mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-08 23:04:35 +08:00
4bbcc5a41c
With memcg having switched to rstat, memory.stat output is precise. Update the cgroup selftest to reflect the expectations and error tolerances of the new implementation. Also add newly tracked types of memory to the memory.stat side of the equation, since they're included in memory.current and could throw false positives. Link: https://lkml.kernel.org/r/20210209163304.77088-9-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Michal Koutný <mkoutny@suse.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
457 lines
9.6 KiB
C
457 lines
9.6 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#define _GNU_SOURCE
|
|
|
|
#include <linux/limits.h>
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
#include <sys/wait.h>
|
|
#include <errno.h>
|
|
#include <sys/sysinfo.h>
|
|
#include <pthread.h>
|
|
|
|
#include "../kselftest.h"
|
|
#include "cgroup_util.h"
|
|
|
|
|
|
/*
|
|
* Memory cgroup charging is performed using percpu batches 32 pages
|
|
* big (look at MEMCG_CHARGE_BATCH), whereas memory.stat is exact. So
|
|
* the maximum discrepancy between charge and vmstat entries is number
|
|
* of cpus multiplied by 32 pages.
|
|
*/
|
|
#define MAX_VMSTAT_ERROR (4096 * 32 * get_nprocs())
|
|
|
|
|
|
static int alloc_dcache(const char *cgroup, void *arg)
|
|
{
|
|
unsigned long i;
|
|
struct stat st;
|
|
char buf[128];
|
|
|
|
for (i = 0; i < (unsigned long)arg; i++) {
|
|
snprintf(buf, sizeof(buf),
|
|
"/something-non-existent-with-a-long-name-%64lu-%d",
|
|
i, getpid());
|
|
stat(buf, &st);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This test allocates 100000 of negative dentries with long names.
|
|
* Then it checks that "slab" in memory.stat is larger than 1M.
|
|
* Then it sets memory.high to 1M and checks that at least 1/2
|
|
* of slab memory has been reclaimed.
|
|
*/
|
|
static int test_kmem_basic(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *cg = NULL;
|
|
long slab0, slab1, current;
|
|
|
|
cg = cg_name(root, "kmem_basic_test");
|
|
if (!cg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(cg))
|
|
goto cleanup;
|
|
|
|
if (cg_run(cg, alloc_dcache, (void *)100000))
|
|
goto cleanup;
|
|
|
|
slab0 = cg_read_key_long(cg, "memory.stat", "slab ");
|
|
if (slab0 < (1 << 20))
|
|
goto cleanup;
|
|
|
|
cg_write(cg, "memory.high", "1M");
|
|
slab1 = cg_read_key_long(cg, "memory.stat", "slab ");
|
|
if (slab1 <= 0)
|
|
goto cleanup;
|
|
|
|
current = cg_read_long(cg, "memory.current");
|
|
if (current <= 0)
|
|
goto cleanup;
|
|
|
|
if (slab1 < slab0 / 2 && current < slab0 / 2)
|
|
ret = KSFT_PASS;
|
|
cleanup:
|
|
cg_destroy(cg);
|
|
free(cg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void *alloc_kmem_fn(void *arg)
|
|
{
|
|
alloc_dcache(NULL, (void *)100);
|
|
return NULL;
|
|
}
|
|
|
|
static int alloc_kmem_smp(const char *cgroup, void *arg)
|
|
{
|
|
int nr_threads = 2 * get_nprocs();
|
|
pthread_t *tinfo;
|
|
unsigned long i;
|
|
int ret = -1;
|
|
|
|
tinfo = calloc(nr_threads, sizeof(pthread_t));
|
|
if (tinfo == NULL)
|
|
return -1;
|
|
|
|
for (i = 0; i < nr_threads; i++) {
|
|
if (pthread_create(&tinfo[i], NULL, &alloc_kmem_fn,
|
|
(void *)i)) {
|
|
free(tinfo);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < nr_threads; i++) {
|
|
ret = pthread_join(tinfo[i], NULL);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
free(tinfo);
|
|
return ret;
|
|
}
|
|
|
|
static int cg_run_in_subcgroups(const char *parent,
|
|
int (*fn)(const char *cgroup, void *arg),
|
|
void *arg, int times)
|
|
{
|
|
char *child;
|
|
int i;
|
|
|
|
for (i = 0; i < times; i++) {
|
|
child = cg_name_indexed(parent, "child", i);
|
|
if (!child)
|
|
return -1;
|
|
|
|
if (cg_create(child)) {
|
|
cg_destroy(child);
|
|
free(child);
|
|
return -1;
|
|
}
|
|
|
|
if (cg_run(child, fn, NULL)) {
|
|
cg_destroy(child);
|
|
free(child);
|
|
return -1;
|
|
}
|
|
|
|
cg_destroy(child);
|
|
free(child);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The test creates and destroys a large number of cgroups. In each cgroup it
|
|
* allocates some slab memory (mostly negative dentries) using 2 * NR_CPUS
|
|
* threads. Then it checks the sanity of numbers on the parent level:
|
|
* the total size of the cgroups should be roughly equal to
|
|
* anon + file + slab + kernel_stack.
|
|
*/
|
|
static int test_kmem_memcg_deletion(const char *root)
|
|
{
|
|
long current, slab, anon, file, kernel_stack, pagetables, percpu, sock, sum;
|
|
int ret = KSFT_FAIL;
|
|
char *parent;
|
|
|
|
parent = cg_name(root, "kmem_memcg_deletion_test");
|
|
if (!parent)
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent, "cgroup.subtree_control", "+memory"))
|
|
goto cleanup;
|
|
|
|
if (cg_run_in_subcgroups(parent, alloc_kmem_smp, NULL, 100))
|
|
goto cleanup;
|
|
|
|
current = cg_read_long(parent, "memory.current");
|
|
slab = cg_read_key_long(parent, "memory.stat", "slab ");
|
|
anon = cg_read_key_long(parent, "memory.stat", "anon ");
|
|
file = cg_read_key_long(parent, "memory.stat", "file ");
|
|
kernel_stack = cg_read_key_long(parent, "memory.stat", "kernel_stack ");
|
|
pagetables = cg_read_key_long(parent, "memory.stat", "pagetables ");
|
|
percpu = cg_read_key_long(parent, "memory.stat", "percpu ");
|
|
sock = cg_read_key_long(parent, "memory.stat", "sock ");
|
|
if (current < 0 || slab < 0 || anon < 0 || file < 0 ||
|
|
kernel_stack < 0 || pagetables < 0 || percpu < 0 || sock < 0)
|
|
goto cleanup;
|
|
|
|
sum = slab + anon + file + kernel_stack + pagetables + percpu + sock;
|
|
if (abs(sum - current) < MAX_VMSTAT_ERROR) {
|
|
ret = KSFT_PASS;
|
|
} else {
|
|
printf("memory.current = %ld\n", current);
|
|
printf("slab + anon + file + kernel_stack = %ld\n", sum);
|
|
printf("slab = %ld\n", slab);
|
|
printf("anon = %ld\n", anon);
|
|
printf("file = %ld\n", file);
|
|
printf("kernel_stack = %ld\n", kernel_stack);
|
|
printf("pagetables = %ld\n", pagetables);
|
|
printf("percpu = %ld\n", percpu);
|
|
printf("sock = %ld\n", sock);
|
|
}
|
|
|
|
cleanup:
|
|
cg_destroy(parent);
|
|
free(parent);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The test reads the entire /proc/kpagecgroup. If the operation went
|
|
* successfully (and the kernel didn't panic), the test is treated as passed.
|
|
*/
|
|
static int test_kmem_proc_kpagecgroup(const char *root)
|
|
{
|
|
unsigned long buf[128];
|
|
int ret = KSFT_FAIL;
|
|
ssize_t len;
|
|
int fd;
|
|
|
|
fd = open("/proc/kpagecgroup", O_RDONLY);
|
|
if (fd < 0)
|
|
return ret;
|
|
|
|
do {
|
|
len = read(fd, buf, sizeof(buf));
|
|
} while (len > 0);
|
|
|
|
if (len == 0)
|
|
ret = KSFT_PASS;
|
|
|
|
close(fd);
|
|
return ret;
|
|
}
|
|
|
|
static void *pthread_wait_fn(void *arg)
|
|
{
|
|
sleep(100);
|
|
return NULL;
|
|
}
|
|
|
|
static int spawn_1000_threads(const char *cgroup, void *arg)
|
|
{
|
|
int nr_threads = 1000;
|
|
pthread_t *tinfo;
|
|
unsigned long i;
|
|
long stack;
|
|
int ret = -1;
|
|
|
|
tinfo = calloc(nr_threads, sizeof(pthread_t));
|
|
if (tinfo == NULL)
|
|
return -1;
|
|
|
|
for (i = 0; i < nr_threads; i++) {
|
|
if (pthread_create(&tinfo[i], NULL, &pthread_wait_fn,
|
|
(void *)i)) {
|
|
free(tinfo);
|
|
return(-1);
|
|
}
|
|
}
|
|
|
|
stack = cg_read_key_long(cgroup, "memory.stat", "kernel_stack ");
|
|
if (stack >= 4096 * 1000)
|
|
ret = 0;
|
|
|
|
free(tinfo);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The test spawns a process, which spawns 1000 threads. Then it checks
|
|
* that memory.stat's kernel_stack is at least 1000 pages large.
|
|
*/
|
|
static int test_kmem_kernel_stacks(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *cg = NULL;
|
|
|
|
cg = cg_name(root, "kmem_kernel_stacks_test");
|
|
if (!cg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(cg))
|
|
goto cleanup;
|
|
|
|
if (cg_run(cg, spawn_1000_threads, NULL))
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
cleanup:
|
|
cg_destroy(cg);
|
|
free(cg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This test sequentionally creates 30 child cgroups, allocates some
|
|
* kernel memory in each of them, and deletes them. Then it checks
|
|
* that the number of dying cgroups on the parent level is 0.
|
|
*/
|
|
static int test_kmem_dead_cgroups(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *parent;
|
|
long dead;
|
|
int i;
|
|
|
|
parent = cg_name(root, "kmem_dead_cgroups_test");
|
|
if (!parent)
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent, "cgroup.subtree_control", "+memory"))
|
|
goto cleanup;
|
|
|
|
if (cg_run_in_subcgroups(parent, alloc_dcache, (void *)100, 30))
|
|
goto cleanup;
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
dead = cg_read_key_long(parent, "cgroup.stat",
|
|
"nr_dying_descendants ");
|
|
if (dead == 0) {
|
|
ret = KSFT_PASS;
|
|
break;
|
|
}
|
|
/*
|
|
* Reclaiming cgroups might take some time,
|
|
* let's wait a bit and repeat.
|
|
*/
|
|
sleep(1);
|
|
}
|
|
|
|
cleanup:
|
|
cg_destroy(parent);
|
|
free(parent);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This test creates a sub-tree with 1000 memory cgroups.
|
|
* Then it checks that the memory.current on the parent level
|
|
* is greater than 0 and approximates matches the percpu value
|
|
* from memory.stat.
|
|
*/
|
|
static int test_percpu_basic(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *parent, *child;
|
|
long current, percpu;
|
|
int i;
|
|
|
|
parent = cg_name(root, "percpu_basic_test");
|
|
if (!parent)
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent, "cgroup.subtree_control", "+memory"))
|
|
goto cleanup;
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
child = cg_name_indexed(parent, "child", i);
|
|
if (!child)
|
|
return -1;
|
|
|
|
if (cg_create(child))
|
|
goto cleanup_children;
|
|
|
|
free(child);
|
|
}
|
|
|
|
current = cg_read_long(parent, "memory.current");
|
|
percpu = cg_read_key_long(parent, "memory.stat", "percpu ");
|
|
|
|
if (current > 0 && percpu > 0 && abs(current - percpu) <
|
|
MAX_VMSTAT_ERROR)
|
|
ret = KSFT_PASS;
|
|
else
|
|
printf("memory.current %ld\npercpu %ld\n",
|
|
current, percpu);
|
|
|
|
cleanup_children:
|
|
for (i = 0; i < 1000; i++) {
|
|
child = cg_name_indexed(parent, "child", i);
|
|
cg_destroy(child);
|
|
free(child);
|
|
}
|
|
|
|
cleanup:
|
|
cg_destroy(parent);
|
|
free(parent);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define T(x) { x, #x }
|
|
struct kmem_test {
|
|
int (*fn)(const char *root);
|
|
const char *name;
|
|
} tests[] = {
|
|
T(test_kmem_basic),
|
|
T(test_kmem_memcg_deletion),
|
|
T(test_kmem_proc_kpagecgroup),
|
|
T(test_kmem_kernel_stacks),
|
|
T(test_kmem_dead_cgroups),
|
|
T(test_percpu_basic),
|
|
};
|
|
#undef T
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
char root[PATH_MAX];
|
|
int i, ret = EXIT_SUCCESS;
|
|
|
|
if (cg_find_unified_root(root, sizeof(root)))
|
|
ksft_exit_skip("cgroup v2 isn't mounted\n");
|
|
|
|
/*
|
|
* Check that memory controller is available:
|
|
* memory is listed in cgroup.controllers
|
|
*/
|
|
if (cg_read_strstr(root, "cgroup.controllers", "memory"))
|
|
ksft_exit_skip("memory controller isn't available\n");
|
|
|
|
if (cg_read_strstr(root, "cgroup.subtree_control", "memory"))
|
|
if (cg_write(root, "cgroup.subtree_control", "+memory"))
|
|
ksft_exit_skip("Failed to set memory controller\n");
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tests); i++) {
|
|
switch (tests[i].fn(root)) {
|
|
case KSFT_PASS:
|
|
ksft_test_result_pass("%s\n", tests[i].name);
|
|
break;
|
|
case KSFT_SKIP:
|
|
ksft_test_result_skip("%s\n", tests[i].name);
|
|
break;
|
|
default:
|
|
ret = EXIT_FAILURE;
|
|
ksft_test_result_fail("%s\n", tests[i].name);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|