mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-02 08:34:20 +08:00
dd81d821d0
Use a bit-mask of EOF irqs to determine when all required idmac
channel EOFs have been received for a tile conversion, and only do
tile completion processing after all EOFs have been received. Otherwise
it was found that a conversion would stall after the completion of a
tile and the start of the next tile, because the input/read idmac
channel had not completed and entered idle state, thus locking up the
channel when attempting to re-start it for the next tile.
Fixes: 0537db801b
("gpu: ipu-v3: image-convert: reconfigure IC per tile")
Signed-off-by: Steve Longerbeam <slongerbeam@gmail.com>
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
2513 lines
69 KiB
C
2513 lines
69 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright (C) 2012-2016 Mentor Graphics Inc.
|
|
*
|
|
* Queued image conversion support, with tiling and rotation.
|
|
*/
|
|
|
|
#include <linux/interrupt.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <video/imx-ipu-image-convert.h>
|
|
#include "ipu-prv.h"
|
|
|
|
/*
|
|
* The IC Resizer has a restriction that the output frame from the
|
|
* resizer must be 1024 or less in both width (pixels) and height
|
|
* (lines).
|
|
*
|
|
* The image converter attempts to split up a conversion when
|
|
* the desired output (converted) frame resolution exceeds the
|
|
* IC resizer limit of 1024 in either dimension.
|
|
*
|
|
* If either dimension of the output frame exceeds the limit, the
|
|
* dimension is split into 1, 2, or 4 equal stripes, for a maximum
|
|
* of 4*4 or 16 tiles. A conversion is then carried out for each
|
|
* tile (but taking care to pass the full frame stride length to
|
|
* the DMA channel's parameter memory!). IDMA double-buffering is used
|
|
* to convert each tile back-to-back when possible (see note below
|
|
* when double_buffering boolean is set).
|
|
*
|
|
* Note that the input frame must be split up into the same number
|
|
* of tiles as the output frame:
|
|
*
|
|
* +---------+-----+
|
|
* +-----+---+ | A | B |
|
|
* | A | B | | | |
|
|
* +-----+---+ --> +---------+-----+
|
|
* | C | D | | C | D |
|
|
* +-----+---+ | | |
|
|
* +---------+-----+
|
|
*
|
|
* Clockwise 90° rotations are handled by first rescaling into a
|
|
* reusable temporary tile buffer and then rotating with the 8x8
|
|
* block rotator, writing to the correct destination:
|
|
*
|
|
* +-----+-----+
|
|
* | | |
|
|
* +-----+---+ +---------+ | C | A |
|
|
* | A | B | | A,B, | | | | |
|
|
* +-----+---+ --> | C,D | | --> | | |
|
|
* | C | D | +---------+ +-----+-----+
|
|
* +-----+---+ | D | B |
|
|
* | | |
|
|
* +-----+-----+
|
|
*
|
|
* If the 8x8 block rotator is used, horizontal or vertical flipping
|
|
* is done during the rotation step, otherwise flipping is done
|
|
* during the scaling step.
|
|
* With rotation or flipping, tile order changes between input and
|
|
* output image. Tiles are numbered row major from top left to bottom
|
|
* right for both input and output image.
|
|
*/
|
|
|
|
#define MAX_STRIPES_W 4
|
|
#define MAX_STRIPES_H 4
|
|
#define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
|
|
|
|
#define MIN_W 16
|
|
#define MIN_H 8
|
|
#define MAX_W 4096
|
|
#define MAX_H 4096
|
|
|
|
enum ipu_image_convert_type {
|
|
IMAGE_CONVERT_IN = 0,
|
|
IMAGE_CONVERT_OUT,
|
|
};
|
|
|
|
struct ipu_image_convert_dma_buf {
|
|
void *virt;
|
|
dma_addr_t phys;
|
|
unsigned long len;
|
|
};
|
|
|
|
struct ipu_image_convert_dma_chan {
|
|
int in;
|
|
int out;
|
|
int rot_in;
|
|
int rot_out;
|
|
int vdi_in_p;
|
|
int vdi_in;
|
|
int vdi_in_n;
|
|
};
|
|
|
|
/* dimensions of one tile */
|
|
struct ipu_image_tile {
|
|
u32 width;
|
|
u32 height;
|
|
u32 left;
|
|
u32 top;
|
|
/* size and strides are in bytes */
|
|
u32 size;
|
|
u32 stride;
|
|
u32 rot_stride;
|
|
/* start Y or packed offset of this tile */
|
|
u32 offset;
|
|
/* offset from start to tile in U plane, for planar formats */
|
|
u32 u_off;
|
|
/* offset from start to tile in V plane, for planar formats */
|
|
u32 v_off;
|
|
};
|
|
|
|
struct ipu_image_convert_image {
|
|
struct ipu_image base;
|
|
enum ipu_image_convert_type type;
|
|
|
|
const struct ipu_image_pixfmt *fmt;
|
|
unsigned int stride;
|
|
|
|
/* # of rows (horizontal stripes) if dest height is > 1024 */
|
|
unsigned int num_rows;
|
|
/* # of columns (vertical stripes) if dest width is > 1024 */
|
|
unsigned int num_cols;
|
|
|
|
struct ipu_image_tile tile[MAX_TILES];
|
|
};
|
|
|
|
struct ipu_image_pixfmt {
|
|
u32 fourcc; /* V4L2 fourcc */
|
|
int bpp; /* total bpp */
|
|
int uv_width_dec; /* decimation in width for U/V planes */
|
|
int uv_height_dec; /* decimation in height for U/V planes */
|
|
bool planar; /* planar format */
|
|
bool uv_swapped; /* U and V planes are swapped */
|
|
bool uv_packed; /* partial planar (U and V in same plane) */
|
|
};
|
|
|
|
struct ipu_image_convert_ctx;
|
|
struct ipu_image_convert_chan;
|
|
struct ipu_image_convert_priv;
|
|
|
|
enum eof_irq_mask {
|
|
EOF_IRQ_IN = BIT(0),
|
|
EOF_IRQ_ROT_IN = BIT(1),
|
|
EOF_IRQ_OUT = BIT(2),
|
|
EOF_IRQ_ROT_OUT = BIT(3),
|
|
};
|
|
|
|
#define EOF_IRQ_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT)
|
|
#define EOF_IRQ_ROT_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT | \
|
|
EOF_IRQ_ROT_IN | EOF_IRQ_ROT_OUT)
|
|
|
|
struct ipu_image_convert_ctx {
|
|
struct ipu_image_convert_chan *chan;
|
|
|
|
ipu_image_convert_cb_t complete;
|
|
void *complete_context;
|
|
|
|
/* Source/destination image data and rotation mode */
|
|
struct ipu_image_convert_image in;
|
|
struct ipu_image_convert_image out;
|
|
struct ipu_ic_csc csc;
|
|
enum ipu_rotate_mode rot_mode;
|
|
u32 downsize_coeff_h;
|
|
u32 downsize_coeff_v;
|
|
u32 image_resize_coeff_h;
|
|
u32 image_resize_coeff_v;
|
|
u32 resize_coeffs_h[MAX_STRIPES_W];
|
|
u32 resize_coeffs_v[MAX_STRIPES_H];
|
|
|
|
/* intermediate buffer for rotation */
|
|
struct ipu_image_convert_dma_buf rot_intermediate[2];
|
|
|
|
/* current buffer number for double buffering */
|
|
int cur_buf_num;
|
|
|
|
bool aborting;
|
|
struct completion aborted;
|
|
|
|
/* can we use double-buffering for this conversion operation? */
|
|
bool double_buffering;
|
|
/* num_rows * num_cols */
|
|
unsigned int num_tiles;
|
|
/* next tile to process */
|
|
unsigned int next_tile;
|
|
/* where to place converted tile in dest image */
|
|
unsigned int out_tile_map[MAX_TILES];
|
|
|
|
/* mask of completed EOF irqs at every tile conversion */
|
|
enum eof_irq_mask eof_mask;
|
|
|
|
struct list_head list;
|
|
};
|
|
|
|
struct ipu_image_convert_chan {
|
|
struct ipu_image_convert_priv *priv;
|
|
|
|
enum ipu_ic_task ic_task;
|
|
const struct ipu_image_convert_dma_chan *dma_ch;
|
|
|
|
struct ipu_ic *ic;
|
|
struct ipuv3_channel *in_chan;
|
|
struct ipuv3_channel *out_chan;
|
|
struct ipuv3_channel *rotation_in_chan;
|
|
struct ipuv3_channel *rotation_out_chan;
|
|
|
|
/* the IPU end-of-frame irqs */
|
|
int in_eof_irq;
|
|
int rot_in_eof_irq;
|
|
int out_eof_irq;
|
|
int rot_out_eof_irq;
|
|
|
|
spinlock_t irqlock;
|
|
|
|
/* list of convert contexts */
|
|
struct list_head ctx_list;
|
|
/* queue of conversion runs */
|
|
struct list_head pending_q;
|
|
/* queue of completed runs */
|
|
struct list_head done_q;
|
|
|
|
/* the current conversion run */
|
|
struct ipu_image_convert_run *current_run;
|
|
};
|
|
|
|
struct ipu_image_convert_priv {
|
|
struct ipu_image_convert_chan chan[IC_NUM_TASKS];
|
|
struct ipu_soc *ipu;
|
|
};
|
|
|
|
static const struct ipu_image_convert_dma_chan
|
|
image_convert_dma_chan[IC_NUM_TASKS] = {
|
|
[IC_TASK_VIEWFINDER] = {
|
|
.in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
|
|
.out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
|
|
.rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
|
|
.rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
|
|
.vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
|
|
.vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
|
|
.vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
|
|
},
|
|
[IC_TASK_POST_PROCESSOR] = {
|
|
.in = IPUV3_CHANNEL_MEM_IC_PP,
|
|
.out = IPUV3_CHANNEL_IC_PP_MEM,
|
|
.rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
|
|
.rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
|
|
},
|
|
};
|
|
|
|
static const struct ipu_image_pixfmt image_convert_formats[] = {
|
|
{
|
|
.fourcc = V4L2_PIX_FMT_RGB565,
|
|
.bpp = 16,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_RGB24,
|
|
.bpp = 24,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_BGR24,
|
|
.bpp = 24,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_RGB32,
|
|
.bpp = 32,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_BGR32,
|
|
.bpp = 32,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_XRGB32,
|
|
.bpp = 32,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_XBGR32,
|
|
.bpp = 32,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_BGRX32,
|
|
.bpp = 32,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_RGBX32,
|
|
.bpp = 32,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_YUYV,
|
|
.bpp = 16,
|
|
.uv_width_dec = 2,
|
|
.uv_height_dec = 1,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_UYVY,
|
|
.bpp = 16,
|
|
.uv_width_dec = 2,
|
|
.uv_height_dec = 1,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_YUV420,
|
|
.bpp = 12,
|
|
.planar = true,
|
|
.uv_width_dec = 2,
|
|
.uv_height_dec = 2,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_YVU420,
|
|
.bpp = 12,
|
|
.planar = true,
|
|
.uv_width_dec = 2,
|
|
.uv_height_dec = 2,
|
|
.uv_swapped = true,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_NV12,
|
|
.bpp = 12,
|
|
.planar = true,
|
|
.uv_width_dec = 2,
|
|
.uv_height_dec = 2,
|
|
.uv_packed = true,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_YUV422P,
|
|
.bpp = 16,
|
|
.planar = true,
|
|
.uv_width_dec = 2,
|
|
.uv_height_dec = 1,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_NV16,
|
|
.bpp = 16,
|
|
.planar = true,
|
|
.uv_width_dec = 2,
|
|
.uv_height_dec = 1,
|
|
.uv_packed = true,
|
|
},
|
|
};
|
|
|
|
static const struct ipu_image_pixfmt *get_format(u32 fourcc)
|
|
{
|
|
const struct ipu_image_pixfmt *ret = NULL;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
|
|
if (image_convert_formats[i].fourcc == fourcc) {
|
|
ret = &image_convert_formats[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void dump_format(struct ipu_image_convert_ctx *ctx,
|
|
struct ipu_image_convert_image *ic_image)
|
|
{
|
|
struct ipu_image_convert_chan *chan = ctx->chan;
|
|
struct ipu_image_convert_priv *priv = chan->priv;
|
|
|
|
dev_dbg(priv->ipu->dev,
|
|
"task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
|
|
chan->ic_task, ctx,
|
|
ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
|
|
ic_image->base.pix.width, ic_image->base.pix.height,
|
|
ic_image->num_cols, ic_image->num_rows,
|
|
ic_image->fmt->fourcc & 0xff,
|
|
(ic_image->fmt->fourcc >> 8) & 0xff,
|
|
(ic_image->fmt->fourcc >> 16) & 0xff,
|
|
(ic_image->fmt->fourcc >> 24) & 0xff);
|
|
}
|
|
|
|
int ipu_image_convert_enum_format(int index, u32 *fourcc)
|
|
{
|
|
const struct ipu_image_pixfmt *fmt;
|
|
|
|
if (index >= (int)ARRAY_SIZE(image_convert_formats))
|
|
return -EINVAL;
|
|
|
|
/* Format found */
|
|
fmt = &image_convert_formats[index];
|
|
*fourcc = fmt->fourcc;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
|
|
|
|
static void free_dma_buf(struct ipu_image_convert_priv *priv,
|
|
struct ipu_image_convert_dma_buf *buf)
|
|
{
|
|
if (buf->virt)
|
|
dma_free_coherent(priv->ipu->dev,
|
|
buf->len, buf->virt, buf->phys);
|
|
buf->virt = NULL;
|
|
buf->phys = 0;
|
|
}
|
|
|
|
static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
|
|
struct ipu_image_convert_dma_buf *buf,
|
|
int size)
|
|
{
|
|
buf->len = PAGE_ALIGN(size);
|
|
buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
|
|
GFP_DMA | GFP_KERNEL);
|
|
if (!buf->virt) {
|
|
dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int num_stripes(int dim)
|
|
{
|
|
return (dim - 1) / 1024 + 1;
|
|
}
|
|
|
|
/*
|
|
* Calculate downsizing coefficients, which are the same for all tiles,
|
|
* and initial bilinear resizing coefficients, which are used to find the
|
|
* best seam positions.
|
|
* Also determine the number of tiles necessary to guarantee that no tile
|
|
* is larger than 1024 pixels in either dimension at the output and between
|
|
* IC downsizing and main processing sections.
|
|
*/
|
|
static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
|
|
struct ipu_image *in,
|
|
struct ipu_image *out)
|
|
{
|
|
u32 downsized_width = in->rect.width;
|
|
u32 downsized_height = in->rect.height;
|
|
u32 downsize_coeff_v = 0;
|
|
u32 downsize_coeff_h = 0;
|
|
u32 resized_width = out->rect.width;
|
|
u32 resized_height = out->rect.height;
|
|
u32 resize_coeff_h;
|
|
u32 resize_coeff_v;
|
|
u32 cols;
|
|
u32 rows;
|
|
|
|
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
|
|
resized_width = out->rect.height;
|
|
resized_height = out->rect.width;
|
|
}
|
|
|
|
/* Do not let invalid input lead to an endless loop below */
|
|
if (WARN_ON(resized_width == 0 || resized_height == 0))
|
|
return -EINVAL;
|
|
|
|
while (downsized_width >= resized_width * 2) {
|
|
downsized_width >>= 1;
|
|
downsize_coeff_h++;
|
|
}
|
|
|
|
while (downsized_height >= resized_height * 2) {
|
|
downsized_height >>= 1;
|
|
downsize_coeff_v++;
|
|
}
|
|
|
|
/*
|
|
* Calculate the bilinear resizing coefficients that could be used if
|
|
* we were converting with a single tile. The bottom right output pixel
|
|
* should sample as close as possible to the bottom right input pixel
|
|
* out of the decimator, but not overshoot it:
|
|
*/
|
|
resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
|
|
resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
|
|
|
|
/*
|
|
* Both the output of the IC downsizing section before being passed to
|
|
* the IC main processing section and the final output of the IC main
|
|
* processing section must be <= 1024 pixels in both dimensions.
|
|
*/
|
|
cols = num_stripes(max_t(u32, downsized_width, resized_width));
|
|
rows = num_stripes(max_t(u32, downsized_height, resized_height));
|
|
|
|
dev_dbg(ctx->chan->priv->ipu->dev,
|
|
"%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
|
|
__func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
|
|
resize_coeff_v, cols, rows);
|
|
|
|
if (downsize_coeff_h > 2 || downsize_coeff_v > 2 ||
|
|
resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
|
|
return -EINVAL;
|
|
|
|
ctx->downsize_coeff_h = downsize_coeff_h;
|
|
ctx->downsize_coeff_v = downsize_coeff_v;
|
|
ctx->image_resize_coeff_h = resize_coeff_h;
|
|
ctx->image_resize_coeff_v = resize_coeff_v;
|
|
ctx->in.num_cols = cols;
|
|
ctx->in.num_rows = rows;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define round_closest(x, y) round_down((x) + (y)/2, (y))
|
|
|
|
/*
|
|
* Find the best aligned seam position for the given column / row index.
|
|
* Rotation and image offsets are out of scope.
|
|
*
|
|
* @index: column / row index, used to calculate valid interval
|
|
* @in_edge: input right / bottom edge
|
|
* @out_edge: output right / bottom edge
|
|
* @in_align: input alignment, either horizontal 8-byte line start address
|
|
* alignment, or pixel alignment due to image format
|
|
* @out_align: output alignment, either horizontal 8-byte line start address
|
|
* alignment, or pixel alignment due to image format or rotator
|
|
* block size
|
|
* @in_burst: horizontal input burst size in case of horizontal flip
|
|
* @out_burst: horizontal output burst size or rotator block size
|
|
* @downsize_coeff: downsizing section coefficient
|
|
* @resize_coeff: main processing section resizing coefficient
|
|
* @_in_seam: aligned input seam position return value
|
|
* @_out_seam: aligned output seam position return value
|
|
*/
|
|
static void find_best_seam(struct ipu_image_convert_ctx *ctx,
|
|
unsigned int index,
|
|
unsigned int in_edge,
|
|
unsigned int out_edge,
|
|
unsigned int in_align,
|
|
unsigned int out_align,
|
|
unsigned int in_burst,
|
|
unsigned int out_burst,
|
|
unsigned int downsize_coeff,
|
|
unsigned int resize_coeff,
|
|
u32 *_in_seam,
|
|
u32 *_out_seam)
|
|
{
|
|
struct device *dev = ctx->chan->priv->ipu->dev;
|
|
unsigned int out_pos;
|
|
/* Input / output seam position candidates */
|
|
unsigned int out_seam = 0;
|
|
unsigned int in_seam = 0;
|
|
unsigned int min_diff = UINT_MAX;
|
|
unsigned int out_start;
|
|
unsigned int out_end;
|
|
unsigned int in_start;
|
|
unsigned int in_end;
|
|
|
|
/* Start within 1024 pixels of the right / bottom edge */
|
|
out_start = max_t(int, index * out_align, out_edge - 1024);
|
|
/* End before having to add more columns to the left / rows above */
|
|
out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
|
|
|
|
/*
|
|
* Limit input seam position to make sure that the downsized input tile
|
|
* to the right or bottom does not exceed 1024 pixels.
|
|
*/
|
|
in_start = max_t(int, index * in_align,
|
|
in_edge - (1024 << downsize_coeff));
|
|
in_end = min_t(unsigned int, in_edge,
|
|
index * (1024 << downsize_coeff) + 1);
|
|
|
|
/*
|
|
* Output tiles must start at a multiple of 8 bytes horizontally and
|
|
* possibly at an even line horizontally depending on the pixel format.
|
|
* Only consider output aligned positions for the seam.
|
|
*/
|
|
out_start = round_up(out_start, out_align);
|
|
for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
|
|
unsigned int in_pos;
|
|
unsigned int in_pos_aligned;
|
|
unsigned int in_pos_rounded;
|
|
unsigned int abs_diff;
|
|
|
|
/*
|
|
* Tiles in the right row / bottom column may not be allowed to
|
|
* overshoot horizontally / vertically. out_burst may be the
|
|
* actual DMA burst size, or the rotator block size.
|
|
*/
|
|
if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
|
|
continue;
|
|
|
|
/*
|
|
* Input sample position, corresponding to out_pos, 19.13 fixed
|
|
* point.
|
|
*/
|
|
in_pos = (out_pos * resize_coeff) << downsize_coeff;
|
|
/*
|
|
* The closest input sample position that we could actually
|
|
* start the input tile at, 19.13 fixed point.
|
|
*/
|
|
in_pos_aligned = round_closest(in_pos, 8192U * in_align);
|
|
/* Convert 19.13 fixed point to integer */
|
|
in_pos_rounded = in_pos_aligned / 8192U;
|
|
|
|
if (in_pos_rounded < in_start)
|
|
continue;
|
|
if (in_pos_rounded >= in_end)
|
|
break;
|
|
|
|
if ((in_burst > 1) &&
|
|
(in_edge - in_pos_rounded) % in_burst)
|
|
continue;
|
|
|
|
if (in_pos < in_pos_aligned)
|
|
abs_diff = in_pos_aligned - in_pos;
|
|
else
|
|
abs_diff = in_pos - in_pos_aligned;
|
|
|
|
if (abs_diff < min_diff) {
|
|
in_seam = in_pos_rounded;
|
|
out_seam = out_pos;
|
|
min_diff = abs_diff;
|
|
}
|
|
}
|
|
|
|
*_out_seam = out_seam;
|
|
*_in_seam = in_seam;
|
|
|
|
dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
|
|
__func__, out_seam, out_align, out_start, out_end,
|
|
in_seam, in_align, in_start, in_end, min_diff / 8192,
|
|
DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
|
|
}
|
|
|
|
/*
|
|
* Tile left edges are required to be aligned to multiples of 8 bytes
|
|
* by the IDMAC.
|
|
*/
|
|
static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
|
|
{
|
|
if (fmt->planar)
|
|
return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
|
|
else
|
|
return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
|
|
}
|
|
|
|
/*
|
|
* Tile top edge alignment is only limited by chroma subsampling.
|
|
*/
|
|
static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
|
|
{
|
|
return fmt->uv_height_dec > 1 ? 2 : 1;
|
|
}
|
|
|
|
static inline u32 tile_width_align(enum ipu_image_convert_type type,
|
|
const struct ipu_image_pixfmt *fmt,
|
|
enum ipu_rotate_mode rot_mode)
|
|
{
|
|
if (type == IMAGE_CONVERT_IN) {
|
|
/*
|
|
* The IC burst reads 8 pixels at a time. Reading beyond the
|
|
* end of the line is usually acceptable. Those pixels are
|
|
* ignored, unless the IC has to write the scaled line in
|
|
* reverse.
|
|
*/
|
|
return (!ipu_rot_mode_is_irt(rot_mode) &&
|
|
(rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
|
|
}
|
|
|
|
/*
|
|
* Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
|
|
* formats to guarantee 8-byte aligned line start addresses in the
|
|
* chroma planes when IRT is used. Align to 8x8 pixel IRT block size
|
|
* for all other formats.
|
|
*/
|
|
return (ipu_rot_mode_is_irt(rot_mode) &&
|
|
fmt->planar && !fmt->uv_packed) ?
|
|
8 * fmt->uv_width_dec : 8;
|
|
}
|
|
|
|
static inline u32 tile_height_align(enum ipu_image_convert_type type,
|
|
const struct ipu_image_pixfmt *fmt,
|
|
enum ipu_rotate_mode rot_mode)
|
|
{
|
|
if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
|
|
return 2;
|
|
|
|
/*
|
|
* Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
|
|
* formats to guarantee 8-byte aligned line start addresses in the
|
|
* chroma planes when IRT is used. Align to 8x8 pixel IRT block size
|
|
* for all other formats.
|
|
*/
|
|
return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
|
|
}
|
|
|
|
/*
|
|
* Fill in left position and width and for all tiles in an input column, and
|
|
* for all corresponding output tiles. If the 90° rotator is used, the output
|
|
* tiles are in a row, and output tile top position and height are set.
|
|
*/
|
|
static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
|
|
unsigned int col,
|
|
struct ipu_image_convert_image *in,
|
|
unsigned int in_left, unsigned int in_width,
|
|
struct ipu_image_convert_image *out,
|
|
unsigned int out_left, unsigned int out_width)
|
|
{
|
|
unsigned int row, tile_idx;
|
|
struct ipu_image_tile *in_tile, *out_tile;
|
|
|
|
for (row = 0; row < in->num_rows; row++) {
|
|
tile_idx = in->num_cols * row + col;
|
|
in_tile = &in->tile[tile_idx];
|
|
out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
|
|
|
|
in_tile->left = in_left;
|
|
in_tile->width = in_width;
|
|
|
|
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
|
|
out_tile->top = out_left;
|
|
out_tile->height = out_width;
|
|
} else {
|
|
out_tile->left = out_left;
|
|
out_tile->width = out_width;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fill in top position and height and for all tiles in an input row, and
|
|
* for all corresponding output tiles. If the 90° rotator is used, the output
|
|
* tiles are in a column, and output tile left position and width are set.
|
|
*/
|
|
static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
|
|
struct ipu_image_convert_image *in,
|
|
unsigned int in_top, unsigned int in_height,
|
|
struct ipu_image_convert_image *out,
|
|
unsigned int out_top, unsigned int out_height)
|
|
{
|
|
unsigned int col, tile_idx;
|
|
struct ipu_image_tile *in_tile, *out_tile;
|
|
|
|
for (col = 0; col < in->num_cols; col++) {
|
|
tile_idx = in->num_cols * row + col;
|
|
in_tile = &in->tile[tile_idx];
|
|
out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
|
|
|
|
in_tile->top = in_top;
|
|
in_tile->height = in_height;
|
|
|
|
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
|
|
out_tile->left = out_top;
|
|
out_tile->width = out_height;
|
|
} else {
|
|
out_tile->top = out_top;
|
|
out_tile->height = out_height;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find the best horizontal and vertical seam positions to split into tiles.
|
|
* Minimize the fractional part of the input sampling position for the
|
|
* top / left pixels of each tile.
|
|
*/
|
|
static void find_seams(struct ipu_image_convert_ctx *ctx,
|
|
struct ipu_image_convert_image *in,
|
|
struct ipu_image_convert_image *out)
|
|
{
|
|
struct device *dev = ctx->chan->priv->ipu->dev;
|
|
unsigned int resized_width = out->base.rect.width;
|
|
unsigned int resized_height = out->base.rect.height;
|
|
unsigned int col;
|
|
unsigned int row;
|
|
unsigned int in_left_align = tile_left_align(in->fmt);
|
|
unsigned int in_top_align = tile_top_align(in->fmt);
|
|
unsigned int out_left_align = tile_left_align(out->fmt);
|
|
unsigned int out_top_align = tile_top_align(out->fmt);
|
|
unsigned int out_width_align = tile_width_align(out->type, out->fmt,
|
|
ctx->rot_mode);
|
|
unsigned int out_height_align = tile_height_align(out->type, out->fmt,
|
|
ctx->rot_mode);
|
|
unsigned int in_right = in->base.rect.width;
|
|
unsigned int in_bottom = in->base.rect.height;
|
|
unsigned int out_right = out->base.rect.width;
|
|
unsigned int out_bottom = out->base.rect.height;
|
|
unsigned int flipped_out_left;
|
|
unsigned int flipped_out_top;
|
|
|
|
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
|
|
/* Switch width/height and align top left to IRT block size */
|
|
resized_width = out->base.rect.height;
|
|
resized_height = out->base.rect.width;
|
|
out_left_align = out_height_align;
|
|
out_top_align = out_width_align;
|
|
out_width_align = out_left_align;
|
|
out_height_align = out_top_align;
|
|
out_right = out->base.rect.height;
|
|
out_bottom = out->base.rect.width;
|
|
}
|
|
|
|
for (col = in->num_cols - 1; col > 0; col--) {
|
|
bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
|
|
!(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
|
|
bool allow_out_overshoot = (col < in->num_cols - 1) &&
|
|
!(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
|
|
unsigned int in_left;
|
|
unsigned int out_left;
|
|
|
|
/*
|
|
* Align input width to burst length if the scaling step flips
|
|
* horizontally.
|
|
*/
|
|
|
|
find_best_seam(ctx, col,
|
|
in_right, out_right,
|
|
in_left_align, out_left_align,
|
|
allow_in_overshoot ? 1 : 8 /* burst length */,
|
|
allow_out_overshoot ? 1 : out_width_align,
|
|
ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
|
|
&in_left, &out_left);
|
|
|
|
if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
|
|
flipped_out_left = resized_width - out_right;
|
|
else
|
|
flipped_out_left = out_left;
|
|
|
|
fill_tile_column(ctx, col, in, in_left, in_right - in_left,
|
|
out, flipped_out_left, out_right - out_left);
|
|
|
|
dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
|
|
in_left, in_right - in_left,
|
|
flipped_out_left, out_right - out_left);
|
|
|
|
in_right = in_left;
|
|
out_right = out_left;
|
|
}
|
|
|
|
flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
|
|
resized_width - out_right : 0;
|
|
|
|
fill_tile_column(ctx, 0, in, 0, in_right,
|
|
out, flipped_out_left, out_right);
|
|
|
|
dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
|
|
in_right, flipped_out_left, out_right);
|
|
|
|
for (row = in->num_rows - 1; row > 0; row--) {
|
|
bool allow_overshoot = row < in->num_rows - 1;
|
|
unsigned int in_top;
|
|
unsigned int out_top;
|
|
|
|
find_best_seam(ctx, row,
|
|
in_bottom, out_bottom,
|
|
in_top_align, out_top_align,
|
|
1, allow_overshoot ? 1 : out_height_align,
|
|
ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
|
|
&in_top, &out_top);
|
|
|
|
if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
|
|
ipu_rot_mode_is_irt(ctx->rot_mode))
|
|
flipped_out_top = resized_height - out_bottom;
|
|
else
|
|
flipped_out_top = out_top;
|
|
|
|
fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
|
|
out, flipped_out_top, out_bottom - out_top);
|
|
|
|
dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
|
|
in_top, in_bottom - in_top,
|
|
flipped_out_top, out_bottom - out_top);
|
|
|
|
in_bottom = in_top;
|
|
out_bottom = out_top;
|
|
}
|
|
|
|
if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
|
|
ipu_rot_mode_is_irt(ctx->rot_mode))
|
|
flipped_out_top = resized_height - out_bottom;
|
|
else
|
|
flipped_out_top = 0;
|
|
|
|
fill_tile_row(ctx, 0, in, 0, in_bottom,
|
|
out, flipped_out_top, out_bottom);
|
|
|
|
dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
|
|
in_bottom, flipped_out_top, out_bottom);
|
|
}
|
|
|
|
static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
|
|
struct ipu_image_convert_image *image)
|
|
{
|
|
struct ipu_image_convert_chan *chan = ctx->chan;
|
|
struct ipu_image_convert_priv *priv = chan->priv;
|
|
unsigned int max_width = 1024;
|
|
unsigned int max_height = 1024;
|
|
unsigned int i;
|
|
|
|
if (image->type == IMAGE_CONVERT_IN) {
|
|
/* Up to 4096x4096 input tile size */
|
|
max_width <<= ctx->downsize_coeff_h;
|
|
max_height <<= ctx->downsize_coeff_v;
|
|
}
|
|
|
|
for (i = 0; i < ctx->num_tiles; i++) {
|
|
struct ipu_image_tile *tile;
|
|
const unsigned int row = i / image->num_cols;
|
|
const unsigned int col = i % image->num_cols;
|
|
|
|
if (image->type == IMAGE_CONVERT_OUT)
|
|
tile = &image->tile[ctx->out_tile_map[i]];
|
|
else
|
|
tile = &image->tile[i];
|
|
|
|
tile->size = ((tile->height * image->fmt->bpp) >> 3) *
|
|
tile->width;
|
|
|
|
if (image->fmt->planar) {
|
|
tile->stride = tile->width;
|
|
tile->rot_stride = tile->height;
|
|
} else {
|
|
tile->stride =
|
|
(image->fmt->bpp * tile->width) >> 3;
|
|
tile->rot_stride =
|
|
(image->fmt->bpp * tile->height) >> 3;
|
|
}
|
|
|
|
dev_dbg(priv->ipu->dev,
|
|
"task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
|
|
chan->ic_task, ctx,
|
|
image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
|
|
row, col,
|
|
tile->width, tile->height, tile->left, tile->top);
|
|
|
|
if (!tile->width || tile->width > max_width ||
|
|
!tile->height || tile->height > max_height) {
|
|
dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n",
|
|
image->type == IMAGE_CONVERT_IN ? "input" :
|
|
"output", tile->width, tile->height);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Use the rotation transformation to find the tile coordinates
|
|
* (row, col) of a tile in the destination frame that corresponds
|
|
* to the given tile coordinates of a source frame. The destination
|
|
* coordinate is then converted to a tile index.
|
|
*/
|
|
static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
|
|
int src_row, int src_col)
|
|
{
|
|
struct ipu_image_convert_chan *chan = ctx->chan;
|
|
struct ipu_image_convert_priv *priv = chan->priv;
|
|
struct ipu_image_convert_image *s_image = &ctx->in;
|
|
struct ipu_image_convert_image *d_image = &ctx->out;
|
|
int dst_row, dst_col;
|
|
|
|
/* with no rotation it's a 1:1 mapping */
|
|
if (ctx->rot_mode == IPU_ROTATE_NONE)
|
|
return src_row * s_image->num_cols + src_col;
|
|
|
|
/*
|
|
* before doing the transform, first we have to translate
|
|
* source row,col for an origin in the center of s_image
|
|
*/
|
|
src_row = src_row * 2 - (s_image->num_rows - 1);
|
|
src_col = src_col * 2 - (s_image->num_cols - 1);
|
|
|
|
/* do the rotation transform */
|
|
if (ctx->rot_mode & IPU_ROT_BIT_90) {
|
|
dst_col = -src_row;
|
|
dst_row = src_col;
|
|
} else {
|
|
dst_col = src_col;
|
|
dst_row = src_row;
|
|
}
|
|
|
|
/* apply flip */
|
|
if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
|
|
dst_col = -dst_col;
|
|
if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
|
|
dst_row = -dst_row;
|
|
|
|
dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
|
|
chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
|
|
|
|
/*
|
|
* finally translate dest row,col using an origin in upper
|
|
* left of d_image
|
|
*/
|
|
dst_row += d_image->num_rows - 1;
|
|
dst_col += d_image->num_cols - 1;
|
|
dst_row /= 2;
|
|
dst_col /= 2;
|
|
|
|
return dst_row * d_image->num_cols + dst_col;
|
|
}
|
|
|
|
/*
|
|
* Fill the out_tile_map[] with transformed destination tile indeces.
|
|
*/
|
|
static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
|
|
{
|
|
struct ipu_image_convert_image *s_image = &ctx->in;
|
|
unsigned int row, col, tile = 0;
|
|
|
|
for (row = 0; row < s_image->num_rows; row++) {
|
|
for (col = 0; col < s_image->num_cols; col++) {
|
|
ctx->out_tile_map[tile] =
|
|
transform_tile_index(ctx, row, col);
|
|
tile++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
|
|
struct ipu_image_convert_image *image)
|
|
{
|
|
struct ipu_image_convert_chan *chan = ctx->chan;
|
|
struct ipu_image_convert_priv *priv = chan->priv;
|
|
const struct ipu_image_pixfmt *fmt = image->fmt;
|
|
unsigned int row, col, tile = 0;
|
|
u32 H, top, y_stride, uv_stride;
|
|
u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
|
|
u32 y_row_off, y_col_off, y_off;
|
|
u32 y_size, uv_size;
|
|
|
|
/* setup some convenience vars */
|
|
H = image->base.pix.height;
|
|
|
|
y_stride = image->stride;
|
|
uv_stride = y_stride / fmt->uv_width_dec;
|
|
if (fmt->uv_packed)
|
|
uv_stride *= 2;
|
|
|
|
y_size = H * y_stride;
|
|
uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
|
|
|
|
for (row = 0; row < image->num_rows; row++) {
|
|
top = image->tile[tile].top;
|
|
y_row_off = top * y_stride;
|
|
uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
|
|
|
|
for (col = 0; col < image->num_cols; col++) {
|
|
y_col_off = image->tile[tile].left;
|
|
uv_col_off = y_col_off / fmt->uv_width_dec;
|
|
if (fmt->uv_packed)
|
|
uv_col_off *= 2;
|
|
|
|
y_off = y_row_off + y_col_off;
|
|
uv_off = uv_row_off + uv_col_off;
|
|
|
|
u_off = y_size - y_off + uv_off;
|
|
v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
|
|
if (fmt->uv_swapped) {
|
|
tmp = u_off;
|
|
u_off = v_off;
|
|
v_off = tmp;
|
|
}
|
|
|
|
image->tile[tile].offset = y_off;
|
|
image->tile[tile].u_off = u_off;
|
|
image->tile[tile++].v_off = v_off;
|
|
|
|
if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
|
|
dev_err(priv->ipu->dev,
|
|
"task %u: ctx %p: %s@[%d,%d]: "
|
|
"y_off %08x, u_off %08x, v_off %08x\n",
|
|
chan->ic_task, ctx,
|
|
image->type == IMAGE_CONVERT_IN ?
|
|
"Input" : "Output", row, col,
|
|
y_off, u_off, v_off);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
|
|
struct ipu_image_convert_image *image)
|
|
{
|
|
struct ipu_image_convert_chan *chan = ctx->chan;
|
|
struct ipu_image_convert_priv *priv = chan->priv;
|
|
const struct ipu_image_pixfmt *fmt = image->fmt;
|
|
unsigned int row, col, tile = 0;
|
|
u32 bpp, stride, offset;
|
|
u32 row_off, col_off;
|
|
|
|
/* setup some convenience vars */
|
|
stride = image->stride;
|
|
bpp = fmt->bpp;
|
|
|
|
for (row = 0; row < image->num_rows; row++) {
|
|
row_off = image->tile[tile].top * stride;
|
|
|
|
for (col = 0; col < image->num_cols; col++) {
|
|
col_off = (image->tile[tile].left * bpp) >> 3;
|
|
|
|
offset = row_off + col_off;
|
|
|
|
image->tile[tile].offset = offset;
|
|
image->tile[tile].u_off = 0;
|
|
image->tile[tile++].v_off = 0;
|
|
|
|
if (offset & 0x7) {
|
|
dev_err(priv->ipu->dev,
|
|
"task %u: ctx %p: %s@[%d,%d]: "
|
|
"phys %08x\n",
|
|
chan->ic_task, ctx,
|
|
image->type == IMAGE_CONVERT_IN ?
|
|
"Input" : "Output", row, col,
|
|
row_off + col_off);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
|
|
struct ipu_image_convert_image *image)
|
|
{
|
|
if (image->fmt->planar)
|
|
return calc_tile_offsets_planar(ctx, image);
|
|
|
|
return calc_tile_offsets_packed(ctx, image);
|
|
}
|
|
|
|
/*
|
|
* Calculate the resizing ratio for the IC main processing section given input
|
|
* size, fixed downsizing coefficient, and output size.
|
|
* Either round to closest for the next tile's first pixel to minimize seams
|
|
* and distortion (for all but right column / bottom row), or round down to
|
|
* avoid sampling beyond the edges of the input image for this tile's last
|
|
* pixel.
|
|
* Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
|
|
*/
|
|
static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
|
|
u32 output_size, bool allow_overshoot)
|
|
{
|
|
u32 downsized = input_size >> downsize_coeff;
|
|
|
|
if (allow_overshoot)
|
|
return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
|
|
else
|
|
return 8192 * (downsized - 1) / (output_size - 1);
|
|
}
|
|
|
|
/*
|
|
* Slightly modify resize coefficients per tile to hide the bilinear
|
|
* interpolator reset at tile borders, shifting the right / bottom edge
|
|
* by up to a half input pixel. This removes noticeable seams between
|
|
* tiles at higher upscaling factors.
|
|
*/
|
|
static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
|
|
{
|
|
struct ipu_image_convert_chan *chan = ctx->chan;
|
|
struct ipu_image_convert_priv *priv = chan->priv;
|
|
struct ipu_image_tile *in_tile, *out_tile;
|
|
unsigned int col, row, tile_idx;
|
|
unsigned int last_output;
|
|
|
|
for (col = 0; col < ctx->in.num_cols; col++) {
|
|
bool closest = (col < ctx->in.num_cols - 1) &&
|
|
!(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
|
|
u32 resized_width;
|
|
u32 resize_coeff_h;
|
|
u32 in_width;
|
|
|
|
tile_idx = col;
|
|
in_tile = &ctx->in.tile[tile_idx];
|
|
out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
|
|
|
|
if (ipu_rot_mode_is_irt(ctx->rot_mode))
|
|
resized_width = out_tile->height;
|
|
else
|
|
resized_width = out_tile->width;
|
|
|
|
resize_coeff_h = calc_resize_coeff(in_tile->width,
|
|
ctx->downsize_coeff_h,
|
|
resized_width, closest);
|
|
|
|
dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
|
|
__func__, col, resize_coeff_h);
|
|
|
|
/*
|
|
* With the horizontal scaling factor known, round up resized
|
|
* width (output width or height) to burst size.
|
|
*/
|
|
resized_width = round_up(resized_width, 8);
|
|
|
|
/*
|
|
* Calculate input width from the last accessed input pixel
|
|
* given resized width and scaling coefficients. Round up to
|
|
* burst size.
|
|
*/
|
|
last_output = resized_width - 1;
|
|
if (closest && ((last_output * resize_coeff_h) % 8192))
|
|
last_output++;
|
|
in_width = round_up(
|
|
(DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1)
|
|
<< ctx->downsize_coeff_h, 8);
|
|
|
|
for (row = 0; row < ctx->in.num_rows; row++) {
|
|
tile_idx = row * ctx->in.num_cols + col;
|
|
in_tile = &ctx->in.tile[tile_idx];
|
|
out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
|
|
|
|
if (ipu_rot_mode_is_irt(ctx->rot_mode))
|
|
out_tile->height = resized_width;
|
|
else
|
|
out_tile->width = resized_width;
|
|
|
|
in_tile->width = in_width;
|
|
}
|
|
|
|
ctx->resize_coeffs_h[col] = resize_coeff_h;
|
|
}
|
|
|
|
for (row = 0; row < ctx->in.num_rows; row++) {
|
|
bool closest = (row < ctx->in.num_rows - 1) &&
|
|
!(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
|
|
u32 resized_height;
|
|
u32 resize_coeff_v;
|
|
u32 in_height;
|
|
|
|
tile_idx = row * ctx->in.num_cols;
|
|
in_tile = &ctx->in.tile[tile_idx];
|
|
out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
|
|
|
|
if (ipu_rot_mode_is_irt(ctx->rot_mode))
|
|
resized_height = out_tile->width;
|
|
else
|
|
resized_height = out_tile->height;
|
|
|
|
resize_coeff_v = calc_resize_coeff(in_tile->height,
|
|
ctx->downsize_coeff_v,
|
|
resized_height, closest);
|
|
|
|
dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
|
|
__func__, row, resize_coeff_v);
|
|
|
|
/*
|
|
* With the vertical scaling factor known, round up resized
|
|
* height (output width or height) to IDMAC limitations.
|
|
*/
|
|
resized_height = round_up(resized_height, 2);
|
|
|
|
/*
|
|
* Calculate input width from the last accessed input pixel
|
|
* given resized height and scaling coefficients. Align to
|
|
* IDMAC restrictions.
|
|
*/
|
|
last_output = resized_height - 1;
|
|
if (closest && ((last_output * resize_coeff_v) % 8192))
|
|
last_output++;
|
|
in_height = round_up(
|
|
(DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1)
|
|
<< ctx->downsize_coeff_v, 2);
|
|
|
|
for (col = 0; col < ctx->in.num_cols; col++) {
|
|
tile_idx = row * ctx->in.num_cols + col;
|
|
in_tile = &ctx->in.tile[tile_idx];
|
|
out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
|
|
|
|
if (ipu_rot_mode_is_irt(ctx->rot_mode))
|
|
out_tile->width = resized_height;
|
|
else
|
|
out_tile->height = resized_height;
|
|
|
|
in_tile->height = in_height;
|
|
}
|
|
|
|
ctx->resize_coeffs_v[row] = resize_coeff_v;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* return the number of runs in given queue (pending_q or done_q)
|
|
* for this context. hold irqlock when calling.
|
|
*/
|
|
static int get_run_count(struct ipu_image_convert_ctx *ctx,
|
|
struct list_head *q)
|
|
{
|
|
struct ipu_image_convert_run *run;
|
|
int count = 0;
|
|
|
|
lockdep_assert_held(&ctx->chan->irqlock);
|
|
|
|
list_for_each_entry(run, q, list) {
|
|
if (run->ctx == ctx)
|
|
count++;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static void convert_stop(struct ipu_image_convert_run *run)
|
|
{
|
|
struct ipu_image_convert_ctx *ctx = run->ctx;
|
|
struct ipu_image_convert_chan *chan = ctx->chan;
|
|
struct ipu_image_convert_priv *priv = chan->priv;
|
|
|
|
dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
|
|
__func__, chan->ic_task, ctx, run);
|
|
|
|
/* disable IC tasks and the channels */
|
|
ipu_ic_task_disable(chan->ic);
|
|
ipu_idmac_disable_channel(chan->in_chan);
|
|
ipu_idmac_disable_channel(chan->out_chan);
|
|
|
|
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
|
|
ipu_idmac_disable_channel(chan->rotation_in_chan);
|
|
ipu_idmac_disable_channel(chan->rotation_out_chan);
|
|
ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
|
|
}
|
|
|
|
ipu_ic_disable(chan->ic);
|
|
}
|
|
|
|
static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
|
|
struct ipuv3_channel *channel,
|
|
struct ipu_image_convert_image *image,
|
|
enum ipu_rotate_mode rot_mode,
|
|
bool rot_swap_width_height,
|
|
unsigned int tile)
|
|
{
|
|
struct ipu_image_convert_chan *chan = ctx->chan;
|
|
unsigned int burst_size;
|
|
u32 width, height, stride;
|
|
dma_addr_t addr0, addr1 = 0;
|
|
struct ipu_image tile_image;
|
|
unsigned int tile_idx[2];
|
|
|
|
if (image->type == IMAGE_CONVERT_OUT) {
|
|
tile_idx[0] = ctx->out_tile_map[tile];
|
|
tile_idx[1] = ctx->out_tile_map[1];
|
|
} else {
|
|
tile_idx[0] = tile;
|
|
tile_idx[1] = 1;
|
|
}
|
|
|
|
if (rot_swap_width_height) {
|
|
width = image->tile[tile_idx[0]].height;
|
|
height = image->tile[tile_idx[0]].width;
|
|
stride = image->tile[tile_idx[0]].rot_stride;
|
|
addr0 = ctx->rot_intermediate[0].phys;
|
|
if (ctx->double_buffering)
|
|
addr1 = ctx->rot_intermediate[1].phys;
|
|
} else {
|
|
width = image->tile[tile_idx[0]].width;
|
|
height = image->tile[tile_idx[0]].height;
|
|
stride = image->stride;
|
|
addr0 = image->base.phys0 +
|
|
image->tile[tile_idx[0]].offset;
|
|
if (ctx->double_buffering)
|
|
addr1 = image->base.phys0 +
|
|
image->tile[tile_idx[1]].offset;
|
|
}
|
|
|
|
ipu_cpmem_zero(channel);
|
|
|
|
memset(&tile_image, 0, sizeof(tile_image));
|
|
tile_image.pix.width = tile_image.rect.width = width;
|
|
tile_image.pix.height = tile_image.rect.height = height;
|
|
tile_image.pix.bytesperline = stride;
|
|
tile_image.pix.pixelformat = image->fmt->fourcc;
|
|
tile_image.phys0 = addr0;
|
|
tile_image.phys1 = addr1;
|
|
if (image->fmt->planar && !rot_swap_width_height) {
|
|
tile_image.u_offset = image->tile[tile_idx[0]].u_off;
|
|
tile_image.v_offset = image->tile[tile_idx[0]].v_off;
|
|
}
|
|
|
|
ipu_cpmem_set_image(channel, &tile_image);
|
|
|
|
if (rot_mode)
|
|
ipu_cpmem_set_rotation(channel, rot_mode);
|
|
|
|
/*
|
|
* Skip writing U and V components to odd rows in the output
|
|
* channels for planar 4:2:0.
|
|
*/
|
|
if ((channel == chan->out_chan ||
|
|
channel == chan->rotation_out_chan) &&
|
|
image->fmt->planar && image->fmt->uv_height_dec == 2)
|
|
ipu_cpmem_skip_odd_chroma_rows(channel);
|
|
|
|
if (channel == chan->rotation_in_chan ||
|
|
channel == chan->rotation_out_chan) {
|
|
burst_size = 8;
|
|
ipu_cpmem_set_block_mode(channel);
|
|
} else
|
|
burst_size = (width % 16) ? 8 : 16;
|
|
|
|
ipu_cpmem_set_burstsize(channel, burst_size);
|
|
|
|
ipu_ic_task_idma_init(chan->ic, channel, width, height,
|
|
burst_size, rot_mode);
|
|
|
|
/*
|
|
* Setting a non-zero AXI ID collides with the PRG AXI snooping, so
|
|
* only do this when there is no PRG present.
|
|
*/
|
|
if (!channel->ipu->prg_priv)
|
|
ipu_cpmem_set_axi_id(channel, 1);
|
|
|
|
ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
|
|
}
|
|
|
|
static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
|
|
{
|
|
struct ipu_image_convert_ctx *ctx = run->ctx;
|
|
struct ipu_image_convert_chan *chan = ctx->chan;
|
|
struct ipu_image_convert_priv *priv = chan->priv;
|
|
struct ipu_image_convert_image *s_image = &ctx->in;
|
|
struct ipu_image_convert_image *d_image = &ctx->out;
|
|
unsigned int dst_tile = ctx->out_tile_map[tile];
|
|
unsigned int dest_width, dest_height;
|
|
unsigned int col, row;
|
|
u32 rsc;
|
|
int ret;
|
|
|
|
dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
|
|
__func__, chan->ic_task, ctx, run, tile, dst_tile);
|
|
|
|
/* clear EOF irq mask */
|
|
ctx->eof_mask = 0;
|
|
|
|
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
|
|
/* swap width/height for resizer */
|
|
dest_width = d_image->tile[dst_tile].height;
|
|
dest_height = d_image->tile[dst_tile].width;
|
|
} else {
|
|
dest_width = d_image->tile[dst_tile].width;
|
|
dest_height = d_image->tile[dst_tile].height;
|
|
}
|
|
|
|
row = tile / s_image->num_cols;
|
|
col = tile % s_image->num_cols;
|
|
|
|
rsc = (ctx->downsize_coeff_v << 30) |
|
|
(ctx->resize_coeffs_v[row] << 16) |
|
|
(ctx->downsize_coeff_h << 14) |
|
|
(ctx->resize_coeffs_h[col]);
|
|
|
|
dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
|
|
__func__, s_image->tile[tile].width,
|
|
s_image->tile[tile].height, dest_width, dest_height, rsc);
|
|
|
|
/* setup the IC resizer and CSC */
|
|
ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
|
|
s_image->tile[tile].width,
|
|
s_image->tile[tile].height,
|
|
dest_width,
|
|
dest_height,
|
|
rsc);
|
|
if (ret) {
|
|
dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* init the source MEM-->IC PP IDMAC channel */
|
|
init_idmac_channel(ctx, chan->in_chan, s_image,
|
|
IPU_ROTATE_NONE, false, tile);
|
|
|
|
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
|
|
/* init the IC PP-->MEM IDMAC channel */
|
|
init_idmac_channel(ctx, chan->out_chan, d_image,
|
|
IPU_ROTATE_NONE, true, tile);
|
|
|
|
/* init the MEM-->IC PP ROT IDMAC channel */
|
|
init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
|
|
ctx->rot_mode, true, tile);
|
|
|
|
/* init the destination IC PP ROT-->MEM IDMAC channel */
|
|
init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
|
|
IPU_ROTATE_NONE, false, tile);
|
|
|
|
/* now link IC PP-->MEM to MEM-->IC PP ROT */
|
|
ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
|
|
} else {
|
|
/* init the destination IC PP-->MEM IDMAC channel */
|
|
init_idmac_channel(ctx, chan->out_chan, d_image,
|
|
ctx->rot_mode, false, tile);
|
|
}
|
|
|
|
/* enable the IC */
|
|
ipu_ic_enable(chan->ic);
|
|
|
|
/* set buffers ready */
|
|
ipu_idmac_select_buffer(chan->in_chan, 0);
|
|
ipu_idmac_select_buffer(chan->out_chan, 0);
|
|
if (ipu_rot_mode_is_irt(ctx->rot_mode))
|
|
ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
|
|
if (ctx->double_buffering) {
|
|
ipu_idmac_select_buffer(chan->in_chan, 1);
|
|
ipu_idmac_select_buffer(chan->out_chan, 1);
|
|
if (ipu_rot_mode_is_irt(ctx->rot_mode))
|
|
ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
|
|
}
|
|
|
|
/* enable the channels! */
|
|
ipu_idmac_enable_channel(chan->in_chan);
|
|
ipu_idmac_enable_channel(chan->out_chan);
|
|
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
|
|
ipu_idmac_enable_channel(chan->rotation_in_chan);
|
|
ipu_idmac_enable_channel(chan->rotation_out_chan);
|
|
}
|
|
|
|
ipu_ic_task_enable(chan->ic);
|
|
|
|
ipu_cpmem_dump(chan->in_chan);
|
|
ipu_cpmem_dump(chan->out_chan);
|
|
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
|
|
ipu_cpmem_dump(chan->rotation_in_chan);
|
|
ipu_cpmem_dump(chan->rotation_out_chan);
|
|
}
|
|
|
|
ipu_dump(priv->ipu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* hold irqlock when calling */
|
|
static int do_run(struct ipu_image_convert_run *run)
|
|
{
|
|
struct ipu_image_convert_ctx *ctx = run->ctx;
|
|
struct ipu_image_convert_chan *chan = ctx->chan;
|
|
|
|
lockdep_assert_held(&chan->irqlock);
|
|
|
|
ctx->in.base.phys0 = run->in_phys;
|
|
ctx->out.base.phys0 = run->out_phys;
|
|
|
|
ctx->cur_buf_num = 0;
|
|
ctx->next_tile = 1;
|
|
|
|
/* remove run from pending_q and set as current */
|
|
list_del(&run->list);
|
|
chan->current_run = run;
|
|
|
|
return convert_start(run, 0);
|
|
}
|
|
|
|
/* hold irqlock when calling */
|
|
static void run_next(struct ipu_image_convert_chan *chan)
|
|
{
|
|
struct ipu_image_convert_priv *priv = chan->priv;
|
|
struct ipu_image_convert_run *run, *tmp;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&chan->irqlock);
|
|
|
|
list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
|
|
/* skip contexts that are aborting */
|
|
if (run->ctx->aborting) {
|
|
dev_dbg(priv->ipu->dev,
|
|
"%s: task %u: skipping aborting ctx %p run %p\n",
|
|
__func__, chan->ic_task, run->ctx, run);
|
|
continue;
|
|
}
|
|
|
|
ret = do_run(run);
|
|
if (!ret)
|
|
break;
|
|
|
|
/*
|
|
* something went wrong with start, add the run
|
|
* to done q and continue to the next run in the
|
|
* pending q.
|
|
*/
|
|
run->status = ret;
|
|
list_add_tail(&run->list, &chan->done_q);
|
|
chan->current_run = NULL;
|
|
}
|
|
}
|
|
|
|
static void empty_done_q(struct ipu_image_convert_chan *chan)
|
|
{
|
|
struct ipu_image_convert_priv *priv = chan->priv;
|
|
struct ipu_image_convert_run *run;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->irqlock, flags);
|
|
|
|
while (!list_empty(&chan->done_q)) {
|
|
run = list_entry(chan->done_q.next,
|
|
struct ipu_image_convert_run,
|
|
list);
|
|
|
|
list_del(&run->list);
|
|
|
|
dev_dbg(priv->ipu->dev,
|
|
"%s: task %u: completing ctx %p run %p with %d\n",
|
|
__func__, chan->ic_task, run->ctx, run, run->status);
|
|
|
|
/* call the completion callback and free the run */
|
|
spin_unlock_irqrestore(&chan->irqlock, flags);
|
|
run->ctx->complete(run, run->ctx->complete_context);
|
|
spin_lock_irqsave(&chan->irqlock, flags);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&chan->irqlock, flags);
|
|
}
|
|
|
|
/*
|
|
* the bottom half thread clears out the done_q, calling the
|
|
* completion handler for each.
|
|
*/
|
|
static irqreturn_t do_bh(int irq, void *dev_id)
|
|
{
|
|
struct ipu_image_convert_chan *chan = dev_id;
|
|
struct ipu_image_convert_priv *priv = chan->priv;
|
|
struct ipu_image_convert_ctx *ctx;
|
|
unsigned long flags;
|
|
|
|
dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
|
|
chan->ic_task);
|
|
|
|
empty_done_q(chan);
|
|
|
|
spin_lock_irqsave(&chan->irqlock, flags);
|
|
|
|
/*
|
|
* the done_q is cleared out, signal any contexts
|
|
* that are aborting that abort can complete.
|
|
*/
|
|
list_for_each_entry(ctx, &chan->ctx_list, list) {
|
|
if (ctx->aborting) {
|
|
dev_dbg(priv->ipu->dev,
|
|
"%s: task %u: signaling abort for ctx %p\n",
|
|
__func__, chan->ic_task, ctx);
|
|
complete_all(&ctx->aborted);
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&chan->irqlock, flags);
|
|
|
|
dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
|
|
chan->ic_task);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
|
|
{
|
|
unsigned int cur_tile = ctx->next_tile - 1;
|
|
unsigned int next_tile = ctx->next_tile;
|
|
|
|
if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
|
|
ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
|
|
ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
|
|
ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
|
|
ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
|
|
ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
|
|
ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
|
|
ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* hold irqlock when calling */
|
|
static irqreturn_t do_tile_complete(struct ipu_image_convert_run *run)
|
|
{
|
|
struct ipu_image_convert_ctx *ctx = run->ctx;
|
|
struct ipu_image_convert_chan *chan = ctx->chan;
|
|
struct ipu_image_tile *src_tile, *dst_tile;
|
|
struct ipu_image_convert_image *s_image = &ctx->in;
|
|
struct ipu_image_convert_image *d_image = &ctx->out;
|
|
struct ipuv3_channel *outch;
|
|
unsigned int dst_idx;
|
|
|
|
lockdep_assert_held(&chan->irqlock);
|
|
|
|
outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
|
|
chan->rotation_out_chan : chan->out_chan;
|
|
|
|
/*
|
|
* It is difficult to stop the channel DMA before the channels
|
|
* enter the paused state. Without double-buffering the channels
|
|
* are always in a paused state when the EOF irq occurs, so it
|
|
* is safe to stop the channels now. For double-buffering we
|
|
* just ignore the abort until the operation completes, when it
|
|
* is safe to shut down.
|
|
*/
|
|
if (ctx->aborting && !ctx->double_buffering) {
|
|
convert_stop(run);
|
|
run->status = -EIO;
|
|
goto done;
|
|
}
|
|
|
|
if (ctx->next_tile == ctx->num_tiles) {
|
|
/*
|
|
* the conversion is complete
|
|
*/
|
|
convert_stop(run);
|
|
run->status = 0;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* not done, place the next tile buffers.
|
|
*/
|
|
if (!ctx->double_buffering) {
|
|
if (ic_settings_changed(ctx)) {
|
|
convert_stop(run);
|
|
convert_start(run, ctx->next_tile);
|
|
} else {
|
|
src_tile = &s_image->tile[ctx->next_tile];
|
|
dst_idx = ctx->out_tile_map[ctx->next_tile];
|
|
dst_tile = &d_image->tile[dst_idx];
|
|
|
|
ipu_cpmem_set_buffer(chan->in_chan, 0,
|
|
s_image->base.phys0 +
|
|
src_tile->offset);
|
|
ipu_cpmem_set_buffer(outch, 0,
|
|
d_image->base.phys0 +
|
|
dst_tile->offset);
|
|
if (s_image->fmt->planar)
|
|
ipu_cpmem_set_uv_offset(chan->in_chan,
|
|
src_tile->u_off,
|
|
src_tile->v_off);
|
|
if (d_image->fmt->planar)
|
|
ipu_cpmem_set_uv_offset(outch,
|
|
dst_tile->u_off,
|
|
dst_tile->v_off);
|
|
|
|
ipu_idmac_select_buffer(chan->in_chan, 0);
|
|
ipu_idmac_select_buffer(outch, 0);
|
|
}
|
|
} else if (ctx->next_tile < ctx->num_tiles - 1) {
|
|
|
|
src_tile = &s_image->tile[ctx->next_tile + 1];
|
|
dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
|
|
dst_tile = &d_image->tile[dst_idx];
|
|
|
|
ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
|
|
s_image->base.phys0 + src_tile->offset);
|
|
ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
|
|
d_image->base.phys0 + dst_tile->offset);
|
|
|
|
ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
|
|
ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
|
|
|
|
ctx->cur_buf_num ^= 1;
|
|
}
|
|
|
|
ctx->eof_mask = 0; /* clear EOF irq mask for next tile */
|
|
ctx->next_tile++;
|
|
return IRQ_HANDLED;
|
|
done:
|
|
list_add_tail(&run->list, &chan->done_q);
|
|
chan->current_run = NULL;
|
|
run_next(chan);
|
|
return IRQ_WAKE_THREAD;
|
|
}
|
|
|
|
static irqreturn_t eof_irq(int irq, void *data)
|
|
{
|
|
struct ipu_image_convert_chan *chan = data;
|
|
struct ipu_image_convert_priv *priv = chan->priv;
|
|
struct ipu_image_convert_ctx *ctx;
|
|
struct ipu_image_convert_run *run;
|
|
irqreturn_t ret = IRQ_HANDLED;
|
|
bool tile_complete = false;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->irqlock, flags);
|
|
|
|
/* get current run and its context */
|
|
run = chan->current_run;
|
|
if (!run) {
|
|
ret = IRQ_NONE;
|
|
goto out;
|
|
}
|
|
|
|
ctx = run->ctx;
|
|
|
|
if (irq == chan->in_eof_irq) {
|
|
ctx->eof_mask |= EOF_IRQ_IN;
|
|
} else if (irq == chan->out_eof_irq) {
|
|
ctx->eof_mask |= EOF_IRQ_OUT;
|
|
} else if (irq == chan->rot_in_eof_irq ||
|
|
irq == chan->rot_out_eof_irq) {
|
|
if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
|
|
/* this was NOT a rotation op, shouldn't happen */
|
|
dev_err(priv->ipu->dev,
|
|
"Unexpected rotation interrupt\n");
|
|
goto out;
|
|
}
|
|
ctx->eof_mask |= (irq == chan->rot_in_eof_irq) ?
|
|
EOF_IRQ_ROT_IN : EOF_IRQ_ROT_OUT;
|
|
} else {
|
|
dev_err(priv->ipu->dev, "Received unknown irq %d\n", irq);
|
|
ret = IRQ_NONE;
|
|
goto out;
|
|
}
|
|
|
|
if (ipu_rot_mode_is_irt(ctx->rot_mode))
|
|
tile_complete = (ctx->eof_mask == EOF_IRQ_ROT_COMPLETE);
|
|
else
|
|
tile_complete = (ctx->eof_mask == EOF_IRQ_COMPLETE);
|
|
|
|
if (tile_complete)
|
|
ret = do_tile_complete(run);
|
|
out:
|
|
spin_unlock_irqrestore(&chan->irqlock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* try to force the completion of runs for this ctx. Called when
|
|
* abort wait times out in ipu_image_convert_abort().
|
|
*/
|
|
static void force_abort(struct ipu_image_convert_ctx *ctx)
|
|
{
|
|
struct ipu_image_convert_chan *chan = ctx->chan;
|
|
struct ipu_image_convert_run *run;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->irqlock, flags);
|
|
|
|
run = chan->current_run;
|
|
if (run && run->ctx == ctx) {
|
|
convert_stop(run);
|
|
run->status = -EIO;
|
|
list_add_tail(&run->list, &chan->done_q);
|
|
chan->current_run = NULL;
|
|
run_next(chan);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&chan->irqlock, flags);
|
|
|
|
empty_done_q(chan);
|
|
}
|
|
|
|
static void release_ipu_resources(struct ipu_image_convert_chan *chan)
|
|
{
|
|
if (chan->in_eof_irq >= 0)
|
|
free_irq(chan->in_eof_irq, chan);
|
|
if (chan->rot_in_eof_irq >= 0)
|
|
free_irq(chan->rot_in_eof_irq, chan);
|
|
if (chan->out_eof_irq >= 0)
|
|
free_irq(chan->out_eof_irq, chan);
|
|
if (chan->rot_out_eof_irq >= 0)
|
|
free_irq(chan->rot_out_eof_irq, chan);
|
|
|
|
if (!IS_ERR_OR_NULL(chan->in_chan))
|
|
ipu_idmac_put(chan->in_chan);
|
|
if (!IS_ERR_OR_NULL(chan->out_chan))
|
|
ipu_idmac_put(chan->out_chan);
|
|
if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
|
|
ipu_idmac_put(chan->rotation_in_chan);
|
|
if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
|
|
ipu_idmac_put(chan->rotation_out_chan);
|
|
if (!IS_ERR_OR_NULL(chan->ic))
|
|
ipu_ic_put(chan->ic);
|
|
|
|
chan->in_chan = chan->out_chan = chan->rotation_in_chan =
|
|
chan->rotation_out_chan = NULL;
|
|
chan->in_eof_irq = -1;
|
|
chan->rot_in_eof_irq = -1;
|
|
chan->out_eof_irq = -1;
|
|
chan->rot_out_eof_irq = -1;
|
|
}
|
|
|
|
static int get_eof_irq(struct ipu_image_convert_chan *chan,
|
|
struct ipuv3_channel *channel)
|
|
{
|
|
struct ipu_image_convert_priv *priv = chan->priv;
|
|
int ret, irq;
|
|
|
|
irq = ipu_idmac_channel_irq(priv->ipu, channel, IPU_IRQ_EOF);
|
|
|
|
ret = request_threaded_irq(irq, eof_irq, do_bh, 0, "ipu-ic", chan);
|
|
if (ret < 0) {
|
|
dev_err(priv->ipu->dev, "could not acquire irq %d\n", irq);
|
|
return ret;
|
|
}
|
|
|
|
return irq;
|
|
}
|
|
|
|
static int get_ipu_resources(struct ipu_image_convert_chan *chan)
|
|
{
|
|
const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
|
|
struct ipu_image_convert_priv *priv = chan->priv;
|
|
int ret;
|
|
|
|
/* get IC */
|
|
chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
|
|
if (IS_ERR(chan->ic)) {
|
|
dev_err(priv->ipu->dev, "could not acquire IC\n");
|
|
ret = PTR_ERR(chan->ic);
|
|
goto err;
|
|
}
|
|
|
|
/* get IDMAC channels */
|
|
chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
|
|
chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
|
|
if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
|
|
dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
|
|
ret = -EBUSY;
|
|
goto err;
|
|
}
|
|
|
|
chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
|
|
chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
|
|
if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
|
|
dev_err(priv->ipu->dev,
|
|
"could not acquire idmac rotation channels\n");
|
|
ret = -EBUSY;
|
|
goto err;
|
|
}
|
|
|
|
/* acquire the EOF interrupts */
|
|
ret = get_eof_irq(chan, chan->in_chan);
|
|
if (ret < 0) {
|
|
chan->in_eof_irq = -1;
|
|
goto err;
|
|
}
|
|
chan->in_eof_irq = ret;
|
|
|
|
ret = get_eof_irq(chan, chan->rotation_in_chan);
|
|
if (ret < 0) {
|
|
chan->rot_in_eof_irq = -1;
|
|
goto err;
|
|
}
|
|
chan->rot_in_eof_irq = ret;
|
|
|
|
ret = get_eof_irq(chan, chan->out_chan);
|
|
if (ret < 0) {
|
|
chan->out_eof_irq = -1;
|
|
goto err;
|
|
}
|
|
chan->out_eof_irq = ret;
|
|
|
|
ret = get_eof_irq(chan, chan->rotation_out_chan);
|
|
if (ret < 0) {
|
|
chan->rot_out_eof_irq = -1;
|
|
goto err;
|
|
}
|
|
chan->rot_out_eof_irq = ret;
|
|
|
|
return 0;
|
|
err:
|
|
release_ipu_resources(chan);
|
|
return ret;
|
|
}
|
|
|
|
static int fill_image(struct ipu_image_convert_ctx *ctx,
|
|
struct ipu_image_convert_image *ic_image,
|
|
struct ipu_image *image,
|
|
enum ipu_image_convert_type type)
|
|
{
|
|
struct ipu_image_convert_priv *priv = ctx->chan->priv;
|
|
|
|
ic_image->base = *image;
|
|
ic_image->type = type;
|
|
|
|
ic_image->fmt = get_format(image->pix.pixelformat);
|
|
if (!ic_image->fmt) {
|
|
dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
|
|
type == IMAGE_CONVERT_OUT ? "Output" : "Input");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ic_image->fmt->planar)
|
|
ic_image->stride = ic_image->base.pix.width;
|
|
else
|
|
ic_image->stride = ic_image->base.pix.bytesperline;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* borrowed from drivers/media/v4l2-core/v4l2-common.c */
|
|
static unsigned int clamp_align(unsigned int x, unsigned int min,
|
|
unsigned int max, unsigned int align)
|
|
{
|
|
/* Bits that must be zero to be aligned */
|
|
unsigned int mask = ~((1 << align) - 1);
|
|
|
|
/* Clamp to aligned min and max */
|
|
x = clamp(x, (min + ~mask) & mask, max & mask);
|
|
|
|
/* Round to nearest aligned value */
|
|
if (align)
|
|
x = (x + (1 << (align - 1))) & mask;
|
|
|
|
return x;
|
|
}
|
|
|
|
/* Adjusts input/output images to IPU restrictions */
|
|
void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
|
|
enum ipu_rotate_mode rot_mode)
|
|
{
|
|
const struct ipu_image_pixfmt *infmt, *outfmt;
|
|
u32 w_align_out, h_align_out;
|
|
u32 w_align_in, h_align_in;
|
|
|
|
infmt = get_format(in->pix.pixelformat);
|
|
outfmt = get_format(out->pix.pixelformat);
|
|
|
|
/* set some default pixel formats if needed */
|
|
if (!infmt) {
|
|
in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
|
|
infmt = get_format(V4L2_PIX_FMT_RGB24);
|
|
}
|
|
if (!outfmt) {
|
|
out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
|
|
outfmt = get_format(V4L2_PIX_FMT_RGB24);
|
|
}
|
|
|
|
/* image converter does not handle fields */
|
|
in->pix.field = out->pix.field = V4L2_FIELD_NONE;
|
|
|
|
/* resizer cannot downsize more than 4:1 */
|
|
if (ipu_rot_mode_is_irt(rot_mode)) {
|
|
out->pix.height = max_t(__u32, out->pix.height,
|
|
in->pix.width / 4);
|
|
out->pix.width = max_t(__u32, out->pix.width,
|
|
in->pix.height / 4);
|
|
} else {
|
|
out->pix.width = max_t(__u32, out->pix.width,
|
|
in->pix.width / 4);
|
|
out->pix.height = max_t(__u32, out->pix.height,
|
|
in->pix.height / 4);
|
|
}
|
|
|
|
/* align input width/height */
|
|
w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
|
|
rot_mode));
|
|
h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
|
|
rot_mode));
|
|
in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
|
|
w_align_in);
|
|
in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
|
|
h_align_in);
|
|
|
|
/* align output width/height */
|
|
w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
|
|
rot_mode));
|
|
h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
|
|
rot_mode));
|
|
out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
|
|
w_align_out);
|
|
out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
|
|
h_align_out);
|
|
|
|
/* set input/output strides and image sizes */
|
|
in->pix.bytesperline = infmt->planar ?
|
|
clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
|
|
w_align_in) :
|
|
clamp_align((in->pix.width * infmt->bpp) >> 3,
|
|
((2 << w_align_in) * infmt->bpp) >> 3,
|
|
(MAX_W * infmt->bpp) >> 3,
|
|
w_align_in);
|
|
in->pix.sizeimage = infmt->planar ?
|
|
(in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
|
|
in->pix.height * in->pix.bytesperline;
|
|
out->pix.bytesperline = outfmt->planar ? out->pix.width :
|
|
(out->pix.width * outfmt->bpp) >> 3;
|
|
out->pix.sizeimage = outfmt->planar ?
|
|
(out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
|
|
out->pix.height * out->pix.bytesperline;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
|
|
|
|
/*
|
|
* this is used by ipu_image_convert_prepare() to verify set input and
|
|
* output images are valid before starting the conversion. Clients can
|
|
* also call it before calling ipu_image_convert_prepare().
|
|
*/
|
|
int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
|
|
enum ipu_rotate_mode rot_mode)
|
|
{
|
|
struct ipu_image testin, testout;
|
|
|
|
testin = *in;
|
|
testout = *out;
|
|
|
|
ipu_image_convert_adjust(&testin, &testout, rot_mode);
|
|
|
|
if (testin.pix.width != in->pix.width ||
|
|
testin.pix.height != in->pix.height ||
|
|
testout.pix.width != out->pix.width ||
|
|
testout.pix.height != out->pix.height)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
|
|
|
|
/*
|
|
* Call ipu_image_convert_prepare() to prepare for the conversion of
|
|
* given images and rotation mode. Returns a new conversion context.
|
|
*/
|
|
struct ipu_image_convert_ctx *
|
|
ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
|
|
struct ipu_image *in, struct ipu_image *out,
|
|
enum ipu_rotate_mode rot_mode,
|
|
ipu_image_convert_cb_t complete,
|
|
void *complete_context)
|
|
{
|
|
struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
|
|
struct ipu_image_convert_image *s_image, *d_image;
|
|
struct ipu_image_convert_chan *chan;
|
|
struct ipu_image_convert_ctx *ctx;
|
|
unsigned long flags;
|
|
unsigned int i;
|
|
bool get_res;
|
|
int ret;
|
|
|
|
if (!in || !out || !complete ||
|
|
(ic_task != IC_TASK_VIEWFINDER &&
|
|
ic_task != IC_TASK_POST_PROCESSOR))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* verify the in/out images before continuing */
|
|
ret = ipu_image_convert_verify(in, out, rot_mode);
|
|
if (ret) {
|
|
dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
|
|
__func__);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
chan = &priv->chan[ic_task];
|
|
|
|
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
|
|
if (!ctx)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
|
|
chan->ic_task, ctx);
|
|
|
|
ctx->chan = chan;
|
|
init_completion(&ctx->aborted);
|
|
|
|
ctx->rot_mode = rot_mode;
|
|
|
|
/* Sets ctx->in.num_rows/cols as well */
|
|
ret = calc_image_resize_coefficients(ctx, in, out);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
s_image = &ctx->in;
|
|
d_image = &ctx->out;
|
|
|
|
/* set tiling and rotation */
|
|
if (ipu_rot_mode_is_irt(rot_mode)) {
|
|
d_image->num_rows = s_image->num_cols;
|
|
d_image->num_cols = s_image->num_rows;
|
|
} else {
|
|
d_image->num_rows = s_image->num_rows;
|
|
d_image->num_cols = s_image->num_cols;
|
|
}
|
|
|
|
ctx->num_tiles = d_image->num_cols * d_image->num_rows;
|
|
|
|
ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
|
|
if (ret)
|
|
goto out_free;
|
|
ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
calc_out_tile_map(ctx);
|
|
|
|
find_seams(ctx, s_image, d_image);
|
|
|
|
ret = calc_tile_dimensions(ctx, s_image);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
ret = calc_tile_offsets(ctx, s_image);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
calc_tile_dimensions(ctx, d_image);
|
|
ret = calc_tile_offsets(ctx, d_image);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
calc_tile_resize_coefficients(ctx);
|
|
|
|
ret = ipu_ic_calc_csc(&ctx->csc,
|
|
s_image->base.pix.ycbcr_enc,
|
|
s_image->base.pix.quantization,
|
|
ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
|
|
d_image->base.pix.ycbcr_enc,
|
|
d_image->base.pix.quantization,
|
|
ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
dump_format(ctx, s_image);
|
|
dump_format(ctx, d_image);
|
|
|
|
ctx->complete = complete;
|
|
ctx->complete_context = complete_context;
|
|
|
|
/*
|
|
* Can we use double-buffering for this operation? If there is
|
|
* only one tile (the whole image can be converted in a single
|
|
* operation) there's no point in using double-buffering. Also,
|
|
* the IPU's IDMAC channels allow only a single U and V plane
|
|
* offset shared between both buffers, but these offsets change
|
|
* for every tile, and therefore would have to be updated for
|
|
* each buffer which is not possible. So double-buffering is
|
|
* impossible when either the source or destination images are
|
|
* a planar format (YUV420, YUV422P, etc.). Further, differently
|
|
* sized tiles or different resizing coefficients per tile
|
|
* prevent double-buffering as well.
|
|
*/
|
|
ctx->double_buffering = (ctx->num_tiles > 1 &&
|
|
!s_image->fmt->planar &&
|
|
!d_image->fmt->planar);
|
|
for (i = 1; i < ctx->num_tiles; i++) {
|
|
if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
|
|
ctx->in.tile[i].height != ctx->in.tile[0].height ||
|
|
ctx->out.tile[i].width != ctx->out.tile[0].width ||
|
|
ctx->out.tile[i].height != ctx->out.tile[0].height) {
|
|
ctx->double_buffering = false;
|
|
break;
|
|
}
|
|
}
|
|
for (i = 1; i < ctx->in.num_cols; i++) {
|
|
if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
|
|
ctx->double_buffering = false;
|
|
break;
|
|
}
|
|
}
|
|
for (i = 1; i < ctx->in.num_rows; i++) {
|
|
if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
|
|
ctx->double_buffering = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
|
|
unsigned long intermediate_size = d_image->tile[0].size;
|
|
|
|
for (i = 1; i < ctx->num_tiles; i++) {
|
|
if (d_image->tile[i].size > intermediate_size)
|
|
intermediate_size = d_image->tile[i].size;
|
|
}
|
|
|
|
ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
|
|
intermediate_size);
|
|
if (ret)
|
|
goto out_free;
|
|
if (ctx->double_buffering) {
|
|
ret = alloc_dma_buf(priv,
|
|
&ctx->rot_intermediate[1],
|
|
intermediate_size);
|
|
if (ret)
|
|
goto out_free_dmabuf0;
|
|
}
|
|
}
|
|
|
|
spin_lock_irqsave(&chan->irqlock, flags);
|
|
|
|
get_res = list_empty(&chan->ctx_list);
|
|
|
|
list_add_tail(&ctx->list, &chan->ctx_list);
|
|
|
|
spin_unlock_irqrestore(&chan->irqlock, flags);
|
|
|
|
if (get_res) {
|
|
ret = get_ipu_resources(chan);
|
|
if (ret)
|
|
goto out_free_dmabuf1;
|
|
}
|
|
|
|
return ctx;
|
|
|
|
out_free_dmabuf1:
|
|
free_dma_buf(priv, &ctx->rot_intermediate[1]);
|
|
spin_lock_irqsave(&chan->irqlock, flags);
|
|
list_del(&ctx->list);
|
|
spin_unlock_irqrestore(&chan->irqlock, flags);
|
|
out_free_dmabuf0:
|
|
free_dma_buf(priv, &ctx->rot_intermediate[0]);
|
|
out_free:
|
|
kfree(ctx);
|
|
return ERR_PTR(ret);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
|
|
|
|
/*
|
|
* Carry out a single image conversion run. Only the physaddr's of the input
|
|
* and output image buffers are needed. The conversion context must have
|
|
* been created previously with ipu_image_convert_prepare().
|
|
*/
|
|
int ipu_image_convert_queue(struct ipu_image_convert_run *run)
|
|
{
|
|
struct ipu_image_convert_chan *chan;
|
|
struct ipu_image_convert_priv *priv;
|
|
struct ipu_image_convert_ctx *ctx;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
if (!run || !run->ctx || !run->in_phys || !run->out_phys)
|
|
return -EINVAL;
|
|
|
|
ctx = run->ctx;
|
|
chan = ctx->chan;
|
|
priv = chan->priv;
|
|
|
|
dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
|
|
chan->ic_task, ctx, run);
|
|
|
|
INIT_LIST_HEAD(&run->list);
|
|
|
|
spin_lock_irqsave(&chan->irqlock, flags);
|
|
|
|
if (ctx->aborting) {
|
|
ret = -EIO;
|
|
goto unlock;
|
|
}
|
|
|
|
list_add_tail(&run->list, &chan->pending_q);
|
|
|
|
if (!chan->current_run) {
|
|
ret = do_run(run);
|
|
if (ret)
|
|
chan->current_run = NULL;
|
|
}
|
|
unlock:
|
|
spin_unlock_irqrestore(&chan->irqlock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
|
|
|
|
/* Abort any active or pending conversions for this context */
|
|
static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
|
|
{
|
|
struct ipu_image_convert_chan *chan = ctx->chan;
|
|
struct ipu_image_convert_priv *priv = chan->priv;
|
|
struct ipu_image_convert_run *run, *active_run, *tmp;
|
|
unsigned long flags;
|
|
int run_count, ret;
|
|
|
|
spin_lock_irqsave(&chan->irqlock, flags);
|
|
|
|
/* move all remaining pending runs in this context to done_q */
|
|
list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
|
|
if (run->ctx != ctx)
|
|
continue;
|
|
run->status = -EIO;
|
|
list_move_tail(&run->list, &chan->done_q);
|
|
}
|
|
|
|
run_count = get_run_count(ctx, &chan->done_q);
|
|
active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
|
|
chan->current_run : NULL;
|
|
|
|
if (active_run)
|
|
reinit_completion(&ctx->aborted);
|
|
|
|
ctx->aborting = true;
|
|
|
|
spin_unlock_irqrestore(&chan->irqlock, flags);
|
|
|
|
if (!run_count && !active_run) {
|
|
dev_dbg(priv->ipu->dev,
|
|
"%s: task %u: no abort needed for ctx %p\n",
|
|
__func__, chan->ic_task, ctx);
|
|
return;
|
|
}
|
|
|
|
if (!active_run) {
|
|
empty_done_q(chan);
|
|
return;
|
|
}
|
|
|
|
dev_dbg(priv->ipu->dev,
|
|
"%s: task %u: wait for completion: %d runs\n",
|
|
__func__, chan->ic_task, run_count);
|
|
|
|
ret = wait_for_completion_timeout(&ctx->aborted,
|
|
msecs_to_jiffies(10000));
|
|
if (ret == 0) {
|
|
dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
|
|
force_abort(ctx);
|
|
}
|
|
}
|
|
|
|
void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
|
|
{
|
|
__ipu_image_convert_abort(ctx);
|
|
ctx->aborting = false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
|
|
|
|
/* Unprepare image conversion context */
|
|
void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
|
|
{
|
|
struct ipu_image_convert_chan *chan = ctx->chan;
|
|
struct ipu_image_convert_priv *priv = chan->priv;
|
|
unsigned long flags;
|
|
bool put_res;
|
|
|
|
/* make sure no runs are hanging around */
|
|
__ipu_image_convert_abort(ctx);
|
|
|
|
dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
|
|
chan->ic_task, ctx);
|
|
|
|
spin_lock_irqsave(&chan->irqlock, flags);
|
|
|
|
list_del(&ctx->list);
|
|
|
|
put_res = list_empty(&chan->ctx_list);
|
|
|
|
spin_unlock_irqrestore(&chan->irqlock, flags);
|
|
|
|
if (put_res)
|
|
release_ipu_resources(chan);
|
|
|
|
free_dma_buf(priv, &ctx->rot_intermediate[1]);
|
|
free_dma_buf(priv, &ctx->rot_intermediate[0]);
|
|
|
|
kfree(ctx);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
|
|
|
|
/*
|
|
* "Canned" asynchronous single image conversion. Allocates and returns
|
|
* a new conversion run. On successful return the caller must free the
|
|
* run and call ipu_image_convert_unprepare() after conversion completes.
|
|
*/
|
|
struct ipu_image_convert_run *
|
|
ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
|
|
struct ipu_image *in, struct ipu_image *out,
|
|
enum ipu_rotate_mode rot_mode,
|
|
ipu_image_convert_cb_t complete,
|
|
void *complete_context)
|
|
{
|
|
struct ipu_image_convert_ctx *ctx;
|
|
struct ipu_image_convert_run *run;
|
|
int ret;
|
|
|
|
ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
|
|
complete, complete_context);
|
|
if (IS_ERR(ctx))
|
|
return ERR_CAST(ctx);
|
|
|
|
run = kzalloc(sizeof(*run), GFP_KERNEL);
|
|
if (!run) {
|
|
ipu_image_convert_unprepare(ctx);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
run->ctx = ctx;
|
|
run->in_phys = in->phys0;
|
|
run->out_phys = out->phys0;
|
|
|
|
ret = ipu_image_convert_queue(run);
|
|
if (ret) {
|
|
ipu_image_convert_unprepare(ctx);
|
|
kfree(run);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
return run;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ipu_image_convert);
|
|
|
|
/* "Canned" synchronous single image conversion */
|
|
static void image_convert_sync_complete(struct ipu_image_convert_run *run,
|
|
void *data)
|
|
{
|
|
struct completion *comp = data;
|
|
|
|
complete(comp);
|
|
}
|
|
|
|
int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
|
|
struct ipu_image *in, struct ipu_image *out,
|
|
enum ipu_rotate_mode rot_mode)
|
|
{
|
|
struct ipu_image_convert_run *run;
|
|
struct completion comp;
|
|
int ret;
|
|
|
|
init_completion(&comp);
|
|
|
|
run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
|
|
image_convert_sync_complete, &comp);
|
|
if (IS_ERR(run))
|
|
return PTR_ERR(run);
|
|
|
|
ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
|
|
ret = (ret == 0) ? -ETIMEDOUT : 0;
|
|
|
|
ipu_image_convert_unprepare(run->ctx);
|
|
kfree(run);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
|
|
|
|
int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
|
|
{
|
|
struct ipu_image_convert_priv *priv;
|
|
int i;
|
|
|
|
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
|
|
if (!priv)
|
|
return -ENOMEM;
|
|
|
|
ipu->image_convert_priv = priv;
|
|
priv->ipu = ipu;
|
|
|
|
for (i = 0; i < IC_NUM_TASKS; i++) {
|
|
struct ipu_image_convert_chan *chan = &priv->chan[i];
|
|
|
|
chan->ic_task = i;
|
|
chan->priv = priv;
|
|
chan->dma_ch = &image_convert_dma_chan[i];
|
|
chan->in_eof_irq = -1;
|
|
chan->rot_in_eof_irq = -1;
|
|
chan->out_eof_irq = -1;
|
|
chan->rot_out_eof_irq = -1;
|
|
|
|
spin_lock_init(&chan->irqlock);
|
|
INIT_LIST_HEAD(&chan->ctx_list);
|
|
INIT_LIST_HEAD(&chan->pending_q);
|
|
INIT_LIST_HEAD(&chan->done_q);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ipu_image_convert_exit(struct ipu_soc *ipu)
|
|
{
|
|
}
|