mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-19 10:14:23 +08:00
e71c3978d6
Pull smp hotplug updates from Thomas Gleixner: "This is the final round of converting the notifier mess to the state machine. The removal of the notifiers and the related infrastructure will happen around rc1, as there are conversions outstanding in other trees. The whole exercise removed about 2000 lines of code in total and in course of the conversion several dozen bugs got fixed. The new mechanism allows to test almost every hotplug step standalone, so usage sites can exercise all transitions extensively. There is more room for improvement, like integrating all the pointlessly different architecture mechanisms of synchronizing, setting cpus online etc into the core code" * 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits) tracing/rb: Init the CPU mask on allocation soc/fsl/qbman: Convert to hotplug state machine soc/fsl/qbman: Convert to hotplug state machine zram: Convert to hotplug state machine KVM/PPC/Book3S HV: Convert to hotplug state machine arm64/cpuinfo: Convert to hotplug state machine arm64/cpuinfo: Make hotplug notifier symmetric mm/compaction: Convert to hotplug state machine iommu/vt-d: Convert to hotplug state machine mm/zswap: Convert pool to hotplug state machine mm/zswap: Convert dst-mem to hotplug state machine mm/zsmalloc: Convert to hotplug state machine mm/vmstat: Convert to hotplug state machine mm/vmstat: Avoid on each online CPU loops mm/vmstat: Drop get_online_cpus() from init_cpu_node_state/vmstat_cpu_dead() tracing/rb: Convert to hotplug state machine oprofile/nmi timer: Convert to hotplug state machine net/iucv: Use explicit clean up labels in iucv_init() x86/pci/amd-bus: Convert to hotplug state machine x86/oprofile/nmi: Convert to hotplug state machine ...
514 lines
13 KiB
C
514 lines
13 KiB
C
/* flow.c: Generic flow cache.
|
|
*
|
|
* Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru)
|
|
* Copyright (C) 2003 David S. Miller (davem@redhat.com)
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/list.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/random.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/mutex.h>
|
|
#include <net/flow.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/security.h>
|
|
#include <net/net_namespace.h>
|
|
|
|
struct flow_cache_entry {
|
|
union {
|
|
struct hlist_node hlist;
|
|
struct list_head gc_list;
|
|
} u;
|
|
struct net *net;
|
|
u16 family;
|
|
u8 dir;
|
|
u32 genid;
|
|
struct flowi key;
|
|
struct flow_cache_object *object;
|
|
};
|
|
|
|
struct flow_flush_info {
|
|
struct flow_cache *cache;
|
|
atomic_t cpuleft;
|
|
struct completion completion;
|
|
};
|
|
|
|
static struct kmem_cache *flow_cachep __read_mostly;
|
|
|
|
#define flow_cache_hash_size(cache) (1 << (cache)->hash_shift)
|
|
#define FLOW_HASH_RND_PERIOD (10 * 60 * HZ)
|
|
|
|
static void flow_cache_new_hashrnd(unsigned long arg)
|
|
{
|
|
struct flow_cache *fc = (void *) arg;
|
|
int i;
|
|
|
|
for_each_possible_cpu(i)
|
|
per_cpu_ptr(fc->percpu, i)->hash_rnd_recalc = 1;
|
|
|
|
fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
|
|
add_timer(&fc->rnd_timer);
|
|
}
|
|
|
|
static int flow_entry_valid(struct flow_cache_entry *fle,
|
|
struct netns_xfrm *xfrm)
|
|
{
|
|
if (atomic_read(&xfrm->flow_cache_genid) != fle->genid)
|
|
return 0;
|
|
if (fle->object && !fle->object->ops->check(fle->object))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static void flow_entry_kill(struct flow_cache_entry *fle,
|
|
struct netns_xfrm *xfrm)
|
|
{
|
|
if (fle->object)
|
|
fle->object->ops->delete(fle->object);
|
|
kmem_cache_free(flow_cachep, fle);
|
|
}
|
|
|
|
static void flow_cache_gc_task(struct work_struct *work)
|
|
{
|
|
struct list_head gc_list;
|
|
struct flow_cache_entry *fce, *n;
|
|
struct netns_xfrm *xfrm = container_of(work, struct netns_xfrm,
|
|
flow_cache_gc_work);
|
|
|
|
INIT_LIST_HEAD(&gc_list);
|
|
spin_lock_bh(&xfrm->flow_cache_gc_lock);
|
|
list_splice_tail_init(&xfrm->flow_cache_gc_list, &gc_list);
|
|
spin_unlock_bh(&xfrm->flow_cache_gc_lock);
|
|
|
|
list_for_each_entry_safe(fce, n, &gc_list, u.gc_list) {
|
|
flow_entry_kill(fce, xfrm);
|
|
atomic_dec(&xfrm->flow_cache_gc_count);
|
|
}
|
|
}
|
|
|
|
static void flow_cache_queue_garbage(struct flow_cache_percpu *fcp,
|
|
int deleted, struct list_head *gc_list,
|
|
struct netns_xfrm *xfrm)
|
|
{
|
|
if (deleted) {
|
|
atomic_add(deleted, &xfrm->flow_cache_gc_count);
|
|
fcp->hash_count -= deleted;
|
|
spin_lock_bh(&xfrm->flow_cache_gc_lock);
|
|
list_splice_tail(gc_list, &xfrm->flow_cache_gc_list);
|
|
spin_unlock_bh(&xfrm->flow_cache_gc_lock);
|
|
schedule_work(&xfrm->flow_cache_gc_work);
|
|
}
|
|
}
|
|
|
|
static void __flow_cache_shrink(struct flow_cache *fc,
|
|
struct flow_cache_percpu *fcp,
|
|
int shrink_to)
|
|
{
|
|
struct flow_cache_entry *fle;
|
|
struct hlist_node *tmp;
|
|
LIST_HEAD(gc_list);
|
|
int i, deleted = 0;
|
|
struct netns_xfrm *xfrm = container_of(fc, struct netns_xfrm,
|
|
flow_cache_global);
|
|
|
|
for (i = 0; i < flow_cache_hash_size(fc); i++) {
|
|
int saved = 0;
|
|
|
|
hlist_for_each_entry_safe(fle, tmp,
|
|
&fcp->hash_table[i], u.hlist) {
|
|
if (saved < shrink_to &&
|
|
flow_entry_valid(fle, xfrm)) {
|
|
saved++;
|
|
} else {
|
|
deleted++;
|
|
hlist_del(&fle->u.hlist);
|
|
list_add_tail(&fle->u.gc_list, &gc_list);
|
|
}
|
|
}
|
|
}
|
|
|
|
flow_cache_queue_garbage(fcp, deleted, &gc_list, xfrm);
|
|
}
|
|
|
|
static void flow_cache_shrink(struct flow_cache *fc,
|
|
struct flow_cache_percpu *fcp)
|
|
{
|
|
int shrink_to = fc->low_watermark / flow_cache_hash_size(fc);
|
|
|
|
__flow_cache_shrink(fc, fcp, shrink_to);
|
|
}
|
|
|
|
static void flow_new_hash_rnd(struct flow_cache *fc,
|
|
struct flow_cache_percpu *fcp)
|
|
{
|
|
get_random_bytes(&fcp->hash_rnd, sizeof(u32));
|
|
fcp->hash_rnd_recalc = 0;
|
|
__flow_cache_shrink(fc, fcp, 0);
|
|
}
|
|
|
|
static u32 flow_hash_code(struct flow_cache *fc,
|
|
struct flow_cache_percpu *fcp,
|
|
const struct flowi *key,
|
|
size_t keysize)
|
|
{
|
|
const u32 *k = (const u32 *) key;
|
|
const u32 length = keysize * sizeof(flow_compare_t) / sizeof(u32);
|
|
|
|
return jhash2(k, length, fcp->hash_rnd)
|
|
& (flow_cache_hash_size(fc) - 1);
|
|
}
|
|
|
|
/* I hear what you're saying, use memcmp. But memcmp cannot make
|
|
* important assumptions that we can here, such as alignment.
|
|
*/
|
|
static int flow_key_compare(const struct flowi *key1, const struct flowi *key2,
|
|
size_t keysize)
|
|
{
|
|
const flow_compare_t *k1, *k1_lim, *k2;
|
|
|
|
k1 = (const flow_compare_t *) key1;
|
|
k1_lim = k1 + keysize;
|
|
|
|
k2 = (const flow_compare_t *) key2;
|
|
|
|
do {
|
|
if (*k1++ != *k2++)
|
|
return 1;
|
|
} while (k1 < k1_lim);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct flow_cache_object *
|
|
flow_cache_lookup(struct net *net, const struct flowi *key, u16 family, u8 dir,
|
|
flow_resolve_t resolver, void *ctx)
|
|
{
|
|
struct flow_cache *fc = &net->xfrm.flow_cache_global;
|
|
struct flow_cache_percpu *fcp;
|
|
struct flow_cache_entry *fle, *tfle;
|
|
struct flow_cache_object *flo;
|
|
size_t keysize;
|
|
unsigned int hash;
|
|
|
|
local_bh_disable();
|
|
fcp = this_cpu_ptr(fc->percpu);
|
|
|
|
fle = NULL;
|
|
flo = NULL;
|
|
|
|
keysize = flow_key_size(family);
|
|
if (!keysize)
|
|
goto nocache;
|
|
|
|
/* Packet really early in init? Making flow_cache_init a
|
|
* pre-smp initcall would solve this. --RR */
|
|
if (!fcp->hash_table)
|
|
goto nocache;
|
|
|
|
if (fcp->hash_rnd_recalc)
|
|
flow_new_hash_rnd(fc, fcp);
|
|
|
|
hash = flow_hash_code(fc, fcp, key, keysize);
|
|
hlist_for_each_entry(tfle, &fcp->hash_table[hash], u.hlist) {
|
|
if (tfle->net == net &&
|
|
tfle->family == family &&
|
|
tfle->dir == dir &&
|
|
flow_key_compare(key, &tfle->key, keysize) == 0) {
|
|
fle = tfle;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (unlikely(!fle)) {
|
|
if (fcp->hash_count > fc->high_watermark)
|
|
flow_cache_shrink(fc, fcp);
|
|
|
|
if (atomic_read(&net->xfrm.flow_cache_gc_count) >
|
|
2 * num_online_cpus() * fc->high_watermark) {
|
|
flo = ERR_PTR(-ENOBUFS);
|
|
goto ret_object;
|
|
}
|
|
|
|
fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC);
|
|
if (fle) {
|
|
fle->net = net;
|
|
fle->family = family;
|
|
fle->dir = dir;
|
|
memcpy(&fle->key, key, keysize * sizeof(flow_compare_t));
|
|
fle->object = NULL;
|
|
hlist_add_head(&fle->u.hlist, &fcp->hash_table[hash]);
|
|
fcp->hash_count++;
|
|
}
|
|
} else if (likely(fle->genid == atomic_read(&net->xfrm.flow_cache_genid))) {
|
|
flo = fle->object;
|
|
if (!flo)
|
|
goto ret_object;
|
|
flo = flo->ops->get(flo);
|
|
if (flo)
|
|
goto ret_object;
|
|
} else if (fle->object) {
|
|
flo = fle->object;
|
|
flo->ops->delete(flo);
|
|
fle->object = NULL;
|
|
}
|
|
|
|
nocache:
|
|
flo = NULL;
|
|
if (fle) {
|
|
flo = fle->object;
|
|
fle->object = NULL;
|
|
}
|
|
flo = resolver(net, key, family, dir, flo, ctx);
|
|
if (fle) {
|
|
fle->genid = atomic_read(&net->xfrm.flow_cache_genid);
|
|
if (!IS_ERR(flo))
|
|
fle->object = flo;
|
|
else
|
|
fle->genid--;
|
|
} else {
|
|
if (!IS_ERR_OR_NULL(flo))
|
|
flo->ops->delete(flo);
|
|
}
|
|
ret_object:
|
|
local_bh_enable();
|
|
return flo;
|
|
}
|
|
EXPORT_SYMBOL(flow_cache_lookup);
|
|
|
|
static void flow_cache_flush_tasklet(unsigned long data)
|
|
{
|
|
struct flow_flush_info *info = (void *)data;
|
|
struct flow_cache *fc = info->cache;
|
|
struct flow_cache_percpu *fcp;
|
|
struct flow_cache_entry *fle;
|
|
struct hlist_node *tmp;
|
|
LIST_HEAD(gc_list);
|
|
int i, deleted = 0;
|
|
struct netns_xfrm *xfrm = container_of(fc, struct netns_xfrm,
|
|
flow_cache_global);
|
|
|
|
fcp = this_cpu_ptr(fc->percpu);
|
|
for (i = 0; i < flow_cache_hash_size(fc); i++) {
|
|
hlist_for_each_entry_safe(fle, tmp,
|
|
&fcp->hash_table[i], u.hlist) {
|
|
if (flow_entry_valid(fle, xfrm))
|
|
continue;
|
|
|
|
deleted++;
|
|
hlist_del(&fle->u.hlist);
|
|
list_add_tail(&fle->u.gc_list, &gc_list);
|
|
}
|
|
}
|
|
|
|
flow_cache_queue_garbage(fcp, deleted, &gc_list, xfrm);
|
|
|
|
if (atomic_dec_and_test(&info->cpuleft))
|
|
complete(&info->completion);
|
|
}
|
|
|
|
/*
|
|
* Return whether a cpu needs flushing. Conservatively, we assume
|
|
* the presence of any entries means the core may require flushing,
|
|
* since the flow_cache_ops.check() function may assume it's running
|
|
* on the same core as the per-cpu cache component.
|
|
*/
|
|
static int flow_cache_percpu_empty(struct flow_cache *fc, int cpu)
|
|
{
|
|
struct flow_cache_percpu *fcp;
|
|
int i;
|
|
|
|
fcp = per_cpu_ptr(fc->percpu, cpu);
|
|
for (i = 0; i < flow_cache_hash_size(fc); i++)
|
|
if (!hlist_empty(&fcp->hash_table[i]))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static void flow_cache_flush_per_cpu(void *data)
|
|
{
|
|
struct flow_flush_info *info = data;
|
|
struct tasklet_struct *tasklet;
|
|
|
|
tasklet = &this_cpu_ptr(info->cache->percpu)->flush_tasklet;
|
|
tasklet->data = (unsigned long)info;
|
|
tasklet_schedule(tasklet);
|
|
}
|
|
|
|
void flow_cache_flush(struct net *net)
|
|
{
|
|
struct flow_flush_info info;
|
|
cpumask_var_t mask;
|
|
int i, self;
|
|
|
|
/* Track which cpus need flushing to avoid disturbing all cores. */
|
|
if (!alloc_cpumask_var(&mask, GFP_KERNEL))
|
|
return;
|
|
cpumask_clear(mask);
|
|
|
|
/* Don't want cpus going down or up during this. */
|
|
get_online_cpus();
|
|
mutex_lock(&net->xfrm.flow_flush_sem);
|
|
info.cache = &net->xfrm.flow_cache_global;
|
|
for_each_online_cpu(i)
|
|
if (!flow_cache_percpu_empty(info.cache, i))
|
|
cpumask_set_cpu(i, mask);
|
|
atomic_set(&info.cpuleft, cpumask_weight(mask));
|
|
if (atomic_read(&info.cpuleft) == 0)
|
|
goto done;
|
|
|
|
init_completion(&info.completion);
|
|
|
|
local_bh_disable();
|
|
self = cpumask_test_and_clear_cpu(smp_processor_id(), mask);
|
|
on_each_cpu_mask(mask, flow_cache_flush_per_cpu, &info, 0);
|
|
if (self)
|
|
flow_cache_flush_tasklet((unsigned long)&info);
|
|
local_bh_enable();
|
|
|
|
wait_for_completion(&info.completion);
|
|
|
|
done:
|
|
mutex_unlock(&net->xfrm.flow_flush_sem);
|
|
put_online_cpus();
|
|
free_cpumask_var(mask);
|
|
}
|
|
|
|
static void flow_cache_flush_task(struct work_struct *work)
|
|
{
|
|
struct netns_xfrm *xfrm = container_of(work, struct netns_xfrm,
|
|
flow_cache_flush_work);
|
|
struct net *net = container_of(xfrm, struct net, xfrm);
|
|
|
|
flow_cache_flush(net);
|
|
}
|
|
|
|
void flow_cache_flush_deferred(struct net *net)
|
|
{
|
|
schedule_work(&net->xfrm.flow_cache_flush_work);
|
|
}
|
|
|
|
static int flow_cache_cpu_prepare(struct flow_cache *fc, int cpu)
|
|
{
|
|
struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
|
|
size_t sz = sizeof(struct hlist_head) * flow_cache_hash_size(fc);
|
|
|
|
if (!fcp->hash_table) {
|
|
fcp->hash_table = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
|
|
if (!fcp->hash_table) {
|
|
pr_err("NET: failed to allocate flow cache sz %zu\n", sz);
|
|
return -ENOMEM;
|
|
}
|
|
fcp->hash_rnd_recalc = 1;
|
|
fcp->hash_count = 0;
|
|
tasklet_init(&fcp->flush_tasklet, flow_cache_flush_tasklet, 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int flow_cache_cpu_up_prep(unsigned int cpu, struct hlist_node *node)
|
|
{
|
|
struct flow_cache *fc = hlist_entry_safe(node, struct flow_cache, node);
|
|
|
|
return flow_cache_cpu_prepare(fc, cpu);
|
|
}
|
|
|
|
static int flow_cache_cpu_dead(unsigned int cpu, struct hlist_node *node)
|
|
{
|
|
struct flow_cache *fc = hlist_entry_safe(node, struct flow_cache, node);
|
|
struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
|
|
|
|
__flow_cache_shrink(fc, fcp, 0);
|
|
return 0;
|
|
}
|
|
|
|
int flow_cache_init(struct net *net)
|
|
{
|
|
int i;
|
|
struct flow_cache *fc = &net->xfrm.flow_cache_global;
|
|
|
|
if (!flow_cachep)
|
|
flow_cachep = kmem_cache_create("flow_cache",
|
|
sizeof(struct flow_cache_entry),
|
|
0, SLAB_PANIC, NULL);
|
|
spin_lock_init(&net->xfrm.flow_cache_gc_lock);
|
|
INIT_LIST_HEAD(&net->xfrm.flow_cache_gc_list);
|
|
INIT_WORK(&net->xfrm.flow_cache_gc_work, flow_cache_gc_task);
|
|
INIT_WORK(&net->xfrm.flow_cache_flush_work, flow_cache_flush_task);
|
|
mutex_init(&net->xfrm.flow_flush_sem);
|
|
atomic_set(&net->xfrm.flow_cache_gc_count, 0);
|
|
|
|
fc->hash_shift = 10;
|
|
fc->low_watermark = 2 * flow_cache_hash_size(fc);
|
|
fc->high_watermark = 4 * flow_cache_hash_size(fc);
|
|
|
|
fc->percpu = alloc_percpu(struct flow_cache_percpu);
|
|
if (!fc->percpu)
|
|
return -ENOMEM;
|
|
|
|
if (cpuhp_state_add_instance(CPUHP_NET_FLOW_PREPARE, &fc->node))
|
|
goto err;
|
|
|
|
setup_timer(&fc->rnd_timer, flow_cache_new_hashrnd,
|
|
(unsigned long) fc);
|
|
fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
|
|
add_timer(&fc->rnd_timer);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
for_each_possible_cpu(i) {
|
|
struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i);
|
|
kfree(fcp->hash_table);
|
|
fcp->hash_table = NULL;
|
|
}
|
|
|
|
free_percpu(fc->percpu);
|
|
fc->percpu = NULL;
|
|
|
|
return -ENOMEM;
|
|
}
|
|
EXPORT_SYMBOL(flow_cache_init);
|
|
|
|
void flow_cache_fini(struct net *net)
|
|
{
|
|
int i;
|
|
struct flow_cache *fc = &net->xfrm.flow_cache_global;
|
|
|
|
del_timer_sync(&fc->rnd_timer);
|
|
|
|
cpuhp_state_remove_instance_nocalls(CPUHP_NET_FLOW_PREPARE, &fc->node);
|
|
|
|
for_each_possible_cpu(i) {
|
|
struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i);
|
|
kfree(fcp->hash_table);
|
|
fcp->hash_table = NULL;
|
|
}
|
|
|
|
free_percpu(fc->percpu);
|
|
fc->percpu = NULL;
|
|
}
|
|
EXPORT_SYMBOL(flow_cache_fini);
|
|
|
|
void __init flow_cache_hp_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = cpuhp_setup_state_multi(CPUHP_NET_FLOW_PREPARE,
|
|
"net/flow:prepare",
|
|
flow_cache_cpu_up_prep,
|
|
flow_cache_cpu_dead);
|
|
WARN_ON(ret < 0);
|
|
}
|