mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-15 23:14:31 +08:00
33ca29c99e
We need to round the calculated value to have it match the requested rate. While at it, let's fix a typo and use a define for SYNTH_MAX_DIV_M as we will need it in later patches for set_rate. And let's remove two unused includes. Cc: Brian Hutchinson <b.hutchman@gmail.com> Cc: Matthijs van Duin <matthijsvanduin@gmail.com> Cc: Tero Kristo <t-kristo@ti.com> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Tero Kristo <t-kristo@ti.com>
410 lines
9.4 KiB
C
410 lines
9.4 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation version 2.
|
|
*
|
|
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
|
|
* kind, whether express or implied; without even the implied warranty
|
|
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/clk-provider.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/err.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/clk/ti.h>
|
|
|
|
/* FAPLL Control Register PLL_CTRL */
|
|
#define FAPLL_MAIN_LOCK BIT(7)
|
|
#define FAPLL_MAIN_PLLEN BIT(3)
|
|
#define FAPLL_MAIN_BP BIT(2)
|
|
#define FAPLL_MAIN_LOC_CTL BIT(0)
|
|
|
|
/* FAPLL powerdown register PWD */
|
|
#define FAPLL_PWD_OFFSET 4
|
|
|
|
#define MAX_FAPLL_OUTPUTS 7
|
|
#define FAPLL_MAX_RETRIES 1000
|
|
|
|
#define to_fapll(_hw) container_of(_hw, struct fapll_data, hw)
|
|
#define to_synth(_hw) container_of(_hw, struct fapll_synth, hw)
|
|
|
|
/* The bypass bit is inverted on the ddr_pll.. */
|
|
#define fapll_is_ddr_pll(va) (((u32)(va) & 0xffff) == 0x0440)
|
|
|
|
/*
|
|
* The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
|
|
* and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
|
|
*/
|
|
#define is_ddr_pll_clk1(va) (((u32)(va) & 0xffff) == 0x044c)
|
|
#define is_audio_pll_clk1(va) (((u32)(va) & 0xffff) == 0x04a8)
|
|
|
|
/* Synthesizer divider register */
|
|
#define SYNTH_LDMDIV1 BIT(8)
|
|
|
|
/* Synthesizer frequency register */
|
|
#define SYNTH_LDFREQ BIT(31)
|
|
|
|
#define SYNTH_MAX_DIV_M 0xff
|
|
|
|
struct fapll_data {
|
|
struct clk_hw hw;
|
|
void __iomem *base;
|
|
const char *name;
|
|
struct clk *clk_ref;
|
|
struct clk *clk_bypass;
|
|
struct clk_onecell_data outputs;
|
|
bool bypass_bit_inverted;
|
|
};
|
|
|
|
struct fapll_synth {
|
|
struct clk_hw hw;
|
|
struct fapll_data *fd;
|
|
int index;
|
|
void __iomem *freq;
|
|
void __iomem *div;
|
|
const char *name;
|
|
struct clk *clk_pll;
|
|
};
|
|
|
|
static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
|
|
{
|
|
u32 v = readl_relaxed(fd->base);
|
|
|
|
if (fd->bypass_bit_inverted)
|
|
return !(v & FAPLL_MAIN_BP);
|
|
else
|
|
return !!(v & FAPLL_MAIN_BP);
|
|
}
|
|
|
|
static int ti_fapll_enable(struct clk_hw *hw)
|
|
{
|
|
struct fapll_data *fd = to_fapll(hw);
|
|
u32 v = readl_relaxed(fd->base);
|
|
|
|
v |= (1 << FAPLL_MAIN_PLLEN);
|
|
writel_relaxed(v, fd->base);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ti_fapll_disable(struct clk_hw *hw)
|
|
{
|
|
struct fapll_data *fd = to_fapll(hw);
|
|
u32 v = readl_relaxed(fd->base);
|
|
|
|
v &= ~(1 << FAPLL_MAIN_PLLEN);
|
|
writel_relaxed(v, fd->base);
|
|
}
|
|
|
|
static int ti_fapll_is_enabled(struct clk_hw *hw)
|
|
{
|
|
struct fapll_data *fd = to_fapll(hw);
|
|
u32 v = readl_relaxed(fd->base);
|
|
|
|
return v & (1 << FAPLL_MAIN_PLLEN);
|
|
}
|
|
|
|
static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
|
|
unsigned long parent_rate)
|
|
{
|
|
struct fapll_data *fd = to_fapll(hw);
|
|
u32 fapll_n, fapll_p, v;
|
|
long long rate;
|
|
|
|
if (ti_fapll_clock_is_bypass(fd))
|
|
return parent_rate;
|
|
|
|
rate = parent_rate;
|
|
|
|
/* PLL pre-divider is P and multiplier is N */
|
|
v = readl_relaxed(fd->base);
|
|
fapll_p = (v >> 8) & 0xff;
|
|
if (fapll_p)
|
|
do_div(rate, fapll_p);
|
|
fapll_n = v >> 16;
|
|
if (fapll_n)
|
|
rate *= fapll_n;
|
|
|
|
return rate;
|
|
}
|
|
|
|
static u8 ti_fapll_get_parent(struct clk_hw *hw)
|
|
{
|
|
struct fapll_data *fd = to_fapll(hw);
|
|
|
|
if (ti_fapll_clock_is_bypass(fd))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct clk_ops ti_fapll_ops = {
|
|
.enable = ti_fapll_enable,
|
|
.disable = ti_fapll_disable,
|
|
.is_enabled = ti_fapll_is_enabled,
|
|
.recalc_rate = ti_fapll_recalc_rate,
|
|
.get_parent = ti_fapll_get_parent,
|
|
};
|
|
|
|
static int ti_fapll_synth_enable(struct clk_hw *hw)
|
|
{
|
|
struct fapll_synth *synth = to_synth(hw);
|
|
u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
|
|
|
|
v &= ~(1 << synth->index);
|
|
writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ti_fapll_synth_disable(struct clk_hw *hw)
|
|
{
|
|
struct fapll_synth *synth = to_synth(hw);
|
|
u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
|
|
|
|
v |= 1 << synth->index;
|
|
writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
|
|
}
|
|
|
|
static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
|
|
{
|
|
struct fapll_synth *synth = to_synth(hw);
|
|
u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
|
|
|
|
return !(v & (1 << synth->index));
|
|
}
|
|
|
|
/*
|
|
* See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
|
|
*/
|
|
static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
|
|
unsigned long parent_rate)
|
|
{
|
|
struct fapll_synth *synth = to_synth(hw);
|
|
u32 synth_div_m;
|
|
long long rate;
|
|
|
|
/* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
|
|
if (!synth->div)
|
|
return 32768;
|
|
|
|
/*
|
|
* PLL in bypass sets the synths in bypass mode too. The PLL rate
|
|
* can be also be set to 27MHz, so we can't use parent_rate to
|
|
* check for bypass mode.
|
|
*/
|
|
if (ti_fapll_clock_is_bypass(synth->fd))
|
|
return parent_rate;
|
|
|
|
rate = parent_rate;
|
|
|
|
/*
|
|
* Synth frequency integer and fractional divider.
|
|
* Note that the phase output K is 8, so the result needs
|
|
* to be multiplied by 8.
|
|
*/
|
|
if (synth->freq) {
|
|
u32 v, synth_int_div, synth_frac_div, synth_div_freq;
|
|
|
|
v = readl_relaxed(synth->freq);
|
|
synth_int_div = (v >> 24) & 0xf;
|
|
synth_frac_div = v & 0xffffff;
|
|
synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
|
|
rate *= 10000000;
|
|
do_div(rate, synth_div_freq);
|
|
rate *= 8;
|
|
}
|
|
|
|
/* Synth post-divider M */
|
|
synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
|
|
|
|
return DIV_ROUND_UP_ULL(rate, synth_div_m);
|
|
}
|
|
|
|
static struct clk_ops ti_fapll_synt_ops = {
|
|
.enable = ti_fapll_synth_enable,
|
|
.disable = ti_fapll_synth_disable,
|
|
.is_enabled = ti_fapll_synth_is_enabled,
|
|
.recalc_rate = ti_fapll_synth_recalc_rate,
|
|
};
|
|
|
|
static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
|
|
void __iomem *freq,
|
|
void __iomem *div,
|
|
int index,
|
|
const char *name,
|
|
const char *parent,
|
|
struct clk *pll_clk)
|
|
{
|
|
struct clk_init_data *init;
|
|
struct fapll_synth *synth;
|
|
|
|
init = kzalloc(sizeof(*init), GFP_KERNEL);
|
|
if (!init)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
init->ops = &ti_fapll_synt_ops;
|
|
init->name = name;
|
|
init->parent_names = &parent;
|
|
init->num_parents = 1;
|
|
|
|
synth = kzalloc(sizeof(*synth), GFP_KERNEL);
|
|
if (!synth)
|
|
goto free;
|
|
|
|
synth->fd = fd;
|
|
synth->index = index;
|
|
synth->freq = freq;
|
|
synth->div = div;
|
|
synth->name = name;
|
|
synth->hw.init = init;
|
|
synth->clk_pll = pll_clk;
|
|
|
|
return clk_register(NULL, &synth->hw);
|
|
|
|
free:
|
|
kfree(synth);
|
|
kfree(init);
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
static void __init ti_fapll_setup(struct device_node *node)
|
|
{
|
|
struct fapll_data *fd;
|
|
struct clk_init_data *init = NULL;
|
|
const char *parent_name[2];
|
|
struct clk *pll_clk;
|
|
int i;
|
|
|
|
fd = kzalloc(sizeof(*fd), GFP_KERNEL);
|
|
if (!fd)
|
|
return;
|
|
|
|
fd->outputs.clks = kzalloc(sizeof(struct clk *) *
|
|
MAX_FAPLL_OUTPUTS + 1,
|
|
GFP_KERNEL);
|
|
if (!fd->outputs.clks)
|
|
goto free;
|
|
|
|
init = kzalloc(sizeof(*init), GFP_KERNEL);
|
|
if (!init)
|
|
goto free;
|
|
|
|
init->ops = &ti_fapll_ops;
|
|
init->name = node->name;
|
|
|
|
init->num_parents = of_clk_get_parent_count(node);
|
|
if (init->num_parents != 2) {
|
|
pr_err("%s must have two parents\n", node->name);
|
|
goto free;
|
|
}
|
|
|
|
parent_name[0] = of_clk_get_parent_name(node, 0);
|
|
parent_name[1] = of_clk_get_parent_name(node, 1);
|
|
init->parent_names = parent_name;
|
|
|
|
fd->clk_ref = of_clk_get(node, 0);
|
|
if (IS_ERR(fd->clk_ref)) {
|
|
pr_err("%s could not get clk_ref\n", node->name);
|
|
goto free;
|
|
}
|
|
|
|
fd->clk_bypass = of_clk_get(node, 1);
|
|
if (IS_ERR(fd->clk_bypass)) {
|
|
pr_err("%s could not get clk_bypass\n", node->name);
|
|
goto free;
|
|
}
|
|
|
|
fd->base = of_iomap(node, 0);
|
|
if (!fd->base) {
|
|
pr_err("%s could not get IO base\n", node->name);
|
|
goto free;
|
|
}
|
|
|
|
if (fapll_is_ddr_pll(fd->base))
|
|
fd->bypass_bit_inverted = true;
|
|
|
|
fd->name = node->name;
|
|
fd->hw.init = init;
|
|
|
|
/* Register the parent PLL */
|
|
pll_clk = clk_register(NULL, &fd->hw);
|
|
if (IS_ERR(pll_clk))
|
|
goto unmap;
|
|
|
|
fd->outputs.clks[0] = pll_clk;
|
|
fd->outputs.clk_num++;
|
|
|
|
/*
|
|
* Set up the child synthesizers starting at index 1 as the
|
|
* PLL output is at index 0. We need to check the clock-indices
|
|
* for numbering in case there are holes in the synth mapping,
|
|
* and then probe the synth register to see if it has a FREQ
|
|
* register available.
|
|
*/
|
|
for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
|
|
const char *output_name;
|
|
void __iomem *freq, *div;
|
|
struct clk *synth_clk;
|
|
int output_instance;
|
|
u32 v;
|
|
|
|
if (of_property_read_string_index(node, "clock-output-names",
|
|
i, &output_name))
|
|
continue;
|
|
|
|
if (of_property_read_u32_index(node, "clock-indices", i,
|
|
&output_instance))
|
|
output_instance = i;
|
|
|
|
freq = fd->base + (output_instance * 8);
|
|
div = freq + 4;
|
|
|
|
/* Check for hardwired audio_pll_clk1 */
|
|
if (is_audio_pll_clk1(freq)) {
|
|
freq = 0;
|
|
div = 0;
|
|
} else {
|
|
/* Does the synthesizer have a FREQ register? */
|
|
v = readl_relaxed(freq);
|
|
if (!v)
|
|
freq = 0;
|
|
}
|
|
synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
|
|
output_name, node->name,
|
|
pll_clk);
|
|
if (IS_ERR(synth_clk))
|
|
continue;
|
|
|
|
fd->outputs.clks[output_instance] = synth_clk;
|
|
fd->outputs.clk_num++;
|
|
|
|
clk_register_clkdev(synth_clk, output_name, NULL);
|
|
}
|
|
|
|
/* Register the child synthesizers as the FAPLL outputs */
|
|
of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
|
|
/* Add clock alias for the outputs */
|
|
|
|
kfree(init);
|
|
|
|
return;
|
|
|
|
unmap:
|
|
iounmap(fd->base);
|
|
free:
|
|
if (fd->clk_bypass)
|
|
clk_put(fd->clk_bypass);
|
|
if (fd->clk_ref)
|
|
clk_put(fd->clk_ref);
|
|
kfree(fd->outputs.clks);
|
|
kfree(fd);
|
|
kfree(init);
|
|
}
|
|
|
|
CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);
|