mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-23 02:54:32 +08:00
844fcc5396
schedule_timeout(jiffies) waits for at least jiffies - 1. Add 1 jiffie to the timeout_jiffies calculated in sys_poll() to wait at least timeout_msecs, like poll() manpage says. Signed-off-by: Karsten Wiese <fzu@wemgehoertderstaat.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
843 lines
21 KiB
C
843 lines
21 KiB
C
/*
|
|
* This file contains the procedures for the handling of select and poll
|
|
*
|
|
* Created for Linux based loosely upon Mathius Lattner's minix
|
|
* patches by Peter MacDonald. Heavily edited by Linus.
|
|
*
|
|
* 4 February 1994
|
|
* COFF/ELF binary emulation. If the process has the STICKY_TIMEOUTS
|
|
* flag set in its personality we do *not* modify the given timeout
|
|
* parameter to reflect time remaining.
|
|
*
|
|
* 24 January 2000
|
|
* Changed sys_poll()/do_poll() to use PAGE_SIZE chunk-based allocation
|
|
* of fds to overcome nfds < 16390 descriptors limit (Tigran Aivazian).
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/personality.h> /* for STICKY_TIMEOUTS */
|
|
#include <linux/file.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/rcupdate.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
struct poll_table_page {
|
|
struct poll_table_page * next;
|
|
struct poll_table_entry * entry;
|
|
struct poll_table_entry entries[0];
|
|
};
|
|
|
|
#define POLL_TABLE_FULL(table) \
|
|
((unsigned long)((table)->entry+1) > PAGE_SIZE + (unsigned long)(table))
|
|
|
|
/*
|
|
* Ok, Peter made a complicated, but straightforward multiple_wait() function.
|
|
* I have rewritten this, taking some shortcuts: This code may not be easy to
|
|
* follow, but it should be free of race-conditions, and it's practical. If you
|
|
* understand what I'm doing here, then you understand how the linux
|
|
* sleep/wakeup mechanism works.
|
|
*
|
|
* Two very simple procedures, poll_wait() and poll_freewait() make all the
|
|
* work. poll_wait() is an inline-function defined in <linux/poll.h>,
|
|
* as all select/poll functions have to call it to add an entry to the
|
|
* poll table.
|
|
*/
|
|
static void __pollwait(struct file *filp, wait_queue_head_t *wait_address,
|
|
poll_table *p);
|
|
|
|
void poll_initwait(struct poll_wqueues *pwq)
|
|
{
|
|
init_poll_funcptr(&pwq->pt, __pollwait);
|
|
pwq->error = 0;
|
|
pwq->table = NULL;
|
|
pwq->inline_index = 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(poll_initwait);
|
|
|
|
static void free_poll_entry(struct poll_table_entry *entry)
|
|
{
|
|
remove_wait_queue(entry->wait_address, &entry->wait);
|
|
fput(entry->filp);
|
|
}
|
|
|
|
void poll_freewait(struct poll_wqueues *pwq)
|
|
{
|
|
struct poll_table_page * p = pwq->table;
|
|
int i;
|
|
for (i = 0; i < pwq->inline_index; i++)
|
|
free_poll_entry(pwq->inline_entries + i);
|
|
while (p) {
|
|
struct poll_table_entry * entry;
|
|
struct poll_table_page *old;
|
|
|
|
entry = p->entry;
|
|
do {
|
|
entry--;
|
|
free_poll_entry(entry);
|
|
} while (entry > p->entries);
|
|
old = p;
|
|
p = p->next;
|
|
free_page((unsigned long) old);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(poll_freewait);
|
|
|
|
static struct poll_table_entry *poll_get_entry(poll_table *_p)
|
|
{
|
|
struct poll_wqueues *p = container_of(_p, struct poll_wqueues, pt);
|
|
struct poll_table_page *table = p->table;
|
|
|
|
if (p->inline_index < N_INLINE_POLL_ENTRIES)
|
|
return p->inline_entries + p->inline_index++;
|
|
|
|
if (!table || POLL_TABLE_FULL(table)) {
|
|
struct poll_table_page *new_table;
|
|
|
|
new_table = (struct poll_table_page *) __get_free_page(GFP_KERNEL);
|
|
if (!new_table) {
|
|
p->error = -ENOMEM;
|
|
__set_current_state(TASK_RUNNING);
|
|
return NULL;
|
|
}
|
|
new_table->entry = new_table->entries;
|
|
new_table->next = table;
|
|
p->table = new_table;
|
|
table = new_table;
|
|
}
|
|
|
|
return table->entry++;
|
|
}
|
|
|
|
/* Add a new entry */
|
|
static void __pollwait(struct file *filp, wait_queue_head_t *wait_address,
|
|
poll_table *p)
|
|
{
|
|
struct poll_table_entry *entry = poll_get_entry(p);
|
|
if (!entry)
|
|
return;
|
|
get_file(filp);
|
|
entry->filp = filp;
|
|
entry->wait_address = wait_address;
|
|
init_waitqueue_entry(&entry->wait, current);
|
|
add_wait_queue(wait_address, &entry->wait);
|
|
}
|
|
|
|
#define FDS_IN(fds, n) (fds->in + n)
|
|
#define FDS_OUT(fds, n) (fds->out + n)
|
|
#define FDS_EX(fds, n) (fds->ex + n)
|
|
|
|
#define BITS(fds, n) (*FDS_IN(fds, n)|*FDS_OUT(fds, n)|*FDS_EX(fds, n))
|
|
|
|
static int max_select_fd(unsigned long n, fd_set_bits *fds)
|
|
{
|
|
unsigned long *open_fds;
|
|
unsigned long set;
|
|
int max;
|
|
struct fdtable *fdt;
|
|
|
|
/* handle last in-complete long-word first */
|
|
set = ~(~0UL << (n & (__NFDBITS-1)));
|
|
n /= __NFDBITS;
|
|
fdt = files_fdtable(current->files);
|
|
open_fds = fdt->open_fds->fds_bits+n;
|
|
max = 0;
|
|
if (set) {
|
|
set &= BITS(fds, n);
|
|
if (set) {
|
|
if (!(set & ~*open_fds))
|
|
goto get_max;
|
|
return -EBADF;
|
|
}
|
|
}
|
|
while (n) {
|
|
open_fds--;
|
|
n--;
|
|
set = BITS(fds, n);
|
|
if (!set)
|
|
continue;
|
|
if (set & ~*open_fds)
|
|
return -EBADF;
|
|
if (max)
|
|
continue;
|
|
get_max:
|
|
do {
|
|
max++;
|
|
set >>= 1;
|
|
} while (set);
|
|
max += n * __NFDBITS;
|
|
}
|
|
|
|
return max;
|
|
}
|
|
|
|
#define POLLIN_SET (POLLRDNORM | POLLRDBAND | POLLIN | POLLHUP | POLLERR)
|
|
#define POLLOUT_SET (POLLWRBAND | POLLWRNORM | POLLOUT | POLLERR)
|
|
#define POLLEX_SET (POLLPRI)
|
|
|
|
int do_select(int n, fd_set_bits *fds, s64 *timeout)
|
|
{
|
|
struct poll_wqueues table;
|
|
poll_table *wait;
|
|
int retval, i;
|
|
|
|
rcu_read_lock();
|
|
retval = max_select_fd(n, fds);
|
|
rcu_read_unlock();
|
|
|
|
if (retval < 0)
|
|
return retval;
|
|
n = retval;
|
|
|
|
poll_initwait(&table);
|
|
wait = &table.pt;
|
|
if (!*timeout)
|
|
wait = NULL;
|
|
retval = 0;
|
|
for (;;) {
|
|
unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;
|
|
long __timeout;
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
inp = fds->in; outp = fds->out; exp = fds->ex;
|
|
rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;
|
|
|
|
for (i = 0; i < n; ++rinp, ++routp, ++rexp) {
|
|
unsigned long in, out, ex, all_bits, bit = 1, mask, j;
|
|
unsigned long res_in = 0, res_out = 0, res_ex = 0;
|
|
const struct file_operations *f_op = NULL;
|
|
struct file *file = NULL;
|
|
|
|
in = *inp++; out = *outp++; ex = *exp++;
|
|
all_bits = in | out | ex;
|
|
if (all_bits == 0) {
|
|
i += __NFDBITS;
|
|
continue;
|
|
}
|
|
|
|
for (j = 0; j < __NFDBITS; ++j, ++i, bit <<= 1) {
|
|
int fput_needed;
|
|
if (i >= n)
|
|
break;
|
|
if (!(bit & all_bits))
|
|
continue;
|
|
file = fget_light(i, &fput_needed);
|
|
if (file) {
|
|
f_op = file->f_op;
|
|
mask = DEFAULT_POLLMASK;
|
|
if (f_op && f_op->poll)
|
|
mask = (*f_op->poll)(file, retval ? NULL : wait);
|
|
fput_light(file, fput_needed);
|
|
if ((mask & POLLIN_SET) && (in & bit)) {
|
|
res_in |= bit;
|
|
retval++;
|
|
}
|
|
if ((mask & POLLOUT_SET) && (out & bit)) {
|
|
res_out |= bit;
|
|
retval++;
|
|
}
|
|
if ((mask & POLLEX_SET) && (ex & bit)) {
|
|
res_ex |= bit;
|
|
retval++;
|
|
}
|
|
}
|
|
cond_resched();
|
|
}
|
|
if (res_in)
|
|
*rinp = res_in;
|
|
if (res_out)
|
|
*routp = res_out;
|
|
if (res_ex)
|
|
*rexp = res_ex;
|
|
}
|
|
wait = NULL;
|
|
if (retval || !*timeout || signal_pending(current))
|
|
break;
|
|
if(table.error) {
|
|
retval = table.error;
|
|
break;
|
|
}
|
|
|
|
if (*timeout < 0) {
|
|
/* Wait indefinitely */
|
|
__timeout = MAX_SCHEDULE_TIMEOUT;
|
|
} else if (unlikely(*timeout >= (s64)MAX_SCHEDULE_TIMEOUT - 1)) {
|
|
/* Wait for longer than MAX_SCHEDULE_TIMEOUT. Do it in a loop */
|
|
__timeout = MAX_SCHEDULE_TIMEOUT - 1;
|
|
*timeout -= __timeout;
|
|
} else {
|
|
__timeout = *timeout;
|
|
*timeout = 0;
|
|
}
|
|
__timeout = schedule_timeout(__timeout);
|
|
if (*timeout >= 0)
|
|
*timeout += __timeout;
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
poll_freewait(&table);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* We can actually return ERESTARTSYS instead of EINTR, but I'd
|
|
* like to be certain this leads to no problems. So I return
|
|
* EINTR just for safety.
|
|
*
|
|
* Update: ERESTARTSYS breaks at least the xview clock binary, so
|
|
* I'm trying ERESTARTNOHAND which restart only when you want to.
|
|
*/
|
|
#define MAX_SELECT_SECONDS \
|
|
((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1)
|
|
|
|
static int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
|
|
fd_set __user *exp, s64 *timeout)
|
|
{
|
|
fd_set_bits fds;
|
|
void *bits;
|
|
int ret, max_fds;
|
|
unsigned int size;
|
|
struct fdtable *fdt;
|
|
/* Allocate small arguments on the stack to save memory and be faster */
|
|
long stack_fds[SELECT_STACK_ALLOC/sizeof(long)];
|
|
|
|
ret = -EINVAL;
|
|
if (n < 0)
|
|
goto out_nofds;
|
|
|
|
/* max_fds can increase, so grab it once to avoid race */
|
|
rcu_read_lock();
|
|
fdt = files_fdtable(current->files);
|
|
max_fds = fdt->max_fds;
|
|
rcu_read_unlock();
|
|
if (n > max_fds)
|
|
n = max_fds;
|
|
|
|
/*
|
|
* We need 6 bitmaps (in/out/ex for both incoming and outgoing),
|
|
* since we used fdset we need to allocate memory in units of
|
|
* long-words.
|
|
*/
|
|
size = FDS_BYTES(n);
|
|
bits = stack_fds;
|
|
if (size > sizeof(stack_fds) / 6) {
|
|
/* Not enough space in on-stack array; must use kmalloc */
|
|
ret = -ENOMEM;
|
|
bits = kmalloc(6 * size, GFP_KERNEL);
|
|
if (!bits)
|
|
goto out_nofds;
|
|
}
|
|
fds.in = bits;
|
|
fds.out = bits + size;
|
|
fds.ex = bits + 2*size;
|
|
fds.res_in = bits + 3*size;
|
|
fds.res_out = bits + 4*size;
|
|
fds.res_ex = bits + 5*size;
|
|
|
|
if ((ret = get_fd_set(n, inp, fds.in)) ||
|
|
(ret = get_fd_set(n, outp, fds.out)) ||
|
|
(ret = get_fd_set(n, exp, fds.ex)))
|
|
goto out;
|
|
zero_fd_set(n, fds.res_in);
|
|
zero_fd_set(n, fds.res_out);
|
|
zero_fd_set(n, fds.res_ex);
|
|
|
|
ret = do_select(n, &fds, timeout);
|
|
|
|
if (ret < 0)
|
|
goto out;
|
|
if (!ret) {
|
|
ret = -ERESTARTNOHAND;
|
|
if (signal_pending(current))
|
|
goto out;
|
|
ret = 0;
|
|
}
|
|
|
|
if (set_fd_set(n, inp, fds.res_in) ||
|
|
set_fd_set(n, outp, fds.res_out) ||
|
|
set_fd_set(n, exp, fds.res_ex))
|
|
ret = -EFAULT;
|
|
|
|
out:
|
|
if (bits != stack_fds)
|
|
kfree(bits);
|
|
out_nofds:
|
|
return ret;
|
|
}
|
|
|
|
asmlinkage long sys_select(int n, fd_set __user *inp, fd_set __user *outp,
|
|
fd_set __user *exp, struct timeval __user *tvp)
|
|
{
|
|
s64 timeout = -1;
|
|
struct timeval tv;
|
|
int ret;
|
|
|
|
if (tvp) {
|
|
if (copy_from_user(&tv, tvp, sizeof(tv)))
|
|
return -EFAULT;
|
|
|
|
if (tv.tv_sec < 0 || tv.tv_usec < 0)
|
|
return -EINVAL;
|
|
|
|
/* Cast to u64 to make GCC stop complaining */
|
|
if ((u64)tv.tv_sec >= (u64)MAX_INT64_SECONDS)
|
|
timeout = -1; /* infinite */
|
|
else {
|
|
timeout = DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC/HZ);
|
|
timeout += tv.tv_sec * HZ;
|
|
}
|
|
}
|
|
|
|
ret = core_sys_select(n, inp, outp, exp, &timeout);
|
|
|
|
if (tvp) {
|
|
struct timeval rtv;
|
|
|
|
if (current->personality & STICKY_TIMEOUTS)
|
|
goto sticky;
|
|
rtv.tv_usec = jiffies_to_usecs(do_div((*(u64*)&timeout), HZ));
|
|
rtv.tv_sec = timeout;
|
|
if (timeval_compare(&rtv, &tv) >= 0)
|
|
rtv = tv;
|
|
if (copy_to_user(tvp, &rtv, sizeof(rtv))) {
|
|
sticky:
|
|
/*
|
|
* If an application puts its timeval in read-only
|
|
* memory, we don't want the Linux-specific update to
|
|
* the timeval to cause a fault after the select has
|
|
* completed successfully. However, because we're not
|
|
* updating the timeval, we can't restart the system
|
|
* call.
|
|
*/
|
|
if (ret == -ERESTARTNOHAND)
|
|
ret = -EINTR;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef TIF_RESTORE_SIGMASK
|
|
asmlinkage long sys_pselect7(int n, fd_set __user *inp, fd_set __user *outp,
|
|
fd_set __user *exp, struct timespec __user *tsp,
|
|
const sigset_t __user *sigmask, size_t sigsetsize)
|
|
{
|
|
s64 timeout = MAX_SCHEDULE_TIMEOUT;
|
|
sigset_t ksigmask, sigsaved;
|
|
struct timespec ts;
|
|
int ret;
|
|
|
|
if (tsp) {
|
|
if (copy_from_user(&ts, tsp, sizeof(ts)))
|
|
return -EFAULT;
|
|
|
|
if (ts.tv_sec < 0 || ts.tv_nsec < 0)
|
|
return -EINVAL;
|
|
|
|
/* Cast to u64 to make GCC stop complaining */
|
|
if ((u64)ts.tv_sec >= (u64)MAX_INT64_SECONDS)
|
|
timeout = -1; /* infinite */
|
|
else {
|
|
timeout = DIV_ROUND_UP(ts.tv_nsec, NSEC_PER_SEC/HZ);
|
|
timeout += ts.tv_sec * HZ;
|
|
}
|
|
}
|
|
|
|
if (sigmask) {
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
|
|
return -EFAULT;
|
|
|
|
sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
|
|
}
|
|
|
|
ret = core_sys_select(n, inp, outp, exp, &timeout);
|
|
|
|
if (tsp) {
|
|
struct timespec rts;
|
|
|
|
if (current->personality & STICKY_TIMEOUTS)
|
|
goto sticky;
|
|
rts.tv_nsec = jiffies_to_usecs(do_div((*(u64*)&timeout), HZ)) *
|
|
1000;
|
|
rts.tv_sec = timeout;
|
|
if (timespec_compare(&rts, &ts) >= 0)
|
|
rts = ts;
|
|
if (copy_to_user(tsp, &rts, sizeof(rts))) {
|
|
sticky:
|
|
/*
|
|
* If an application puts its timeval in read-only
|
|
* memory, we don't want the Linux-specific update to
|
|
* the timeval to cause a fault after the select has
|
|
* completed successfully. However, because we're not
|
|
* updating the timeval, we can't restart the system
|
|
* call.
|
|
*/
|
|
if (ret == -ERESTARTNOHAND)
|
|
ret = -EINTR;
|
|
}
|
|
}
|
|
|
|
if (ret == -ERESTARTNOHAND) {
|
|
/*
|
|
* Don't restore the signal mask yet. Let do_signal() deliver
|
|
* the signal on the way back to userspace, before the signal
|
|
* mask is restored.
|
|
*/
|
|
if (sigmask) {
|
|
memcpy(¤t->saved_sigmask, &sigsaved,
|
|
sizeof(sigsaved));
|
|
set_thread_flag(TIF_RESTORE_SIGMASK);
|
|
}
|
|
} else if (sigmask)
|
|
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Most architectures can't handle 7-argument syscalls. So we provide a
|
|
* 6-argument version where the sixth argument is a pointer to a structure
|
|
* which has a pointer to the sigset_t itself followed by a size_t containing
|
|
* the sigset size.
|
|
*/
|
|
asmlinkage long sys_pselect6(int n, fd_set __user *inp, fd_set __user *outp,
|
|
fd_set __user *exp, struct timespec __user *tsp, void __user *sig)
|
|
{
|
|
size_t sigsetsize = 0;
|
|
sigset_t __user *up = NULL;
|
|
|
|
if (sig) {
|
|
if (!access_ok(VERIFY_READ, sig, sizeof(void *)+sizeof(size_t))
|
|
|| __get_user(up, (sigset_t __user * __user *)sig)
|
|
|| __get_user(sigsetsize,
|
|
(size_t __user *)(sig+sizeof(void *))))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return sys_pselect7(n, inp, outp, exp, tsp, up, sigsetsize);
|
|
}
|
|
#endif /* TIF_RESTORE_SIGMASK */
|
|
|
|
struct poll_list {
|
|
struct poll_list *next;
|
|
int len;
|
|
struct pollfd entries[0];
|
|
};
|
|
|
|
#define POLLFD_PER_PAGE ((PAGE_SIZE-sizeof(struct poll_list)) / sizeof(struct pollfd))
|
|
|
|
/*
|
|
* Fish for pollable events on the pollfd->fd file descriptor. We're only
|
|
* interested in events matching the pollfd->events mask, and the result
|
|
* matching that mask is both recorded in pollfd->revents and returned. The
|
|
* pwait poll_table will be used by the fd-provided poll handler for waiting,
|
|
* if non-NULL.
|
|
*/
|
|
static inline unsigned int do_pollfd(struct pollfd *pollfd, poll_table *pwait)
|
|
{
|
|
unsigned int mask;
|
|
int fd;
|
|
|
|
mask = 0;
|
|
fd = pollfd->fd;
|
|
if (fd >= 0) {
|
|
int fput_needed;
|
|
struct file * file;
|
|
|
|
file = fget_light(fd, &fput_needed);
|
|
mask = POLLNVAL;
|
|
if (file != NULL) {
|
|
mask = DEFAULT_POLLMASK;
|
|
if (file->f_op && file->f_op->poll)
|
|
mask = file->f_op->poll(file, pwait);
|
|
/* Mask out unneeded events. */
|
|
mask &= pollfd->events | POLLERR | POLLHUP;
|
|
fput_light(file, fput_needed);
|
|
}
|
|
}
|
|
pollfd->revents = mask;
|
|
|
|
return mask;
|
|
}
|
|
|
|
static int do_poll(unsigned int nfds, struct poll_list *list,
|
|
struct poll_wqueues *wait, s64 *timeout)
|
|
{
|
|
int count = 0;
|
|
poll_table* pt = &wait->pt;
|
|
|
|
/* Optimise the no-wait case */
|
|
if (!(*timeout))
|
|
pt = NULL;
|
|
|
|
for (;;) {
|
|
struct poll_list *walk;
|
|
long __timeout;
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
for (walk = list; walk != NULL; walk = walk->next) {
|
|
struct pollfd * pfd, * pfd_end;
|
|
|
|
pfd = walk->entries;
|
|
pfd_end = pfd + walk->len;
|
|
for (; pfd != pfd_end; pfd++) {
|
|
/*
|
|
* Fish for events. If we found one, record it
|
|
* and kill the poll_table, so we don't
|
|
* needlessly register any other waiters after
|
|
* this. They'll get immediately deregistered
|
|
* when we break out and return.
|
|
*/
|
|
if (do_pollfd(pfd, pt)) {
|
|
count++;
|
|
pt = NULL;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* All waiters have already been registered, so don't provide
|
|
* a poll_table to them on the next loop iteration.
|
|
*/
|
|
pt = NULL;
|
|
if (!count) {
|
|
count = wait->error;
|
|
if (signal_pending(current))
|
|
count = -EINTR;
|
|
}
|
|
if (count || !*timeout)
|
|
break;
|
|
|
|
if (*timeout < 0) {
|
|
/* Wait indefinitely */
|
|
__timeout = MAX_SCHEDULE_TIMEOUT;
|
|
} else if (unlikely(*timeout >= (s64)MAX_SCHEDULE_TIMEOUT-1)) {
|
|
/*
|
|
* Wait for longer than MAX_SCHEDULE_TIMEOUT. Do it in
|
|
* a loop
|
|
*/
|
|
__timeout = MAX_SCHEDULE_TIMEOUT - 1;
|
|
*timeout -= __timeout;
|
|
} else {
|
|
__timeout = *timeout;
|
|
*timeout = 0;
|
|
}
|
|
|
|
__timeout = schedule_timeout(__timeout);
|
|
if (*timeout >= 0)
|
|
*timeout += __timeout;
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
return count;
|
|
}
|
|
|
|
#define N_STACK_PPS ((sizeof(stack_pps) - sizeof(struct poll_list)) / \
|
|
sizeof(struct pollfd))
|
|
|
|
int do_sys_poll(struct pollfd __user *ufds, unsigned int nfds, s64 *timeout)
|
|
{
|
|
struct poll_wqueues table;
|
|
int err = -EFAULT, fdcount, len, size;
|
|
/* Allocate small arguments on the stack to save memory and be
|
|
faster - use long to make sure the buffer is aligned properly
|
|
on 64 bit archs to avoid unaligned access */
|
|
long stack_pps[POLL_STACK_ALLOC/sizeof(long)];
|
|
struct poll_list *const head = (struct poll_list *)stack_pps;
|
|
struct poll_list *walk = head;
|
|
unsigned long todo = nfds;
|
|
|
|
if (nfds > current->signal->rlim[RLIMIT_NOFILE].rlim_cur)
|
|
return -EINVAL;
|
|
|
|
len = min_t(unsigned int, nfds, N_STACK_PPS);
|
|
for (;;) {
|
|
walk->next = NULL;
|
|
walk->len = len;
|
|
if (!len)
|
|
break;
|
|
|
|
if (copy_from_user(walk->entries, ufds + nfds-todo,
|
|
sizeof(struct pollfd) * walk->len))
|
|
goto out_fds;
|
|
|
|
todo -= walk->len;
|
|
if (!todo)
|
|
break;
|
|
|
|
len = min(todo, POLLFD_PER_PAGE);
|
|
size = sizeof(struct poll_list) + sizeof(struct pollfd) * len;
|
|
walk = walk->next = kmalloc(size, GFP_KERNEL);
|
|
if (!walk) {
|
|
err = -ENOMEM;
|
|
goto out_fds;
|
|
}
|
|
}
|
|
|
|
poll_initwait(&table);
|
|
fdcount = do_poll(nfds, head, &table, timeout);
|
|
poll_freewait(&table);
|
|
|
|
for (walk = head; walk; walk = walk->next) {
|
|
struct pollfd *fds = walk->entries;
|
|
int j;
|
|
|
|
for (j = 0; j < walk->len; j++, ufds++)
|
|
if (__put_user(fds[j].revents, &ufds->revents))
|
|
goto out_fds;
|
|
}
|
|
|
|
err = fdcount;
|
|
out_fds:
|
|
walk = head->next;
|
|
while (walk) {
|
|
struct poll_list *pos = walk;
|
|
walk = walk->next;
|
|
kfree(pos);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static long do_restart_poll(struct restart_block *restart_block)
|
|
{
|
|
struct pollfd __user *ufds = (struct pollfd __user*)restart_block->arg0;
|
|
int nfds = restart_block->arg1;
|
|
s64 timeout = ((s64)restart_block->arg3<<32) | (s64)restart_block->arg2;
|
|
int ret;
|
|
|
|
ret = do_sys_poll(ufds, nfds, &timeout);
|
|
if (ret == -EINTR) {
|
|
restart_block->fn = do_restart_poll;
|
|
restart_block->arg2 = timeout & 0xFFFFFFFF;
|
|
restart_block->arg3 = (u64)timeout >> 32;
|
|
ret = -ERESTART_RESTARTBLOCK;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
asmlinkage long sys_poll(struct pollfd __user *ufds, unsigned int nfds,
|
|
long timeout_msecs)
|
|
{
|
|
s64 timeout_jiffies;
|
|
int ret;
|
|
|
|
if (timeout_msecs > 0) {
|
|
#if HZ > 1000
|
|
/* We can only overflow if HZ > 1000 */
|
|
if (timeout_msecs / 1000 > (s64)0x7fffffffffffffffULL / (s64)HZ)
|
|
timeout_jiffies = -1;
|
|
else
|
|
#endif
|
|
timeout_jiffies = msecs_to_jiffies(timeout_msecs) + 1;
|
|
} else {
|
|
/* Infinite (< 0) or no (0) timeout */
|
|
timeout_jiffies = timeout_msecs;
|
|
}
|
|
|
|
ret = do_sys_poll(ufds, nfds, &timeout_jiffies);
|
|
if (ret == -EINTR) {
|
|
struct restart_block *restart_block;
|
|
restart_block = ¤t_thread_info()->restart_block;
|
|
restart_block->fn = do_restart_poll;
|
|
restart_block->arg0 = (unsigned long)ufds;
|
|
restart_block->arg1 = nfds;
|
|
restart_block->arg2 = timeout_jiffies & 0xFFFFFFFF;
|
|
restart_block->arg3 = (u64)timeout_jiffies >> 32;
|
|
ret = -ERESTART_RESTARTBLOCK;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#ifdef TIF_RESTORE_SIGMASK
|
|
asmlinkage long sys_ppoll(struct pollfd __user *ufds, unsigned int nfds,
|
|
struct timespec __user *tsp, const sigset_t __user *sigmask,
|
|
size_t sigsetsize)
|
|
{
|
|
sigset_t ksigmask, sigsaved;
|
|
struct timespec ts;
|
|
s64 timeout = -1;
|
|
int ret;
|
|
|
|
if (tsp) {
|
|
if (copy_from_user(&ts, tsp, sizeof(ts)))
|
|
return -EFAULT;
|
|
|
|
/* Cast to u64 to make GCC stop complaining */
|
|
if ((u64)ts.tv_sec >= (u64)MAX_INT64_SECONDS)
|
|
timeout = -1; /* infinite */
|
|
else {
|
|
timeout = DIV_ROUND_UP(ts.tv_nsec, NSEC_PER_SEC/HZ);
|
|
timeout += ts.tv_sec * HZ;
|
|
}
|
|
}
|
|
|
|
if (sigmask) {
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
|
|
return -EFAULT;
|
|
|
|
sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
|
|
}
|
|
|
|
ret = do_sys_poll(ufds, nfds, &timeout);
|
|
|
|
/* We can restart this syscall, usually */
|
|
if (ret == -EINTR) {
|
|
/*
|
|
* Don't restore the signal mask yet. Let do_signal() deliver
|
|
* the signal on the way back to userspace, before the signal
|
|
* mask is restored.
|
|
*/
|
|
if (sigmask) {
|
|
memcpy(¤t->saved_sigmask, &sigsaved,
|
|
sizeof(sigsaved));
|
|
set_thread_flag(TIF_RESTORE_SIGMASK);
|
|
}
|
|
ret = -ERESTARTNOHAND;
|
|
} else if (sigmask)
|
|
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
|
|
|
|
if (tsp && timeout >= 0) {
|
|
struct timespec rts;
|
|
|
|
if (current->personality & STICKY_TIMEOUTS)
|
|
goto sticky;
|
|
/* Yes, we know it's actually an s64, but it's also positive. */
|
|
rts.tv_nsec = jiffies_to_usecs(do_div((*(u64*)&timeout), HZ)) *
|
|
1000;
|
|
rts.tv_sec = timeout;
|
|
if (timespec_compare(&rts, &ts) >= 0)
|
|
rts = ts;
|
|
if (copy_to_user(tsp, &rts, sizeof(rts))) {
|
|
sticky:
|
|
/*
|
|
* If an application puts its timeval in read-only
|
|
* memory, we don't want the Linux-specific update to
|
|
* the timeval to cause a fault after the select has
|
|
* completed successfully. However, because we're not
|
|
* updating the timeval, we can't restart the system
|
|
* call.
|
|
*/
|
|
if (ret == -ERESTARTNOHAND && timeout >= 0)
|
|
ret = -EINTR;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif /* TIF_RESTORE_SIGMASK */
|