linux/tools/testing/selftests/kvm/lib/kvm_util.c
Sean Christopherson 7fbc6038ac KVM: selftests: Cache CPUID in struct kvm_vcpu
Cache a vCPU's CPUID information in "struct kvm_vcpu" to allow fixing the
mess where tests, often unknowingly, modify the global/static "cpuid"
allocated by kvm_get_supported_cpuid().

Add vcpu_init_cpuid() to handle stuffing an entirely different CPUID
model, e.g. during vCPU creation or when switching to the Hyper-V enabled
CPUID model.  Automatically refresh the cache on vcpu_set_cpuid() so that
any adjustments made by KVM are always reflected in the cache.  Drop
vcpu_get_cpuid() entirely to force tests to use the cache, and to allow
adding e.g. vcpu_get_cpuid_entry() in the future without creating a
conflicting set of APIs where vcpu_get_cpuid() does KVM_GET_CPUID2, but
vcpu_get_cpuid_entry() does not.

Opportunistically convert the VMX nested state test and KVM PV test to
manipulating the vCPU's CPUID (because it's easy), but use
vcpu_init_cpuid() for the Hyper-V features test and "emulator error" test
to effectively retain their current behavior as they're less trivial to
convert.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220614200707.3315957-19-seanjc@google.com
2022-07-13 18:14:15 -07:00

1982 lines
52 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* tools/testing/selftests/kvm/lib/kvm_util.c
*
* Copyright (C) 2018, Google LLC.
*/
#define _GNU_SOURCE /* for program_invocation_name */
#include "test_util.h"
#include "kvm_util.h"
#include "processor.h"
#include <assert.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <linux/kernel.h>
#define KVM_UTIL_MIN_PFN 2
static int vcpu_mmap_sz(void);
int open_path_or_exit(const char *path, int flags)
{
int fd;
fd = open(path, flags);
__TEST_REQUIRE(fd >= 0, "%s not available (errno: %d)", path, errno);
return fd;
}
/*
* Open KVM_DEV_PATH if available, otherwise exit the entire program.
*
* Input Args:
* flags - The flags to pass when opening KVM_DEV_PATH.
*
* Return:
* The opened file descriptor of /dev/kvm.
*/
static int _open_kvm_dev_path_or_exit(int flags)
{
return open_path_or_exit(KVM_DEV_PATH, flags);
}
int open_kvm_dev_path_or_exit(void)
{
return _open_kvm_dev_path_or_exit(O_RDONLY);
}
/*
* Capability
*
* Input Args:
* cap - Capability
*
* Output Args: None
*
* Return:
* On success, the Value corresponding to the capability (KVM_CAP_*)
* specified by the value of cap. On failure a TEST_ASSERT failure
* is produced.
*
* Looks up and returns the value corresponding to the capability
* (KVM_CAP_*) given by cap.
*/
unsigned int kvm_check_cap(long cap)
{
int ret;
int kvm_fd;
kvm_fd = open_kvm_dev_path_or_exit();
ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
close(kvm_fd);
return (unsigned int)ret;
}
void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
{
vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
vm->dirty_ring_size = ring_size;
}
static void vm_open(struct kvm_vm *vm)
{
vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
}
const char *vm_guest_mode_string(uint32_t i)
{
static const char * const strings[] = {
[VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages",
[VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages",
[VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages",
[VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages",
[VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages",
[VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages",
[VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages",
[VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages",
[VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages",
[VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages",
[VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages",
[VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages",
[VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages",
[VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages",
[VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages",
};
_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
"Missing new mode strings?");
TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
return strings[i];
}
const struct vm_guest_mode_params vm_guest_mode_params[] = {
[VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 },
[VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 },
[VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 },
[VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 },
[VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 },
[VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 },
[VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 },
[VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 },
[VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 },
[VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 },
[VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 },
[VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 },
[VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 },
[VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 },
[VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 },
};
_Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
"Missing new mode params?");
struct kvm_vm *____vm_create(enum vm_guest_mode mode, uint64_t nr_pages)
{
struct kvm_vm *vm;
pr_debug("%s: mode='%s' pages='%ld'\n", __func__,
vm_guest_mode_string(mode), nr_pages);
vm = calloc(1, sizeof(*vm));
TEST_ASSERT(vm != NULL, "Insufficient Memory");
INIT_LIST_HEAD(&vm->vcpus);
vm->regions.gpa_tree = RB_ROOT;
vm->regions.hva_tree = RB_ROOT;
hash_init(vm->regions.slot_hash);
vm->mode = mode;
vm->type = 0;
vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
vm->va_bits = vm_guest_mode_params[mode].va_bits;
vm->page_size = vm_guest_mode_params[mode].page_size;
vm->page_shift = vm_guest_mode_params[mode].page_shift;
/* Setup mode specific traits. */
switch (vm->mode) {
case VM_MODE_P52V48_4K:
vm->pgtable_levels = 4;
break;
case VM_MODE_P52V48_64K:
vm->pgtable_levels = 3;
break;
case VM_MODE_P48V48_4K:
vm->pgtable_levels = 4;
break;
case VM_MODE_P48V48_64K:
vm->pgtable_levels = 3;
break;
case VM_MODE_P40V48_4K:
case VM_MODE_P36V48_4K:
vm->pgtable_levels = 4;
break;
case VM_MODE_P40V48_64K:
case VM_MODE_P36V48_64K:
vm->pgtable_levels = 3;
break;
case VM_MODE_P48V48_16K:
case VM_MODE_P40V48_16K:
case VM_MODE_P36V48_16K:
vm->pgtable_levels = 4;
break;
case VM_MODE_P36V47_16K:
vm->pgtable_levels = 3;
break;
case VM_MODE_PXXV48_4K:
#ifdef __x86_64__
kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
/*
* Ignore KVM support for 5-level paging (vm->va_bits == 57),
* it doesn't take effect unless a CR4.LA57 is set, which it
* isn't for this VM_MODE.
*/
TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
"Linear address width (%d bits) not supported",
vm->va_bits);
pr_debug("Guest physical address width detected: %d\n",
vm->pa_bits);
vm->pgtable_levels = 4;
vm->va_bits = 48;
#else
TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
#endif
break;
case VM_MODE_P47V64_4K:
vm->pgtable_levels = 5;
break;
case VM_MODE_P44V64_4K:
vm->pgtable_levels = 5;
break;
default:
TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
}
#ifdef __aarch64__
if (vm->pa_bits != 40)
vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
#endif
vm_open(vm);
/* Limit to VA-bit canonical virtual addresses. */
vm->vpages_valid = sparsebit_alloc();
sparsebit_set_num(vm->vpages_valid,
0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
sparsebit_set_num(vm->vpages_valid,
(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
/* Limit physical addresses to PA-bits. */
vm->max_gfn = vm_compute_max_gfn(vm);
/* Allocate and setup memory for guest. */
vm->vpages_mapped = sparsebit_alloc();
if (nr_pages != 0)
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
0, 0, nr_pages, 0);
return vm;
}
static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
uint32_t nr_runnable_vcpus,
uint64_t extra_mem_pages)
{
uint64_t nr_pages;
TEST_ASSERT(nr_runnable_vcpus,
"Use vm_create_barebones() for VMs that _never_ have vCPUs\n");
TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
"nr_vcpus = %d too large for host, max-vcpus = %d",
nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
/*
* Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
* test code and other per-VM assets that will be loaded into memslot0.
*/
nr_pages = 512;
/* Account for the per-vCPU stacks on behalf of the test. */
nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
/*
* Account for the number of pages needed for the page tables. The
* maximum page table size for a memory region will be when the
* smallest page size is used. Considering each page contains x page
* table descriptors, the total extra size for page tables (for extra
* N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
* than N/x*2.
*/
nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
return vm_adjust_num_guest_pages(mode, nr_pages);
}
struct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus,
uint64_t nr_extra_pages)
{
uint64_t nr_pages = vm_nr_pages_required(mode, nr_runnable_vcpus,
nr_extra_pages);
struct kvm_vm *vm;
vm = ____vm_create(mode, nr_pages);
kvm_vm_elf_load(vm, program_invocation_name);
#ifdef __x86_64__
vm_create_irqchip(vm);
#endif
return vm;
}
/*
* VM Create with customized parameters
*
* Input Args:
* mode - VM Mode (e.g. VM_MODE_P52V48_4K)
* nr_vcpus - VCPU count
* extra_mem_pages - Non-slot0 physical memory total size
* guest_code - Guest entry point
* vcpuids - VCPU IDs
*
* Output Args: None
*
* Return:
* Pointer to opaque structure that describes the created VM.
*
* Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
* extra_mem_pages is only used to calculate the maximum page table size,
* no real memory allocation for non-slot0 memory in this function.
*/
struct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
uint64_t extra_mem_pages,
void *guest_code, struct kvm_vcpu *vcpus[])
{
struct kvm_vm *vm;
int i;
TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
vm = __vm_create(mode, nr_vcpus, extra_mem_pages);
for (i = 0; i < nr_vcpus; ++i)
vcpus[i] = vm_vcpu_add(vm, i, guest_code);
return vm;
}
struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
uint64_t extra_mem_pages,
void *guest_code)
{
struct kvm_vcpu *vcpus[1];
struct kvm_vm *vm;
vm = __vm_create_with_vcpus(VM_MODE_DEFAULT, 1, extra_mem_pages,
guest_code, vcpus);
*vcpu = vcpus[0];
return vm;
}
/*
* VM Restart
*
* Input Args:
* vm - VM that has been released before
*
* Output Args: None
*
* Reopens the file descriptors associated to the VM and reinstates the
* global state, such as the irqchip and the memory regions that are mapped
* into the guest.
*/
void kvm_vm_restart(struct kvm_vm *vmp)
{
int ctr;
struct userspace_mem_region *region;
vm_open(vmp);
if (vmp->has_irqchip)
vm_create_irqchip(vmp);
hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
" rc: %i errno: %i\n"
" slot: %u flags: 0x%x\n"
" guest_phys_addr: 0x%llx size: 0x%llx",
ret, errno, region->region.slot,
region->region.flags,
region->region.guest_phys_addr,
region->region.memory_size);
}
}
__weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
uint32_t vcpu_id)
{
return __vm_vcpu_add(vm, vcpu_id);
}
struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
{
kvm_vm_restart(vm);
return vm_vcpu_recreate(vm, 0);
}
/*
* Userspace Memory Region Find
*
* Input Args:
* vm - Virtual Machine
* start - Starting VM physical address
* end - Ending VM physical address, inclusive.
*
* Output Args: None
*
* Return:
* Pointer to overlapping region, NULL if no such region.
*
* Searches for a region with any physical memory that overlaps with
* any portion of the guest physical addresses from start to end
* inclusive. If multiple overlapping regions exist, a pointer to any
* of the regions is returned. Null is returned only when no overlapping
* region exists.
*/
static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
{
struct rb_node *node;
for (node = vm->regions.gpa_tree.rb_node; node; ) {
struct userspace_mem_region *region =
container_of(node, struct userspace_mem_region, gpa_node);
uint64_t existing_start = region->region.guest_phys_addr;
uint64_t existing_end = region->region.guest_phys_addr
+ region->region.memory_size - 1;
if (start <= existing_end && end >= existing_start)
return region;
if (start < existing_start)
node = node->rb_left;
else
node = node->rb_right;
}
return NULL;
}
/*
* KVM Userspace Memory Region Find
*
* Input Args:
* vm - Virtual Machine
* start - Starting VM physical address
* end - Ending VM physical address, inclusive.
*
* Output Args: None
*
* Return:
* Pointer to overlapping region, NULL if no such region.
*
* Public interface to userspace_mem_region_find. Allows tests to look up
* the memslot datastructure for a given range of guest physical memory.
*/
struct kvm_userspace_memory_region *
kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
uint64_t end)
{
struct userspace_mem_region *region;
region = userspace_mem_region_find(vm, start, end);
if (!region)
return NULL;
return &region->region;
}
__weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
{
}
/*
* VM VCPU Remove
*
* Input Args:
* vcpu - VCPU to remove
*
* Output Args: None
*
* Return: None, TEST_ASSERT failures for all error conditions
*
* Removes a vCPU from a VM and frees its resources.
*/
static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
{
int ret;
if (vcpu->dirty_gfns) {
ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
vcpu->dirty_gfns = NULL;
}
ret = munmap(vcpu->run, vcpu_mmap_sz());
TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
ret = close(vcpu->fd);
TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
list_del(&vcpu->list);
vcpu_arch_free(vcpu);
free(vcpu);
}
void kvm_vm_release(struct kvm_vm *vmp)
{
struct kvm_vcpu *vcpu, *tmp;
int ret;
list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
vm_vcpu_rm(vmp, vcpu);
ret = close(vmp->fd);
TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
ret = close(vmp->kvm_fd);
TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
}
static void __vm_mem_region_delete(struct kvm_vm *vm,
struct userspace_mem_region *region,
bool unlink)
{
int ret;
if (unlink) {
rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
rb_erase(&region->hva_node, &vm->regions.hva_tree);
hash_del(&region->slot_node);
}
region->region.memory_size = 0;
vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
sparsebit_free(&region->unused_phy_pages);
ret = munmap(region->mmap_start, region->mmap_size);
TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
free(region);
}
/*
* Destroys and frees the VM pointed to by vmp.
*/
void kvm_vm_free(struct kvm_vm *vmp)
{
int ctr;
struct hlist_node *node;
struct userspace_mem_region *region;
if (vmp == NULL)
return;
/* Free cached stats metadata and close FD */
if (vmp->stats_fd) {
free(vmp->stats_desc);
close(vmp->stats_fd);
}
/* Free userspace_mem_regions. */
hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
__vm_mem_region_delete(vmp, region, false);
/* Free sparsebit arrays. */
sparsebit_free(&vmp->vpages_valid);
sparsebit_free(&vmp->vpages_mapped);
kvm_vm_release(vmp);
/* Free the structure describing the VM. */
free(vmp);
}
int kvm_memfd_alloc(size_t size, bool hugepages)
{
int memfd_flags = MFD_CLOEXEC;
int fd, r;
if (hugepages)
memfd_flags |= MFD_HUGETLB;
fd = memfd_create("kvm_selftest", memfd_flags);
TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
r = ftruncate(fd, size);
TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
return fd;
}
/*
* Memory Compare, host virtual to guest virtual
*
* Input Args:
* hva - Starting host virtual address
* vm - Virtual Machine
* gva - Starting guest virtual address
* len - number of bytes to compare
*
* Output Args: None
*
* Input/Output Args: None
*
* Return:
* Returns 0 if the bytes starting at hva for a length of len
* are equal the guest virtual bytes starting at gva. Returns
* a value < 0, if bytes at hva are less than those at gva.
* Otherwise a value > 0 is returned.
*
* Compares the bytes starting at the host virtual address hva, for
* a length of len, to the guest bytes starting at the guest virtual
* address given by gva.
*/
int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
{
size_t amt;
/*
* Compare a batch of bytes until either a match is found
* or all the bytes have been compared.
*/
for (uintptr_t offset = 0; offset < len; offset += amt) {
uintptr_t ptr1 = (uintptr_t)hva + offset;
/*
* Determine host address for guest virtual address
* at offset.
*/
uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
/*
* Determine amount to compare on this pass.
* Don't allow the comparsion to cross a page boundary.
*/
amt = len - offset;
if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
amt = vm->page_size - (ptr1 % vm->page_size);
if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
amt = vm->page_size - (ptr2 % vm->page_size);
assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
/*
* Perform the comparison. If there is a difference
* return that result to the caller, otherwise need
* to continue on looking for a mismatch.
*/
int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
if (ret != 0)
return ret;
}
/*
* No mismatch found. Let the caller know the two memory
* areas are equal.
*/
return 0;
}
static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
struct userspace_mem_region *region)
{
struct rb_node **cur, *parent;
for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
struct userspace_mem_region *cregion;
cregion = container_of(*cur, typeof(*cregion), gpa_node);
parent = *cur;
if (region->region.guest_phys_addr <
cregion->region.guest_phys_addr)
cur = &(*cur)->rb_left;
else {
TEST_ASSERT(region->region.guest_phys_addr !=
cregion->region.guest_phys_addr,
"Duplicate GPA in region tree");
cur = &(*cur)->rb_right;
}
}
rb_link_node(&region->gpa_node, parent, cur);
rb_insert_color(&region->gpa_node, gpa_tree);
}
static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
struct userspace_mem_region *region)
{
struct rb_node **cur, *parent;
for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
struct userspace_mem_region *cregion;
cregion = container_of(*cur, typeof(*cregion), hva_node);
parent = *cur;
if (region->host_mem < cregion->host_mem)
cur = &(*cur)->rb_left;
else {
TEST_ASSERT(region->host_mem !=
cregion->host_mem,
"Duplicate HVA in region tree");
cur = &(*cur)->rb_right;
}
}
rb_link_node(&region->hva_node, parent, cur);
rb_insert_color(&region->hva_node, hva_tree);
}
int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
uint64_t gpa, uint64_t size, void *hva)
{
struct kvm_userspace_memory_region region = {
.slot = slot,
.flags = flags,
.guest_phys_addr = gpa,
.memory_size = size,
.userspace_addr = (uintptr_t)hva,
};
return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
}
void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
uint64_t gpa, uint64_t size, void *hva)
{
int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
errno, strerror(errno));
}
/*
* VM Userspace Memory Region Add
*
* Input Args:
* vm - Virtual Machine
* src_type - Storage source for this region.
* NULL to use anonymous memory.
* guest_paddr - Starting guest physical address
* slot - KVM region slot
* npages - Number of physical pages
* flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
*
* Output Args: None
*
* Return: None
*
* Allocates a memory area of the number of pages specified by npages
* and maps it to the VM specified by vm, at a starting physical address
* given by guest_paddr. The region is created with a KVM region slot
* given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
* region is created with the flags given by flags.
*/
void vm_userspace_mem_region_add(struct kvm_vm *vm,
enum vm_mem_backing_src_type src_type,
uint64_t guest_paddr, uint32_t slot, uint64_t npages,
uint32_t flags)
{
int ret;
struct userspace_mem_region *region;
size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
size_t alignment;
TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
"Number of guest pages is not compatible with the host. "
"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
"address not on a page boundary.\n"
" guest_paddr: 0x%lx vm->page_size: 0x%x",
guest_paddr, vm->page_size);
TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
<= vm->max_gfn, "Physical range beyond maximum "
"supported physical address,\n"
" guest_paddr: 0x%lx npages: 0x%lx\n"
" vm->max_gfn: 0x%lx vm->page_size: 0x%x",
guest_paddr, npages, vm->max_gfn, vm->page_size);
/*
* Confirm a mem region with an overlapping address doesn't
* already exist.
*/
region = (struct userspace_mem_region *) userspace_mem_region_find(
vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
if (region != NULL)
TEST_FAIL("overlapping userspace_mem_region already "
"exists\n"
" requested guest_paddr: 0x%lx npages: 0x%lx "
"page_size: 0x%x\n"
" existing guest_paddr: 0x%lx size: 0x%lx",
guest_paddr, npages, vm->page_size,
(uint64_t) region->region.guest_phys_addr,
(uint64_t) region->region.memory_size);
/* Confirm no region with the requested slot already exists. */
hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
slot) {
if (region->region.slot != slot)
continue;
TEST_FAIL("A mem region with the requested slot "
"already exists.\n"
" requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
" existing slot: %u paddr: 0x%lx size: 0x%lx",
slot, guest_paddr, npages,
region->region.slot,
(uint64_t) region->region.guest_phys_addr,
(uint64_t) region->region.memory_size);
}
/* Allocate and initialize new mem region structure. */
region = calloc(1, sizeof(*region));
TEST_ASSERT(region != NULL, "Insufficient Memory");
region->mmap_size = npages * vm->page_size;
#ifdef __s390x__
/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
alignment = 0x100000;
#else
alignment = 1;
#endif
/*
* When using THP mmap is not guaranteed to returned a hugepage aligned
* address so we have to pad the mmap. Padding is not needed for HugeTLB
* because mmap will always return an address aligned to the HugeTLB
* page size.
*/
if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
alignment = max(backing_src_pagesz, alignment);
ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
/* Add enough memory to align up if necessary */
if (alignment > 1)
region->mmap_size += alignment;
region->fd = -1;
if (backing_src_is_shared(src_type))
region->fd = kvm_memfd_alloc(region->mmap_size,
src_type == VM_MEM_SRC_SHARED_HUGETLB);
region->mmap_start = mmap(NULL, region->mmap_size,
PROT_READ | PROT_WRITE,
vm_mem_backing_src_alias(src_type)->flag,
region->fd, 0);
TEST_ASSERT(region->mmap_start != MAP_FAILED,
__KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
"mmap_start %p is not aligned to HugeTLB page size 0x%lx",
region->mmap_start, backing_src_pagesz);
/* Align host address */
region->host_mem = align_ptr_up(region->mmap_start, alignment);
/* As needed perform madvise */
if ((src_type == VM_MEM_SRC_ANONYMOUS ||
src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
ret = madvise(region->host_mem, npages * vm->page_size,
src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
region->host_mem, npages * vm->page_size,
vm_mem_backing_src_alias(src_type)->name);
}
region->unused_phy_pages = sparsebit_alloc();
sparsebit_set_num(region->unused_phy_pages,
guest_paddr >> vm->page_shift, npages);
region->region.slot = slot;
region->region.flags = flags;
region->region.guest_phys_addr = guest_paddr;
region->region.memory_size = npages * vm->page_size;
region->region.userspace_addr = (uintptr_t) region->host_mem;
ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
" rc: %i errno: %i\n"
" slot: %u flags: 0x%x\n"
" guest_phys_addr: 0x%lx size: 0x%lx",
ret, errno, slot, flags,
guest_paddr, (uint64_t) region->region.memory_size);
/* Add to quick lookup data structures */
vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
hash_add(vm->regions.slot_hash, &region->slot_node, slot);
/* If shared memory, create an alias. */
if (region->fd >= 0) {
region->mmap_alias = mmap(NULL, region->mmap_size,
PROT_READ | PROT_WRITE,
vm_mem_backing_src_alias(src_type)->flag,
region->fd, 0);
TEST_ASSERT(region->mmap_alias != MAP_FAILED,
__KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
/* Align host alias address */
region->host_alias = align_ptr_up(region->mmap_alias, alignment);
}
}
/*
* Memslot to region
*
* Input Args:
* vm - Virtual Machine
* memslot - KVM memory slot ID
*
* Output Args: None
*
* Return:
* Pointer to memory region structure that describe memory region
* using kvm memory slot ID given by memslot. TEST_ASSERT failure
* on error (e.g. currently no memory region using memslot as a KVM
* memory slot ID).
*/
struct userspace_mem_region *
memslot2region(struct kvm_vm *vm, uint32_t memslot)
{
struct userspace_mem_region *region;
hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
memslot)
if (region->region.slot == memslot)
return region;
fprintf(stderr, "No mem region with the requested slot found,\n"
" requested slot: %u\n", memslot);
fputs("---- vm dump ----\n", stderr);
vm_dump(stderr, vm, 2);
TEST_FAIL("Mem region not found");
return NULL;
}
/*
* VM Memory Region Flags Set
*
* Input Args:
* vm - Virtual Machine
* flags - Starting guest physical address
*
* Output Args: None
*
* Return: None
*
* Sets the flags of the memory region specified by the value of slot,
* to the values given by flags.
*/
void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
{
int ret;
struct userspace_mem_region *region;
region = memslot2region(vm, slot);
region->region.flags = flags;
ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
" rc: %i errno: %i slot: %u flags: 0x%x",
ret, errno, slot, flags);
}
/*
* VM Memory Region Move
*
* Input Args:
* vm - Virtual Machine
* slot - Slot of the memory region to move
* new_gpa - Starting guest physical address
*
* Output Args: None
*
* Return: None
*
* Change the gpa of a memory region.
*/
void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
{
struct userspace_mem_region *region;
int ret;
region = memslot2region(vm, slot);
region->region.guest_phys_addr = new_gpa;
ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
"ret: %i errno: %i slot: %u new_gpa: 0x%lx",
ret, errno, slot, new_gpa);
}
/*
* VM Memory Region Delete
*
* Input Args:
* vm - Virtual Machine
* slot - Slot of the memory region to delete
*
* Output Args: None
*
* Return: None
*
* Delete a memory region.
*/
void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
{
__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
}
/* Returns the size of a vCPU's kvm_run structure. */
static int vcpu_mmap_sz(void)
{
int dev_fd, ret;
dev_fd = open_kvm_dev_path_or_exit();
ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
TEST_ASSERT(ret >= sizeof(struct kvm_run),
KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
close(dev_fd);
return ret;
}
static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
{
struct kvm_vcpu *vcpu;
list_for_each_entry(vcpu, &vm->vcpus, list) {
if (vcpu->id == vcpu_id)
return true;
}
return false;
}
/*
* Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
* No additional vCPU setup is done. Returns the vCPU.
*/
struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
{
struct kvm_vcpu *vcpu;
/* Confirm a vcpu with the specified id doesn't already exist. */
TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists\n", vcpu_id);
/* Allocate and initialize new vcpu structure. */
vcpu = calloc(1, sizeof(*vcpu));
TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
vcpu->vm = vm;
vcpu->id = vcpu_id;
vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
TEST_ASSERT(vcpu->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu->fd));
TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
vcpu_mmap_sz(), sizeof(*vcpu->run));
vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
TEST_ASSERT(vcpu->run != MAP_FAILED,
__KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
/* Add to linked-list of VCPUs. */
list_add(&vcpu->list, &vm->vcpus);
return vcpu;
}
/*
* VM Virtual Address Unused Gap
*
* Input Args:
* vm - Virtual Machine
* sz - Size (bytes)
* vaddr_min - Minimum Virtual Address
*
* Output Args: None
*
* Return:
* Lowest virtual address at or below vaddr_min, with at least
* sz unused bytes. TEST_ASSERT failure if no area of at least
* size sz is available.
*
* Within the VM specified by vm, locates the lowest starting virtual
* address >= vaddr_min, that has at least sz unallocated bytes. A
* TEST_ASSERT failure occurs for invalid input or no area of at least
* sz unallocated bytes >= vaddr_min is available.
*/
static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
vm_vaddr_t vaddr_min)
{
uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
/* Determine lowest permitted virtual page index. */
uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
if ((pgidx_start * vm->page_size) < vaddr_min)
goto no_va_found;
/* Loop over section with enough valid virtual page indexes. */
if (!sparsebit_is_set_num(vm->vpages_valid,
pgidx_start, pages))
pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
pgidx_start, pages);
do {
/*
* Are there enough unused virtual pages available at
* the currently proposed starting virtual page index.
* If not, adjust proposed starting index to next
* possible.
*/
if (sparsebit_is_clear_num(vm->vpages_mapped,
pgidx_start, pages))
goto va_found;
pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
pgidx_start, pages);
if (pgidx_start == 0)
goto no_va_found;
/*
* If needed, adjust proposed starting virtual address,
* to next range of valid virtual addresses.
*/
if (!sparsebit_is_set_num(vm->vpages_valid,
pgidx_start, pages)) {
pgidx_start = sparsebit_next_set_num(
vm->vpages_valid, pgidx_start, pages);
if (pgidx_start == 0)
goto no_va_found;
}
} while (pgidx_start != 0);
no_va_found:
TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
/* NOT REACHED */
return -1;
va_found:
TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
pgidx_start, pages),
"Unexpected, invalid virtual page index range,\n"
" pgidx_start: 0x%lx\n"
" pages: 0x%lx",
pgidx_start, pages);
TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
pgidx_start, pages),
"Unexpected, pages already mapped,\n"
" pgidx_start: 0x%lx\n"
" pages: 0x%lx",
pgidx_start, pages);
return pgidx_start * vm->page_size;
}
/*
* VM Virtual Address Allocate
*
* Input Args:
* vm - Virtual Machine
* sz - Size in bytes
* vaddr_min - Minimum starting virtual address
*
* Output Args: None
*
* Return:
* Starting guest virtual address
*
* Allocates at least sz bytes within the virtual address space of the vm
* given by vm. The allocated bytes are mapped to a virtual address >=
* the address given by vaddr_min. Note that each allocation uses a
* a unique set of pages, with the minimum real allocation being at least
* a page.
*/
vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
{
uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
virt_pgd_alloc(vm);
vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
KVM_UTIL_MIN_PFN * vm->page_size, 0);
/*
* Find an unused range of virtual page addresses of at least
* pages in length.
*/
vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
/* Map the virtual pages. */
for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
pages--, vaddr += vm->page_size, paddr += vm->page_size) {
virt_pg_map(vm, vaddr, paddr);
sparsebit_set(vm->vpages_mapped,
vaddr >> vm->page_shift);
}
return vaddr_start;
}
/*
* VM Virtual Address Allocate Pages
*
* Input Args:
* vm - Virtual Machine
*
* Output Args: None
*
* Return:
* Starting guest virtual address
*
* Allocates at least N system pages worth of bytes within the virtual address
* space of the vm.
*/
vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
{
return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
}
/*
* VM Virtual Address Allocate Page
*
* Input Args:
* vm - Virtual Machine
*
* Output Args: None
*
* Return:
* Starting guest virtual address
*
* Allocates at least one system page worth of bytes within the virtual address
* space of the vm.
*/
vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
{
return vm_vaddr_alloc_pages(vm, 1);
}
/*
* Map a range of VM virtual address to the VM's physical address
*
* Input Args:
* vm - Virtual Machine
* vaddr - Virtuall address to map
* paddr - VM Physical Address
* npages - The number of pages to map
*
* Output Args: None
*
* Return: None
*
* Within the VM given by @vm, creates a virtual translation for
* @npages starting at @vaddr to the page range starting at @paddr.
*/
void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
unsigned int npages)
{
size_t page_size = vm->page_size;
size_t size = npages * page_size;
TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
while (npages--) {
virt_pg_map(vm, vaddr, paddr);
vaddr += page_size;
paddr += page_size;
}
}
/*
* Address VM Physical to Host Virtual
*
* Input Args:
* vm - Virtual Machine
* gpa - VM physical address
*
* Output Args: None
*
* Return:
* Equivalent host virtual address
*
* Locates the memory region containing the VM physical address given
* by gpa, within the VM given by vm. When found, the host virtual
* address providing the memory to the vm physical address is returned.
* A TEST_ASSERT failure occurs if no region containing gpa exists.
*/
void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
{
struct userspace_mem_region *region;
region = userspace_mem_region_find(vm, gpa, gpa);
if (!region) {
TEST_FAIL("No vm physical memory at 0x%lx", gpa);
return NULL;
}
return (void *)((uintptr_t)region->host_mem
+ (gpa - region->region.guest_phys_addr));
}
/*
* Address Host Virtual to VM Physical
*
* Input Args:
* vm - Virtual Machine
* hva - Host virtual address
*
* Output Args: None
*
* Return:
* Equivalent VM physical address
*
* Locates the memory region containing the host virtual address given
* by hva, within the VM given by vm. When found, the equivalent
* VM physical address is returned. A TEST_ASSERT failure occurs if no
* region containing hva exists.
*/
vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
{
struct rb_node *node;
for (node = vm->regions.hva_tree.rb_node; node; ) {
struct userspace_mem_region *region =
container_of(node, struct userspace_mem_region, hva_node);
if (hva >= region->host_mem) {
if (hva <= (region->host_mem
+ region->region.memory_size - 1))
return (vm_paddr_t)((uintptr_t)
region->region.guest_phys_addr
+ (hva - (uintptr_t)region->host_mem));
node = node->rb_right;
} else
node = node->rb_left;
}
TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
return -1;
}
/*
* Address VM physical to Host Virtual *alias*.
*
* Input Args:
* vm - Virtual Machine
* gpa - VM physical address
*
* Output Args: None
*
* Return:
* Equivalent address within the host virtual *alias* area, or NULL
* (without failing the test) if the guest memory is not shared (so
* no alias exists).
*
* Create a writable, shared virtual=>physical alias for the specific GPA.
* The primary use case is to allow the host selftest to manipulate guest
* memory without mapping said memory in the guest's address space. And, for
* userfaultfd-based demand paging, to do so without triggering userfaults.
*/
void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
{
struct userspace_mem_region *region;
uintptr_t offset;
region = userspace_mem_region_find(vm, gpa, gpa);
if (!region)
return NULL;
if (!region->host_alias)
return NULL;
offset = gpa - region->region.guest_phys_addr;
return (void *) ((uintptr_t) region->host_alias + offset);
}
/* Create an interrupt controller chip for the specified VM. */
void vm_create_irqchip(struct kvm_vm *vm)
{
vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
vm->has_irqchip = true;
}
int _vcpu_run(struct kvm_vcpu *vcpu)
{
int rc;
do {
rc = __vcpu_run(vcpu);
} while (rc == -1 && errno == EINTR);
assert_on_unhandled_exception(vcpu);
return rc;
}
/*
* Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
* Assert if the KVM returns an error (other than -EINTR).
*/
void vcpu_run(struct kvm_vcpu *vcpu)
{
int ret = _vcpu_run(vcpu);
TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
}
void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
{
int ret;
vcpu->run->immediate_exit = 1;
ret = __vcpu_run(vcpu);
vcpu->run->immediate_exit = 0;
TEST_ASSERT(ret == -1 && errno == EINTR,
"KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
ret, errno);
}
/*
* Get the list of guest registers which are supported for
* KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer,
* it is the caller's responsibility to free the list.
*/
struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
{
struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
int ret;
ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
reg_list->n = reg_list_n.n;
vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
return reg_list;
}
void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
{
uint32_t page_size = vcpu->vm->page_size;
uint32_t size = vcpu->vm->dirty_ring_size;
TEST_ASSERT(size > 0, "Should enable dirty ring first");
if (!vcpu->dirty_gfns) {
void *addr;
addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
vcpu->dirty_gfns = addr;
vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
}
return vcpu->dirty_gfns;
}
/*
* Device Ioctl
*/
int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
{
struct kvm_device_attr attribute = {
.group = group,
.attr = attr,
.flags = 0,
};
return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
}
int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
{
struct kvm_create_device create_dev = {
.type = type,
.flags = KVM_CREATE_DEVICE_TEST,
};
return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
}
int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
{
struct kvm_create_device create_dev = {
.type = type,
.fd = -1,
.flags = 0,
};
int err;
err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
return err ? : create_dev.fd;
}
int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
{
struct kvm_device_attr kvmattr = {
.group = group,
.attr = attr,
.flags = 0,
.addr = (uintptr_t)val,
};
return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
}
int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
{
struct kvm_device_attr kvmattr = {
.group = group,
.attr = attr,
.flags = 0,
.addr = (uintptr_t)val,
};
return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
}
/*
* IRQ related functions.
*/
int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
{
struct kvm_irq_level irq_level = {
.irq = irq,
.level = level,
};
return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
}
void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
{
int ret = _kvm_irq_line(vm, irq, level);
TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
}
struct kvm_irq_routing *kvm_gsi_routing_create(void)
{
struct kvm_irq_routing *routing;
size_t size;
size = sizeof(struct kvm_irq_routing);
/* Allocate space for the max number of entries: this wastes 196 KBs. */
size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
routing = calloc(1, size);
assert(routing);
return routing;
}
void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
uint32_t gsi, uint32_t pin)
{
int i;
assert(routing);
assert(routing->nr < KVM_MAX_IRQ_ROUTES);
i = routing->nr;
routing->entries[i].gsi = gsi;
routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
routing->entries[i].flags = 0;
routing->entries[i].u.irqchip.irqchip = 0;
routing->entries[i].u.irqchip.pin = pin;
routing->nr++;
}
int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
{
int ret;
assert(routing);
ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
free(routing);
return ret;
}
void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
{
int ret;
ret = _kvm_gsi_routing_write(vm, routing);
TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
}
/*
* VM Dump
*
* Input Args:
* vm - Virtual Machine
* indent - Left margin indent amount
*
* Output Args:
* stream - Output FILE stream
*
* Return: None
*
* Dumps the current state of the VM given by vm, to the FILE stream
* given by stream.
*/
void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
{
int ctr;
struct userspace_mem_region *region;
struct kvm_vcpu *vcpu;
fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
fprintf(stream, "%*sMem Regions:\n", indent, "");
hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
"host_virt: %p\n", indent + 2, "",
(uint64_t) region->region.guest_phys_addr,
(uint64_t) region->region.memory_size,
region->host_mem);
fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
sparsebit_dump(stream, region->unused_phy_pages, 0);
}
fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
fprintf(stream, "%*spgd_created: %u\n", indent, "",
vm->pgd_created);
if (vm->pgd_created) {
fprintf(stream, "%*sVirtual Translation Tables:\n",
indent + 2, "");
virt_dump(stream, vm, indent + 4);
}
fprintf(stream, "%*sVCPUs:\n", indent, "");
list_for_each_entry(vcpu, &vm->vcpus, list)
vcpu_dump(stream, vcpu, indent + 2);
}
/* Known KVM exit reasons */
static struct exit_reason {
unsigned int reason;
const char *name;
} exit_reasons_known[] = {
{KVM_EXIT_UNKNOWN, "UNKNOWN"},
{KVM_EXIT_EXCEPTION, "EXCEPTION"},
{KVM_EXIT_IO, "IO"},
{KVM_EXIT_HYPERCALL, "HYPERCALL"},
{KVM_EXIT_DEBUG, "DEBUG"},
{KVM_EXIT_HLT, "HLT"},
{KVM_EXIT_MMIO, "MMIO"},
{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
{KVM_EXIT_INTR, "INTR"},
{KVM_EXIT_SET_TPR, "SET_TPR"},
{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
{KVM_EXIT_S390_RESET, "S390_RESET"},
{KVM_EXIT_DCR, "DCR"},
{KVM_EXIT_NMI, "NMI"},
{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
{KVM_EXIT_OSI, "OSI"},
{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
{KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
{KVM_EXIT_X86_RDMSR, "RDMSR"},
{KVM_EXIT_X86_WRMSR, "WRMSR"},
{KVM_EXIT_XEN, "XEN"},
#ifdef KVM_EXIT_MEMORY_NOT_PRESENT
{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
#endif
};
/*
* Exit Reason String
*
* Input Args:
* exit_reason - Exit reason
*
* Output Args: None
*
* Return:
* Constant string pointer describing the exit reason.
*
* Locates and returns a constant string that describes the KVM exit
* reason given by exit_reason. If no such string is found, a constant
* string of "Unknown" is returned.
*/
const char *exit_reason_str(unsigned int exit_reason)
{
unsigned int n1;
for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
if (exit_reason == exit_reasons_known[n1].reason)
return exit_reasons_known[n1].name;
}
return "Unknown";
}
/*
* Physical Contiguous Page Allocator
*
* Input Args:
* vm - Virtual Machine
* num - number of pages
* paddr_min - Physical address minimum
* memslot - Memory region to allocate page from
*
* Output Args: None
*
* Return:
* Starting physical address
*
* Within the VM specified by vm, locates a range of available physical
* pages at or above paddr_min. If found, the pages are marked as in use
* and their base address is returned. A TEST_ASSERT failure occurs if
* not enough pages are available at or above paddr_min.
*/
vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
vm_paddr_t paddr_min, uint32_t memslot)
{
struct userspace_mem_region *region;
sparsebit_idx_t pg, base;
TEST_ASSERT(num > 0, "Must allocate at least one page");
TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
"not divisible by page size.\n"
" paddr_min: 0x%lx page_size: 0x%x",
paddr_min, vm->page_size);
region = memslot2region(vm, memslot);
base = pg = paddr_min >> vm->page_shift;
do {
for (; pg < base + num; ++pg) {
if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
break;
}
}
} while (pg && pg != base + num);
if (pg == 0) {
fprintf(stderr, "No guest physical page available, "
"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
paddr_min, vm->page_size, memslot);
fputs("---- vm dump ----\n", stderr);
vm_dump(stderr, vm, 2);
abort();
}
for (pg = base; pg < base + num; ++pg)
sparsebit_clear(region->unused_phy_pages, pg);
return base * vm->page_size;
}
vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
uint32_t memslot)
{
return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
}
/* Arbitrary minimum physical address used for virtual translation tables. */
#define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
{
return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
}
/*
* Address Guest Virtual to Host Virtual
*
* Input Args:
* vm - Virtual Machine
* gva - VM virtual address
*
* Output Args: None
*
* Return:
* Equivalent host virtual address
*/
void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
{
return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
}
unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
{
return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
}
static unsigned int vm_calc_num_pages(unsigned int num_pages,
unsigned int page_shift,
unsigned int new_page_shift,
bool ceil)
{
unsigned int n = 1 << (new_page_shift - page_shift);
if (page_shift >= new_page_shift)
return num_pages * (1 << (page_shift - new_page_shift));
return num_pages / n + !!(ceil && num_pages % n);
}
static inline int getpageshift(void)
{
return __builtin_ffs(getpagesize()) - 1;
}
unsigned int
vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
{
return vm_calc_num_pages(num_guest_pages,
vm_guest_mode_params[mode].page_shift,
getpageshift(), true);
}
unsigned int
vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
{
return vm_calc_num_pages(num_host_pages, getpageshift(),
vm_guest_mode_params[mode].page_shift, false);
}
unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
{
unsigned int n;
n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
return vm_adjust_num_guest_pages(mode, n);
}
/*
* Read binary stats descriptors
*
* Input Args:
* stats_fd - the file descriptor for the binary stats file from which to read
* header - the binary stats metadata header corresponding to the given FD
*
* Output Args: None
*
* Return:
* A pointer to a newly allocated series of stat descriptors.
* Caller is responsible for freeing the returned kvm_stats_desc.
*
* Read the stats descriptors from the binary stats interface.
*/
struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
struct kvm_stats_header *header)
{
struct kvm_stats_desc *stats_desc;
ssize_t desc_size, total_size, ret;
desc_size = get_stats_descriptor_size(header);
total_size = header->num_desc * desc_size;
stats_desc = calloc(header->num_desc, desc_size);
TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
return stats_desc;
}
/*
* Read stat data for a particular stat
*
* Input Args:
* stats_fd - the file descriptor for the binary stats file from which to read
* header - the binary stats metadata header corresponding to the given FD
* desc - the binary stat metadata for the particular stat to be read
* max_elements - the maximum number of 8-byte values to read into data
*
* Output Args:
* data - the buffer into which stat data should be read
*
* Read the data values of a specified stat from the binary stats interface.
*/
void read_stat_data(int stats_fd, struct kvm_stats_header *header,
struct kvm_stats_desc *desc, uint64_t *data,
size_t max_elements)
{
size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
size_t size = nr_elements * sizeof(*data);
ssize_t ret;
TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
ret = pread(stats_fd, data, size,
header->data_offset + desc->offset);
TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
desc->name, errno, strerror(errno));
TEST_ASSERT(ret == size,
"pread() on stat '%s' read %ld bytes, wanted %lu bytes",
desc->name, size, ret);
}
/*
* Read the data of the named stat
*
* Input Args:
* vm - the VM for which the stat should be read
* stat_name - the name of the stat to read
* max_elements - the maximum number of 8-byte values to read into data
*
* Output Args:
* data - the buffer into which stat data should be read
*
* Read the data values of a specified stat from the binary stats interface.
*/
void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
size_t max_elements)
{
struct kvm_stats_desc *desc;
size_t size_desc;
int i;
if (!vm->stats_fd) {
vm->stats_fd = vm_get_stats_fd(vm);
read_stats_header(vm->stats_fd, &vm->stats_header);
vm->stats_desc = read_stats_descriptors(vm->stats_fd,
&vm->stats_header);
}
size_desc = get_stats_descriptor_size(&vm->stats_header);
for (i = 0; i < vm->stats_header.num_desc; ++i) {
desc = (void *)vm->stats_desc + (i * size_desc);
if (strcmp(desc->name, stat_name))
continue;
read_stat_data(vm->stats_fd, &vm->stats_header, desc,
data, max_elements);
break;
}
}