linux/arch/sh/kernel/setup.c
Paul Mundt 3366e3585f sh: Move platform smp ops in to their own structure.
This cribs the MIPS plat_smp_ops approach for wrapping up the platform
ops. This will allow for mixing and matching different ops on the same
platform in the future.

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2010-04-21 12:23:25 +09:00

631 lines
16 KiB
C

/*
* arch/sh/kernel/setup.c
*
* This file handles the architecture-dependent parts of initialization
*
* Copyright (C) 1999 Niibe Yutaka
* Copyright (C) 2002 - 2007 Paul Mundt
*/
#include <linux/screen_info.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/bootmem.h>
#include <linux/console.h>
#include <linux/seq_file.h>
#include <linux/root_dev.h>
#include <linux/utsname.h>
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/pfn.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/kexec.h>
#include <linux/module.h>
#include <linux/smp.h>
#include <linux/err.h>
#include <linux/debugfs.h>
#include <linux/crash_dump.h>
#include <linux/mmzone.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/lmb.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/page.h>
#include <asm/elf.h>
#include <asm/sections.h>
#include <asm/irq.h>
#include <asm/setup.h>
#include <asm/clock.h>
#include <asm/mmu_context.h>
/*
* Initialize loops_per_jiffy as 10000000 (1000MIPS).
* This value will be used at the very early stage of serial setup.
* The bigger value means no problem.
*/
struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
[0] = {
.type = CPU_SH_NONE,
.family = CPU_FAMILY_UNKNOWN,
.loops_per_jiffy = 10000000,
},
};
EXPORT_SYMBOL(cpu_data);
/*
* The machine vector. First entry in .machvec.init, or clobbered by
* sh_mv= on the command line, prior to .machvec.init teardown.
*/
struct sh_machine_vector sh_mv = { .mv_name = "generic", };
EXPORT_SYMBOL(sh_mv);
#ifdef CONFIG_VT
struct screen_info screen_info;
#endif
extern int root_mountflags;
#define RAMDISK_IMAGE_START_MASK 0x07FF
#define RAMDISK_PROMPT_FLAG 0x8000
#define RAMDISK_LOAD_FLAG 0x4000
static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
static struct resource code_resource = {
.name = "Kernel code",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
static struct resource data_resource = {
.name = "Kernel data",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
static struct resource bss_resource = {
.name = "Kernel bss",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
unsigned long memory_start;
EXPORT_SYMBOL(memory_start);
unsigned long memory_end = 0;
EXPORT_SYMBOL(memory_end);
static struct resource mem_resources[MAX_NUMNODES];
int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
static int __init early_parse_mem(char *p)
{
unsigned long size;
memory_start = (unsigned long)__va(__MEMORY_START);
size = memparse(p, &p);
if (size > __MEMORY_SIZE) {
printk(KERN_ERR
"Using mem= to increase the size of kernel memory "
"is not allowed.\n"
" Recompile the kernel with the correct value for "
"CONFIG_MEMORY_SIZE.\n");
return 0;
}
memory_end = memory_start + size;
return 0;
}
early_param("mem", early_parse_mem);
/*
* Register fully available low RAM pages with the bootmem allocator.
*/
static void __init register_bootmem_low_pages(void)
{
unsigned long curr_pfn, last_pfn, pages;
/*
* We are rounding up the start address of usable memory:
*/
curr_pfn = PFN_UP(__MEMORY_START);
/*
* ... and at the end of the usable range downwards:
*/
last_pfn = PFN_DOWN(__pa(memory_end));
if (last_pfn > max_low_pfn)
last_pfn = max_low_pfn;
pages = last_pfn - curr_pfn;
free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
}
#ifdef CONFIG_KEXEC
static void __init reserve_crashkernel(void)
{
unsigned long long free_mem;
unsigned long long crash_size, crash_base;
void *vp;
int ret;
free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
ret = parse_crashkernel(boot_command_line, free_mem,
&crash_size, &crash_base);
if (ret == 0 && crash_size) {
if (crash_base <= 0) {
vp = alloc_bootmem_nopanic(crash_size);
if (!vp) {
printk(KERN_INFO "crashkernel allocation "
"failed\n");
return;
}
crash_base = __pa(vp);
} else if (reserve_bootmem(crash_base, crash_size,
BOOTMEM_EXCLUSIVE) < 0) {
printk(KERN_INFO "crashkernel reservation failed - "
"memory is in use\n");
return;
}
printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
"for crashkernel (System RAM: %ldMB)\n",
(unsigned long)(crash_size >> 20),
(unsigned long)(crash_base >> 20),
(unsigned long)(free_mem >> 20));
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
insert_resource(&iomem_resource, &crashk_res);
}
}
#else
static inline void __init reserve_crashkernel(void)
{}
#endif
void __cpuinit calibrate_delay(void)
{
struct clk *clk = clk_get(NULL, "cpu_clk");
if (IS_ERR(clk))
panic("Need a sane CPU clock definition!");
loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
printk(KERN_INFO "Calibrating delay loop (skipped)... "
"%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
loops_per_jiffy/(500000/HZ),
(loops_per_jiffy/(5000/HZ)) % 100,
loops_per_jiffy);
}
void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
unsigned long end_pfn)
{
struct resource *res = &mem_resources[nid];
WARN_ON(res->name); /* max one active range per node for now */
res->name = "System RAM";
res->start = start_pfn << PAGE_SHIFT;
res->end = (end_pfn << PAGE_SHIFT) - 1;
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
if (request_resource(&iomem_resource, res)) {
pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
start_pfn, end_pfn);
return;
}
/*
* We don't know which RAM region contains kernel data,
* so we try it repeatedly and let the resource manager
* test it.
*/
request_resource(res, &code_resource);
request_resource(res, &data_resource);
request_resource(res, &bss_resource);
add_active_range(nid, start_pfn, end_pfn);
}
void __init setup_bootmem_allocator(unsigned long free_pfn)
{
unsigned long bootmap_size;
unsigned long bootmap_pages, bootmem_paddr;
u64 total_pages = (lmb_end_of_DRAM() - __MEMORY_START) >> PAGE_SHIFT;
int i;
bootmap_pages = bootmem_bootmap_pages(total_pages);
bootmem_paddr = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
/*
* Find a proper area for the bootmem bitmap. After this
* bootstrap step all allocations (until the page allocator
* is intact) must be done via bootmem_alloc().
*/
bootmap_size = init_bootmem_node(NODE_DATA(0),
bootmem_paddr >> PAGE_SHIFT,
min_low_pfn, max_low_pfn);
/* Add active regions with valid PFNs. */
for (i = 0; i < lmb.memory.cnt; i++) {
unsigned long start_pfn, end_pfn;
start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
__add_active_range(0, start_pfn, end_pfn);
}
/*
* Add all physical memory to the bootmem map and mark each
* area as present.
*/
register_bootmem_low_pages();
/* Reserve the sections we're already using. */
for (i = 0; i < lmb.reserved.cnt; i++)
reserve_bootmem(lmb.reserved.region[i].base,
lmb_size_bytes(&lmb.reserved, i),
BOOTMEM_DEFAULT);
node_set_online(0);
sparse_memory_present_with_active_regions(0);
#ifdef CONFIG_BLK_DEV_INITRD
ROOT_DEV = Root_RAM0;
if (LOADER_TYPE && INITRD_START) {
unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
reserve_bootmem(initrd_start_phys, INITRD_SIZE,
BOOTMEM_DEFAULT);
initrd_start = (unsigned long)__va(initrd_start_phys);
initrd_end = initrd_start + INITRD_SIZE;
} else {
printk("initrd extends beyond end of memory "
"(0x%08lx > 0x%08lx)\ndisabling initrd\n",
initrd_start_phys + INITRD_SIZE,
(unsigned long)PFN_PHYS(max_low_pfn));
initrd_start = 0;
}
}
#endif
reserve_crashkernel();
}
#ifndef CONFIG_NEED_MULTIPLE_NODES
static void __init setup_memory(void)
{
unsigned long start_pfn;
u64 base = min_low_pfn << PAGE_SHIFT;
u64 size = (max_low_pfn << PAGE_SHIFT) - base;
/*
* Partially used pages are not usable - thus
* we are rounding upwards:
*/
start_pfn = PFN_UP(__pa(_end));
lmb_add(base, size);
/*
* Reserve the kernel text and
* Reserve the bootmem bitmap. We do this in two steps (first step
* was init_bootmem()), because this catches the (definitely buggy)
* case of us accidentally initializing the bootmem allocator with
* an invalid RAM area.
*/
lmb_reserve(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
(PFN_PHYS(start_pfn) + PAGE_SIZE - 1) -
(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET));
/*
* Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
*/
if (CONFIG_ZERO_PAGE_OFFSET != 0)
lmb_reserve(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET);
lmb_analyze();
lmb_dump_all();
setup_bootmem_allocator(start_pfn);
}
#else
extern void __init setup_memory(void);
#endif
/*
* Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
* is_kdump_kernel() to determine if we are booting after a panic. Hence
* ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
*/
#ifdef CONFIG_CRASH_DUMP
/* elfcorehdr= specifies the location of elf core header
* stored by the crashed kernel.
*/
static int __init parse_elfcorehdr(char *arg)
{
if (!arg)
return -EINVAL;
elfcorehdr_addr = memparse(arg, &arg);
return 0;
}
early_param("elfcorehdr", parse_elfcorehdr);
#endif
void __init __attribute__ ((weak)) plat_early_device_setup(void)
{
}
void __init setup_arch(char **cmdline_p)
{
enable_mmu();
ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
printk(KERN_NOTICE "Boot params:\n"
"... MOUNT_ROOT_RDONLY - %08lx\n"
"... RAMDISK_FLAGS - %08lx\n"
"... ORIG_ROOT_DEV - %08lx\n"
"... LOADER_TYPE - %08lx\n"
"... INITRD_START - %08lx\n"
"... INITRD_SIZE - %08lx\n",
MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
ORIG_ROOT_DEV, LOADER_TYPE,
INITRD_START, INITRD_SIZE);
#ifdef CONFIG_BLK_DEV_RAM
rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
#endif
if (!MOUNT_ROOT_RDONLY)
root_mountflags &= ~MS_RDONLY;
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = (unsigned long) _end;
code_resource.start = virt_to_phys(_text);
code_resource.end = virt_to_phys(_etext)-1;
data_resource.start = virt_to_phys(_etext);
data_resource.end = virt_to_phys(_edata)-1;
bss_resource.start = virt_to_phys(__bss_start);
bss_resource.end = virt_to_phys(_ebss)-1;
memory_start = (unsigned long)__va(__MEMORY_START);
if (!memory_end)
memory_end = memory_start + __MEMORY_SIZE;
#ifdef CONFIG_CMDLINE_OVERWRITE
strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
#else
strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
#ifdef CONFIG_CMDLINE_EXTEND
strlcat(command_line, " ", sizeof(command_line));
strlcat(command_line, CONFIG_CMDLINE, sizeof(command_line));
#endif
#endif
/* Save unparsed command line copy for /proc/cmdline */
memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
*cmdline_p = command_line;
parse_early_param();
uncached_init();
plat_early_device_setup();
/* Let earlyprintk output early console messages */
early_platform_driver_probe("earlyprintk", 1, 1);
sh_mv_setup();
/*
* Find the highest page frame number we have available
*/
max_pfn = PFN_DOWN(__pa(memory_end));
/*
* Determine low and high memory ranges:
*/
max_low_pfn = max_pfn;
min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
nodes_clear(node_online_map);
pmb_init();
lmb_init();
setup_memory();
sparse_init();
#ifdef CONFIG_DUMMY_CONSOLE
conswitchp = &dummy_con;
#endif
paging_init();
ioremap_fixed_init();
/* Perform the machine specific initialisation */
if (likely(sh_mv.mv_setup))
sh_mv.mv_setup(cmdline_p);
plat_smp_setup();
}
/* processor boot mode configuration */
int generic_mode_pins(void)
{
pr_warning("generic_mode_pins(): missing mode pin configuration\n");
return 0;
}
int test_mode_pin(int pin)
{
return sh_mv.mv_mode_pins() & pin;
}
static const char *cpu_name[] = {
[CPU_SH7201] = "SH7201",
[CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263",
[CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
[CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
[CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
[CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
[CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
[CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729",
[CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S",
[CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751",
[CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760",
[CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
[CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770",
[CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781",
[CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785",
[CPU_SH7786] = "SH7786", [CPU_SH7757] = "SH7757",
[CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3",
[CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103",
[CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723",
[CPU_SH7366] = "SH7366", [CPU_SH7724] = "SH7724",
[CPU_SH_NONE] = "Unknown"
};
const char *get_cpu_subtype(struct sh_cpuinfo *c)
{
return cpu_name[c->type];
}
EXPORT_SYMBOL(get_cpu_subtype);
#ifdef CONFIG_PROC_FS
/* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
static const char *cpu_flags[] = {
"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
"ptea", "llsc", "l2", "op32", "pteaex", NULL
};
static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
{
unsigned long i;
seq_printf(m, "cpu flags\t:");
if (!c->flags) {
seq_printf(m, " %s\n", cpu_flags[0]);
return;
}
for (i = 0; cpu_flags[i]; i++)
if ((c->flags & (1 << i)))
seq_printf(m, " %s", cpu_flags[i+1]);
seq_printf(m, "\n");
}
static void show_cacheinfo(struct seq_file *m, const char *type,
struct cache_info info)
{
unsigned int cache_size;
cache_size = info.ways * info.sets * info.linesz;
seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
type, cache_size >> 10, info.ways);
}
/*
* Get CPU information for use by the procfs.
*/
static int show_cpuinfo(struct seq_file *m, void *v)
{
struct sh_cpuinfo *c = v;
unsigned int cpu = c - cpu_data;
if (!cpu_online(cpu))
return 0;
if (cpu == 0)
seq_printf(m, "machine\t\t: %s\n", get_system_type());
else
seq_printf(m, "\n");
seq_printf(m, "processor\t: %d\n", cpu);
seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
if (c->cut_major == -1)
seq_printf(m, "cut\t\t: unknown\n");
else if (c->cut_minor == -1)
seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
else
seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
show_cpuflags(m, c);
seq_printf(m, "cache type\t: ");
/*
* Check for what type of cache we have, we support both the
* unified cache on the SH-2 and SH-3, as well as the harvard
* style cache on the SH-4.
*/
if (c->icache.flags & SH_CACHE_COMBINED) {
seq_printf(m, "unified\n");
show_cacheinfo(m, "cache", c->icache);
} else {
seq_printf(m, "split (harvard)\n");
show_cacheinfo(m, "icache", c->icache);
show_cacheinfo(m, "dcache", c->dcache);
}
/* Optional secondary cache */
if (c->flags & CPU_HAS_L2_CACHE)
show_cacheinfo(m, "scache", c->scache);
seq_printf(m, "bogomips\t: %lu.%02lu\n",
c->loops_per_jiffy/(500000/HZ),
(c->loops_per_jiffy/(5000/HZ)) % 100);
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < NR_CPUS ? cpu_data + *pos : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};
#endif /* CONFIG_PROC_FS */
struct dentry *sh_debugfs_root;
static int __init sh_debugfs_init(void)
{
sh_debugfs_root = debugfs_create_dir("sh", NULL);
if (!sh_debugfs_root)
return -ENOMEM;
if (IS_ERR(sh_debugfs_root))
return PTR_ERR(sh_debugfs_root);
return 0;
}
arch_initcall(sh_debugfs_init);