keep coming to allocate new block groups and while at
   check_system_chunk(), the system space_info's 'bytes_may_use' keeps
   increasing each time a task reserves space in the chunk block reserve.
   This means that eventually some other task can end up not seeing enough
   free space in the system space_info and decide to allocate yet another
   system chunk.

   This may repeat several times if yet more new tasks keep allocating
   new block groups before task A, and all the other tasks, finish the
   creation of the pending block groups, which is when reserved space
   in excess is released. Eventually this can result in exhaustion of
   system chunk array in the superblock, with btrfs_add_system_chunk()
   returning EFBIG, resulting later in a transaction abort.

   Even when we don't reach the extreme case of exhausting the system
   array, most, if not all, unnecessarily created system block groups
   end up being unused since when finishing creation of the first
   pending system block group, the creation of the following ones end
   up not needing to COW nodes/leaves of the chunk tree, so we never
   allocate and deallocate from them, resulting in them never being
   added to the list of unused block groups - as a consequence they
   don't get deleted by the cleaner kthread - the only exceptions are
   if we unmount and mount the filesystem again, which adds any unused
   block groups to the list of unused block groups, if a scrub is
   run, which also adds unused block groups to the unused list, and
   under some circumstances when using a zoned filesystem or async
   discard, which may also add unused block groups to the unused list.

So fix this by:

*) Tracking the number of reserved bytes for the chunk tree per
   transaction, which is the sum of reserved chunk bytes by each
   transaction handle currently being used;

*) When there is not enough free space in the system space_info,
   if there are other transaction handles which reserved chunk space,
   wait for some of them to complete in order to have enough excess
   reserved space released, and then try again. Otherwise proceed with
   the creation of a new system chunk.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:17 +02:00

249 lines
7.9 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#ifndef BTRFS_TRANSACTION_H
#define BTRFS_TRANSACTION_H
#include <linux/refcount.h>
#include "btrfs_inode.h"
#include "delayed-ref.h"
#include "ctree.h"
enum btrfs_trans_state {
TRANS_STATE_RUNNING,
TRANS_STATE_COMMIT_START,
TRANS_STATE_COMMIT_DOING,
TRANS_STATE_UNBLOCKED,
TRANS_STATE_SUPER_COMMITTED,
TRANS_STATE_COMPLETED,
TRANS_STATE_MAX,
};
#define BTRFS_TRANS_HAVE_FREE_BGS 0
#define BTRFS_TRANS_DIRTY_BG_RUN 1
#define BTRFS_TRANS_CACHE_ENOSPC 2
struct btrfs_transaction {
u64 transid;
/*
* total external writers(USERSPACE/START/ATTACH) in this
* transaction, it must be zero before the transaction is
* being committed
*/
atomic_t num_extwriters;
/*
* total writers in this transaction, it must be zero before the
* transaction can end
*/
atomic_t num_writers;
refcount_t use_count;
unsigned long flags;
/* Be protected by fs_info->trans_lock when we want to change it. */
enum btrfs_trans_state state;
int aborted;
struct list_head list;
struct extent_io_tree dirty_pages;
time64_t start_time;
wait_queue_head_t writer_wait;
wait_queue_head_t commit_wait;
struct list_head pending_snapshots;
struct list_head dev_update_list;
struct list_head switch_commits;
struct list_head dirty_bgs;
/*
* There is no explicit lock which protects io_bgs, rather its
* consistency is implied by the fact that all the sites which modify
* it do so under some form of transaction critical section, namely:
*
* - btrfs_start_dirty_block_groups - This function can only ever be
* run by one of the transaction committers. Refer to
* BTRFS_TRANS_DIRTY_BG_RUN usage in btrfs_commit_transaction
*
* - btrfs_write_dirty_blockgroups - this is called by
* commit_cowonly_roots from transaction critical section
* (TRANS_STATE_COMMIT_DOING)
*
* - btrfs_cleanup_dirty_bgs - called on transaction abort
*/
struct list_head io_bgs;
struct list_head dropped_roots;
struct extent_io_tree pinned_extents;
/*
* we need to make sure block group deletion doesn't race with
* free space cache writeout. This mutex keeps them from stomping
* on each other
*/
struct mutex cache_write_mutex;
spinlock_t dirty_bgs_lock;
/* Protected by spin lock fs_info->unused_bgs_lock. */
struct list_head deleted_bgs;
spinlock_t dropped_roots_lock;
struct btrfs_delayed_ref_root delayed_refs;
struct btrfs_fs_info *fs_info;
/*
* Number of ordered extents the transaction must wait for before
* committing. These are ordered extents started by a fast fsync.
*/
atomic_t pending_ordered;
wait_queue_head_t pending_wait;
spinlock_t releasing_ebs_lock;
struct list_head releasing_ebs;
/*
* The number of bytes currently reserved, by all transaction handles
* attached to this transaction, for metadata extents of the chunk tree.
*/
atomic64_t chunk_bytes_reserved;
wait_queue_head_t chunk_reserve_wait;
};
#define __TRANS_FREEZABLE (1U << 0)
#define __TRANS_START (1U << 9)
#define __TRANS_ATTACH (1U << 10)
#define __TRANS_JOIN (1U << 11)
#define __TRANS_JOIN_NOLOCK (1U << 12)
#define __TRANS_DUMMY (1U << 13)
#define __TRANS_JOIN_NOSTART (1U << 14)
#define TRANS_START (__TRANS_START | __TRANS_FREEZABLE)
#define TRANS_ATTACH (__TRANS_ATTACH)
#define TRANS_JOIN (__TRANS_JOIN | __TRANS_FREEZABLE)
#define TRANS_JOIN_NOLOCK (__TRANS_JOIN_NOLOCK)
#define TRANS_JOIN_NOSTART (__TRANS_JOIN_NOSTART)
#define TRANS_EXTWRITERS (__TRANS_START | __TRANS_ATTACH)
#define BTRFS_SEND_TRANS_STUB ((void *)1)
struct btrfs_trans_handle {
u64 transid;
u64 bytes_reserved;
u64 chunk_bytes_reserved;
unsigned long delayed_ref_updates;
struct btrfs_transaction *transaction;
struct btrfs_block_rsv *block_rsv;
struct btrfs_block_rsv *orig_rsv;
refcount_t use_count;
unsigned int type;
/*
* Error code of transaction abort, set outside of locks and must use
* the READ_ONCE/WRITE_ONCE access
*/
short aborted;
bool adding_csums;
bool allocating_chunk;
bool can_flush_pending_bgs;
bool reloc_reserved;
bool dirty;
bool in_fsync;
struct btrfs_root *root;
struct btrfs_fs_info *fs_info;
struct list_head new_bgs;
};
/*
* The abort status can be changed between calls and is not protected by locks.
* This accepts btrfs_transaction and btrfs_trans_handle as types. Once it's
* set to a non-zero value it does not change, so the macro should be in checks
* but is not necessary for further reads of the value.
*/
#define TRANS_ABORTED(trans) (unlikely(READ_ONCE((trans)->aborted)))
struct btrfs_pending_snapshot {
struct dentry *dentry;
struct inode *dir;
struct btrfs_root *root;
struct btrfs_root_item *root_item;
struct btrfs_root *snap;
struct btrfs_qgroup_inherit *inherit;
struct btrfs_path *path;
/* block reservation for the operation */
struct btrfs_block_rsv block_rsv;
/* extra metadata reservation for relocation */
int error;
/* Preallocated anonymous block device number */
dev_t anon_dev;
bool readonly;
struct list_head list;
};
static inline void btrfs_set_inode_last_trans(struct btrfs_trans_handle *trans,
struct btrfs_inode *inode)
{
spin_lock(&inode->lock);
inode->last_trans = trans->transaction->transid;
inode->last_sub_trans = inode->root->log_transid;
inode->last_log_commit = inode->last_sub_trans - 1;
spin_unlock(&inode->lock);
}
/*
* Make qgroup codes to skip given qgroupid, means the old/new_roots for
* qgroup won't contain the qgroupid in it.
*/
static inline void btrfs_set_skip_qgroup(struct btrfs_trans_handle *trans,
u64 qgroupid)
{
struct btrfs_delayed_ref_root *delayed_refs;
delayed_refs = &trans->transaction->delayed_refs;
WARN_ON(delayed_refs->qgroup_to_skip);
delayed_refs->qgroup_to_skip = qgroupid;
}
static inline void btrfs_clear_skip_qgroup(struct btrfs_trans_handle *trans)
{
struct btrfs_delayed_ref_root *delayed_refs;
delayed_refs = &trans->transaction->delayed_refs;
WARN_ON(!delayed_refs->qgroup_to_skip);
delayed_refs->qgroup_to_skip = 0;
}
int btrfs_end_transaction(struct btrfs_trans_handle *trans);
struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
unsigned int num_items);
struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
struct btrfs_root *root,
unsigned int num_items);
struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root);
struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root);
struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root);
struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root);
struct btrfs_trans_handle *btrfs_attach_transaction_barrier(
struct btrfs_root *root);
int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid);
void btrfs_add_dead_root(struct btrfs_root *root);
int btrfs_defrag_root(struct btrfs_root *root);
int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root);
int btrfs_commit_transaction(struct btrfs_trans_handle *trans);
int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
int wait_for_unblock);
int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans);
bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans);
void btrfs_throttle(struct btrfs_fs_info *fs_info);
int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
struct extent_io_tree *dirty_pages, int mark);
int btrfs_wait_tree_log_extents(struct btrfs_root *root, int mark);
int btrfs_transaction_blocked(struct btrfs_fs_info *info);
int btrfs_transaction_in_commit(struct btrfs_fs_info *info);
void btrfs_put_transaction(struct btrfs_transaction *transaction);
void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info);
void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans);
#endif