linux/arch/sparc/kernel/irq_64.c
Sam Ravnborg fe41493f74 sparc64: rename virt_irq => irq - I
The generic irq support uses the term 'irq' for the
allocated irq number.
Fix it so sparc64 use the same term for an irq as the
generic irq support does.
For a naive reader this is less confusing.

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-03-16 18:19:03 -07:00

1043 lines
25 KiB
C

/* irq.c: UltraSparc IRQ handling/init/registry.
*
* Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/linkage.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/kernel_stat.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/ftrace.h>
#include <linux/irq.h>
#include <linux/kmemleak.h>
#include <asm/ptrace.h>
#include <asm/processor.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/iommu.h>
#include <asm/upa.h>
#include <asm/oplib.h>
#include <asm/prom.h>
#include <asm/timer.h>
#include <asm/smp.h>
#include <asm/starfire.h>
#include <asm/uaccess.h>
#include <asm/cache.h>
#include <asm/cpudata.h>
#include <asm/auxio.h>
#include <asm/head.h>
#include <asm/hypervisor.h>
#include <asm/cacheflush.h>
#include "entry.h"
#include "cpumap.h"
#include "kstack.h"
#define NUM_IVECS (IMAP_INR + 1)
struct ino_bucket *ivector_table;
unsigned long ivector_table_pa;
/* On several sun4u processors, it is illegal to mix bypass and
* non-bypass accesses. Therefore we access all INO buckets
* using bypass accesses only.
*/
static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
{
unsigned long ret;
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=&r" (ret)
: "r" (bucket_pa +
offsetof(struct ino_bucket,
__irq_chain_pa)),
"i" (ASI_PHYS_USE_EC));
return ret;
}
static void bucket_clear_chain_pa(unsigned long bucket_pa)
{
__asm__ __volatile__("stxa %%g0, [%0] %1"
: /* no outputs */
: "r" (bucket_pa +
offsetof(struct ino_bucket,
__irq_chain_pa)),
"i" (ASI_PHYS_USE_EC));
}
static unsigned int bucket_get_irq(unsigned long bucket_pa)
{
unsigned int ret;
__asm__ __volatile__("lduwa [%1] %2, %0"
: "=&r" (ret)
: "r" (bucket_pa +
offsetof(struct ino_bucket,
__irq)),
"i" (ASI_PHYS_USE_EC));
return ret;
}
static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
{
__asm__ __volatile__("stwa %0, [%1] %2"
: /* no outputs */
: "r" (irq),
"r" (bucket_pa +
offsetof(struct ino_bucket,
__irq)),
"i" (ASI_PHYS_USE_EC));
}
#define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
static struct {
unsigned int dev_handle;
unsigned int dev_ino;
unsigned int in_use;
} irq_table[NR_IRQS];
static DEFINE_SPINLOCK(irq_alloc_lock);
unsigned char irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
{
unsigned long flags;
unsigned char ent;
BUILD_BUG_ON(NR_IRQS >= 256);
spin_lock_irqsave(&irq_alloc_lock, flags);
for (ent = 1; ent < NR_IRQS; ent++) {
if (!irq_table[ent].in_use)
break;
}
if (ent >= NR_IRQS) {
printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
ent = 0;
} else {
irq_table[ent].dev_handle = dev_handle;
irq_table[ent].dev_ino = dev_ino;
irq_table[ent].in_use = 1;
}
spin_unlock_irqrestore(&irq_alloc_lock, flags);
return ent;
}
#ifdef CONFIG_PCI_MSI
void irq_free(unsigned int irq)
{
unsigned long flags;
if (irq >= NR_IRQS)
return;
spin_lock_irqsave(&irq_alloc_lock, flags);
irq_table[irq].in_use = 0;
spin_unlock_irqrestore(&irq_alloc_lock, flags);
}
#endif
/*
* /proc/interrupts printing:
*/
int show_interrupts(struct seq_file *p, void *v)
{
int i = *(loff_t *) v, j;
struct irqaction * action;
unsigned long flags;
if (i == 0) {
seq_printf(p, " ");
for_each_online_cpu(j)
seq_printf(p, "CPU%d ",j);
seq_putc(p, '\n');
}
if (i < NR_IRQS) {
raw_spin_lock_irqsave(&irq_desc[i].lock, flags);
action = irq_desc[i].action;
if (!action)
goto skip;
seq_printf(p, "%3d: ",i);
#ifndef CONFIG_SMP
seq_printf(p, "%10u ", kstat_irqs(i));
#else
for_each_online_cpu(j)
seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
#endif
seq_printf(p, " %9s", irq_desc[i].irq_data.chip->name);
seq_printf(p, " %s", action->name);
for (action=action->next; action; action = action->next)
seq_printf(p, ", %s", action->name);
seq_putc(p, '\n');
skip:
raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags);
} else if (i == NR_IRQS) {
seq_printf(p, "NMI: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
seq_printf(p, " Non-maskable interrupts\n");
}
return 0;
}
static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
{
unsigned int tid;
if (this_is_starfire) {
tid = starfire_translate(imap, cpuid);
tid <<= IMAP_TID_SHIFT;
tid &= IMAP_TID_UPA;
} else {
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
unsigned long ver;
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
if ((ver >> 32UL) == __JALAPENO_ID ||
(ver >> 32UL) == __SERRANO_ID) {
tid = cpuid << IMAP_TID_SHIFT;
tid &= IMAP_TID_JBUS;
} else {
unsigned int a = cpuid & 0x1f;
unsigned int n = (cpuid >> 5) & 0x1f;
tid = ((a << IMAP_AID_SHIFT) |
(n << IMAP_NID_SHIFT));
tid &= (IMAP_AID_SAFARI |
IMAP_NID_SAFARI);
}
} else {
tid = cpuid << IMAP_TID_SHIFT;
tid &= IMAP_TID_UPA;
}
}
return tid;
}
struct irq_handler_data {
unsigned long iclr;
unsigned long imap;
void (*pre_handler)(unsigned int, void *, void *);
void *arg1;
void *arg2;
};
#ifdef CONFIG_SMP
static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
{
cpumask_t mask;
int cpuid;
cpumask_copy(&mask, affinity);
if (cpus_equal(mask, cpu_online_map)) {
cpuid = map_to_cpu(irq);
} else {
cpumask_t tmp;
cpus_and(tmp, cpu_online_map, mask);
cpuid = cpus_empty(tmp) ? map_to_cpu(irq) : first_cpu(tmp);
}
return cpuid;
}
#else
#define irq_choose_cpu(irq, affinity) \
real_hard_smp_processor_id()
#endif
static void sun4u_irq_enable(struct irq_data *data)
{
struct irq_handler_data *handler_data = data->handler_data;
if (likely(handler_data)) {
unsigned long cpuid, imap, val;
unsigned int tid;
cpuid = irq_choose_cpu(data->irq, data->affinity);
imap = handler_data->imap;
tid = sun4u_compute_tid(imap, cpuid);
val = upa_readq(imap);
val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
IMAP_AID_SAFARI | IMAP_NID_SAFARI);
val |= tid | IMAP_VALID;
upa_writeq(val, imap);
upa_writeq(ICLR_IDLE, handler_data->iclr);
}
}
static int sun4u_set_affinity(struct irq_data *data,
const struct cpumask *mask, bool force)
{
struct irq_handler_data *handler_data = data->handler_data;
if (likely(handler_data)) {
unsigned long cpuid, imap, val;
unsigned int tid;
cpuid = irq_choose_cpu(data->irq, mask);
imap = handler_data->imap;
tid = sun4u_compute_tid(imap, cpuid);
val = upa_readq(imap);
val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
IMAP_AID_SAFARI | IMAP_NID_SAFARI);
val |= tid | IMAP_VALID;
upa_writeq(val, imap);
upa_writeq(ICLR_IDLE, handler_data->iclr);
}
return 0;
}
/* Don't do anything. The desc->status check for IRQ_DISABLED in
* handler_irq() will skip the handler call and that will leave the
* interrupt in the sent state. The next ->enable() call will hit the
* ICLR register to reset the state machine.
*
* This scheme is necessary, instead of clearing the Valid bit in the
* IMAP register, to handle the case of IMAP registers being shared by
* multiple INOs (and thus ICLR registers). Since we use a different
* virtual IRQ for each shared IMAP instance, the generic code thinks
* there is only one user so it prematurely calls ->disable() on
* free_irq().
*
* We have to provide an explicit ->disable() method instead of using
* NULL to get the default. The reason is that if the generic code
* sees that, it also hooks up a default ->shutdown method which
* invokes ->mask() which we do not want. See irq_chip_set_defaults().
*/
static void sun4u_irq_disable(struct irq_data *data)
{
}
static void sun4u_irq_eoi(struct irq_data *data)
{
struct irq_handler_data *handler_data = data->handler_data;
struct irq_desc *desc = irq_desc + data->irq;
if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
return;
if (likely(handler_data))
upa_writeq(ICLR_IDLE, handler_data->iclr);
}
static void sun4v_irq_enable(struct irq_data *data)
{
unsigned int ino = irq_table[data->irq].dev_ino;
unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity);
int err;
err = sun4v_intr_settarget(ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
"err(%d)\n", ino, cpuid, err);
err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setstate(%x): "
"err(%d)\n", ino, err);
err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
ino, err);
}
static int sun4v_set_affinity(struct irq_data *data,
const struct cpumask *mask, bool force)
{
unsigned int ino = irq_table[data->irq].dev_ino;
unsigned long cpuid = irq_choose_cpu(data->irq, mask);
int err;
err = sun4v_intr_settarget(ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
"err(%d)\n", ino, cpuid, err);
return 0;
}
static void sun4v_irq_disable(struct irq_data *data)
{
unsigned int ino = irq_table[data->irq].dev_ino;
int err;
err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setenabled(%x): "
"err(%d)\n", ino, err);
}
static void sun4v_irq_eoi(struct irq_data *data)
{
unsigned int ino = irq_table[data->irq].dev_ino;
struct irq_desc *desc = irq_desc + data->irq;
int err;
if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
return;
err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setstate(%x): "
"err(%d)\n", ino, err);
}
static void sun4v_virq_enable(struct irq_data *data)
{
unsigned long cpuid, dev_handle, dev_ino;
int err;
cpuid = irq_choose_cpu(data->irq, data->affinity);
dev_handle = irq_table[data->irq].dev_handle;
dev_ino = irq_table[data->irq].dev_ino;
err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
"err(%d)\n",
dev_handle, dev_ino, cpuid, err);
err = sun4v_vintr_set_state(dev_handle, dev_ino,
HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_STATE_IDLE): err(%d)\n",
dev_handle, dev_ino, err);
err = sun4v_vintr_set_valid(dev_handle, dev_ino,
HV_INTR_ENABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_ENABLED): err(%d)\n",
dev_handle, dev_ino, err);
}
static int sun4v_virt_set_affinity(struct irq_data *data,
const struct cpumask *mask, bool force)
{
unsigned long cpuid, dev_handle, dev_ino;
int err;
cpuid = irq_choose_cpu(data->irq, mask);
dev_handle = irq_table[data->irq].dev_handle;
dev_ino = irq_table[data->irq].dev_ino;
err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
"err(%d)\n",
dev_handle, dev_ino, cpuid, err);
return 0;
}
static void sun4v_virq_disable(struct irq_data *data)
{
unsigned long dev_handle, dev_ino;
int err;
dev_handle = irq_table[data->irq].dev_handle;
dev_ino = irq_table[data->irq].dev_ino;
err = sun4v_vintr_set_valid(dev_handle, dev_ino,
HV_INTR_DISABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_DISABLED): err(%d)\n",
dev_handle, dev_ino, err);
}
static void sun4v_virq_eoi(struct irq_data *data)
{
struct irq_desc *desc = irq_desc + data->irq;
unsigned long dev_handle, dev_ino;
int err;
if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
return;
dev_handle = irq_table[data->irq].dev_handle;
dev_ino = irq_table[data->irq].dev_ino;
err = sun4v_vintr_set_state(dev_handle, dev_ino,
HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_STATE_IDLE): err(%d)\n",
dev_handle, dev_ino, err);
}
static struct irq_chip sun4u_irq = {
.name = "sun4u",
.irq_enable = sun4u_irq_enable,
.irq_disable = sun4u_irq_disable,
.irq_eoi = sun4u_irq_eoi,
.irq_set_affinity = sun4u_set_affinity,
};
static struct irq_chip sun4v_irq = {
.name = "sun4v",
.irq_enable = sun4v_irq_enable,
.irq_disable = sun4v_irq_disable,
.irq_eoi = sun4v_irq_eoi,
.irq_set_affinity = sun4v_set_affinity,
};
static struct irq_chip sun4v_virq = {
.name = "vsun4v",
.irq_enable = sun4v_virq_enable,
.irq_disable = sun4v_virq_disable,
.irq_eoi = sun4v_virq_eoi,
.irq_set_affinity = sun4v_virt_set_affinity,
};
static void pre_flow_handler(unsigned int irq, struct irq_desc *desc)
{
struct irq_handler_data *handler_data = get_irq_data(irq);
unsigned int ino = irq_table[irq].dev_ino;
handler_data->pre_handler(ino, handler_data->arg1, handler_data->arg2);
handle_fasteoi_irq(irq, desc);
}
void irq_install_pre_handler(int irq,
void (*func)(unsigned int, void *, void *),
void *arg1, void *arg2)
{
struct irq_handler_data *handler_data = get_irq_data(irq);
struct irq_desc *desc = irq_desc + irq;
handler_data->pre_handler = func;
handler_data->arg1 = arg1;
handler_data->arg2 = arg2;
desc->handle_irq = pre_flow_handler;
}
unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
{
struct ino_bucket *bucket;
struct irq_handler_data *handler_data;
unsigned int irq;
int ino;
BUG_ON(tlb_type == hypervisor);
ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
bucket = &ivector_table[ino];
irq = bucket_get_irq(__pa(bucket));
if (!irq) {
irq = irq_alloc(0, ino);
bucket_set_irq(__pa(bucket), irq);
set_irq_chip_and_handler_name(irq,
&sun4u_irq,
handle_fasteoi_irq,
"IVEC");
}
handler_data = get_irq_data(irq);
if (unlikely(handler_data))
goto out;
handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
if (unlikely(!handler_data)) {
prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
prom_halt();
}
set_irq_data(irq, handler_data);
handler_data->imap = imap;
handler_data->iclr = iclr;
out:
return irq;
}
static unsigned int sun4v_build_common(unsigned long sysino,
struct irq_chip *chip)
{
struct ino_bucket *bucket;
struct irq_handler_data *handler_data;
unsigned int irq;
BUG_ON(tlb_type != hypervisor);
bucket = &ivector_table[sysino];
irq = bucket_get_irq(__pa(bucket));
if (!irq) {
irq = irq_alloc(0, sysino);
bucket_set_irq(__pa(bucket), irq);
set_irq_chip_and_handler_name(irq, chip,
handle_fasteoi_irq,
"IVEC");
}
handler_data = get_irq_data(irq);
if (unlikely(handler_data))
goto out;
handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
if (unlikely(!handler_data)) {
prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
prom_halt();
}
set_irq_data(irq, handler_data);
/* Catch accidental accesses to these things. IMAP/ICLR handling
* is done by hypervisor calls on sun4v platforms, not by direct
* register accesses.
*/
handler_data->imap = ~0UL;
handler_data->iclr = ~0UL;
out:
return irq;
}
unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
{
unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
return sun4v_build_common(sysino, &sun4v_irq);
}
unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
{
struct irq_handler_data *handler_data;
unsigned long hv_err, cookie;
struct ino_bucket *bucket;
struct irq_desc *desc;
unsigned int irq;
bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
if (unlikely(!bucket))
return 0;
/* The only reference we store to the IRQ bucket is
* by physical address which kmemleak can't see, tell
* it that this object explicitly is not a leak and
* should be scanned.
*/
kmemleak_not_leak(bucket);
__flush_dcache_range((unsigned long) bucket,
((unsigned long) bucket +
sizeof(struct ino_bucket)));
irq = irq_alloc(devhandle, devino);
bucket_set_irq(__pa(bucket), irq);
set_irq_chip_and_handler_name(irq, &sun4v_virq,
handle_fasteoi_irq,
"IVEC");
handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
if (unlikely(!handler_data))
return 0;
/* In order to make the LDC channel startup sequence easier,
* especially wrt. locking, we do not let request_irq() enable
* the interrupt.
*/
desc = irq_desc + irq;
desc->status |= IRQ_NOAUTOEN;
set_irq_data(irq, handler_data);
/* Catch accidental accesses to these things. IMAP/ICLR handling
* is done by hypervisor calls on sun4v platforms, not by direct
* register accesses.
*/
handler_data->imap = ~0UL;
handler_data->iclr = ~0UL;
cookie = ~__pa(bucket);
hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
if (hv_err) {
prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
"err=%lu\n", devhandle, devino, hv_err);
prom_halt();
}
return irq;
}
void ack_bad_irq(unsigned int irq)
{
unsigned int ino = irq_table[irq].dev_ino;
if (!ino)
ino = 0xdeadbeef;
printk(KERN_CRIT "Unexpected IRQ from ino[%x] irq[%u]\n",
ino, irq);
}
void *hardirq_stack[NR_CPUS];
void *softirq_stack[NR_CPUS];
void __irq_entry handler_irq(int pil, struct pt_regs *regs)
{
unsigned long pstate, bucket_pa;
struct pt_regs *old_regs;
void *orig_sp;
clear_softint(1 << pil);
old_regs = set_irq_regs(regs);
irq_enter();
/* Grab an atomic snapshot of the pending IVECs. */
__asm__ __volatile__("rdpr %%pstate, %0\n\t"
"wrpr %0, %3, %%pstate\n\t"
"ldx [%2], %1\n\t"
"stx %%g0, [%2]\n\t"
"wrpr %0, 0x0, %%pstate\n\t"
: "=&r" (pstate), "=&r" (bucket_pa)
: "r" (irq_work_pa(smp_processor_id())),
"i" (PSTATE_IE)
: "memory");
orig_sp = set_hardirq_stack();
while (bucket_pa) {
struct irq_desc *desc;
unsigned long next_pa;
unsigned int irq;
next_pa = bucket_get_chain_pa(bucket_pa);
irq = bucket_get_irq(bucket_pa);
bucket_clear_chain_pa(bucket_pa);
desc = irq_desc + irq;
if (!(desc->status & IRQ_DISABLED))
desc->handle_irq(irq, desc);
bucket_pa = next_pa;
}
restore_hardirq_stack(orig_sp);
irq_exit();
set_irq_regs(old_regs);
}
void do_softirq(void)
{
unsigned long flags;
if (in_interrupt())
return;
local_irq_save(flags);
if (local_softirq_pending()) {
void *orig_sp, *sp = softirq_stack[smp_processor_id()];
sp += THREAD_SIZE - 192 - STACK_BIAS;
__asm__ __volatile__("mov %%sp, %0\n\t"
"mov %1, %%sp"
: "=&r" (orig_sp)
: "r" (sp));
__do_softirq();
__asm__ __volatile__("mov %0, %%sp"
: : "r" (orig_sp));
}
local_irq_restore(flags);
}
#ifdef CONFIG_HOTPLUG_CPU
void fixup_irqs(void)
{
unsigned int irq;
for (irq = 0; irq < NR_IRQS; irq++) {
unsigned long flags;
raw_spin_lock_irqsave(&irq_desc[irq].lock, flags);
if (irq_desc[irq].action &&
!(irq_desc[irq].status & IRQ_PER_CPU)) {
struct irq_data *data = irq_get_irq_data(irq);
if (data->chip->irq_set_affinity)
data->chip->irq_set_affinity(data,
data->affinity,
false);
}
raw_spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
}
tick_ops->disable_irq();
}
#endif
struct sun5_timer {
u64 count0;
u64 limit0;
u64 count1;
u64 limit1;
};
static struct sun5_timer *prom_timers;
static u64 prom_limit0, prom_limit1;
static void map_prom_timers(void)
{
struct device_node *dp;
const unsigned int *addr;
/* PROM timer node hangs out in the top level of device siblings... */
dp = of_find_node_by_path("/");
dp = dp->child;
while (dp) {
if (!strcmp(dp->name, "counter-timer"))
break;
dp = dp->sibling;
}
/* Assume if node is not present, PROM uses different tick mechanism
* which we should not care about.
*/
if (!dp) {
prom_timers = (struct sun5_timer *) 0;
return;
}
/* If PROM is really using this, it must be mapped by him. */
addr = of_get_property(dp, "address", NULL);
if (!addr) {
prom_printf("PROM does not have timer mapped, trying to continue.\n");
prom_timers = (struct sun5_timer *) 0;
return;
}
prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
}
static void kill_prom_timer(void)
{
if (!prom_timers)
return;
/* Save them away for later. */
prom_limit0 = prom_timers->limit0;
prom_limit1 = prom_timers->limit1;
/* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
* We turn both off here just to be paranoid.
*/
prom_timers->limit0 = 0;
prom_timers->limit1 = 0;
/* Wheee, eat the interrupt packet too... */
__asm__ __volatile__(
" mov 0x40, %%g2\n"
" ldxa [%%g0] %0, %%g1\n"
" ldxa [%%g2] %1, %%g1\n"
" stxa %%g0, [%%g0] %0\n"
" membar #Sync\n"
: /* no outputs */
: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
: "g1", "g2");
}
void notrace init_irqwork_curcpu(void)
{
int cpu = hard_smp_processor_id();
trap_block[cpu].irq_worklist_pa = 0UL;
}
/* Please be very careful with register_one_mondo() and
* sun4v_register_mondo_queues().
*
* On SMP this gets invoked from the CPU trampoline before
* the cpu has fully taken over the trap table from OBP,
* and it's kernel stack + %g6 thread register state is
* not fully cooked yet.
*
* Therefore you cannot make any OBP calls, not even prom_printf,
* from these two routines.
*/
static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
{
unsigned long num_entries = (qmask + 1) / 64;
unsigned long status;
status = sun4v_cpu_qconf(type, paddr, num_entries);
if (status != HV_EOK) {
prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
"err %lu\n", type, paddr, num_entries, status);
prom_halt();
}
}
void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
{
struct trap_per_cpu *tb = &trap_block[this_cpu];
register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
tb->cpu_mondo_qmask);
register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
tb->dev_mondo_qmask);
register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
tb->resum_qmask);
register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
tb->nonresum_qmask);
}
/* Each queue region must be a power of 2 multiple of 64 bytes in
* size. The base real address must be aligned to the size of the
* region. Thus, an 8KB queue must be 8KB aligned, for example.
*/
static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
{
unsigned long size = PAGE_ALIGN(qmask + 1);
unsigned long order = get_order(size);
unsigned long p;
p = __get_free_pages(GFP_KERNEL, order);
if (!p) {
prom_printf("SUN4V: Error, cannot allocate queue.\n");
prom_halt();
}
*pa_ptr = __pa(p);
}
static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
{
#ifdef CONFIG_SMP
unsigned long page;
BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
page = get_zeroed_page(GFP_KERNEL);
if (!page) {
prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
prom_halt();
}
tb->cpu_mondo_block_pa = __pa(page);
tb->cpu_list_pa = __pa(page + 64);
#endif
}
/* Allocate mondo and error queues for all possible cpus. */
static void __init sun4v_init_mondo_queues(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct trap_per_cpu *tb = &trap_block[cpu];
alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
alloc_one_queue(&tb->nonresum_kernel_buf_pa,
tb->nonresum_qmask);
}
}
static void __init init_send_mondo_info(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct trap_per_cpu *tb = &trap_block[cpu];
init_cpu_send_mondo_info(tb);
}
}
static struct irqaction timer_irq_action = {
.name = "timer",
};
/* Only invoked on boot processor. */
void __init init_IRQ(void)
{
unsigned long size;
map_prom_timers();
kill_prom_timer();
size = sizeof(struct ino_bucket) * NUM_IVECS;
ivector_table = kzalloc(size, GFP_KERNEL);
if (!ivector_table) {
prom_printf("Fatal error, cannot allocate ivector_table\n");
prom_halt();
}
__flush_dcache_range((unsigned long) ivector_table,
((unsigned long) ivector_table) + size);
ivector_table_pa = __pa(ivector_table);
if (tlb_type == hypervisor)
sun4v_init_mondo_queues();
init_send_mondo_info();
if (tlb_type == hypervisor) {
/* Load up the boot cpu's entries. */
sun4v_register_mondo_queues(hard_smp_processor_id());
}
/* We need to clear any IRQ's pending in the soft interrupt
* registers, a spurious one could be left around from the
* PROM timer which we just disabled.
*/
clear_softint(get_softint());
/* Now that ivector table is initialized, it is safe
* to receive IRQ vector traps. We will normally take
* one or two right now, in case some device PROM used
* to boot us wants to speak to us. We just ignore them.
*/
__asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
"or %%g1, %0, %%g1\n\t"
"wrpr %%g1, 0x0, %%pstate"
: /* No outputs */
: "i" (PSTATE_IE)
: "g1");
irq_desc[0].action = &timer_irq_action;
}