linux/sound/soc/intel/avs/cldma.c
Cezary Rojewski 4b38bd16ca
ASoC: Intel: avs: Replace hardcodes with SD_CTL_STREAM_RESET
Improve readability of CLDMA reset operation by making use of
already defined SD_CTL_STREAM_RESET.

Signed-off-by: Cezary Rojewski <cezary.rojewski@intel.com>
Link: https://lore.kernel.org/r/20220707124153.1858249-11-cezary.rojewski@intel.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2022-07-08 18:53:26 +01:00

317 lines
7.8 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
//
// Copyright(c) 2021-2022 Intel Corporation. All rights reserved.
//
// Author: Cezary Rojewski <cezary.rojewski@intel.com>
//
#include <linux/pci.h>
#include <sound/hda_register.h>
#include <sound/hdaudio_ext.h>
#include "cldma.h"
#include "registers.h"
/* Stream Registers */
#define AZX_CL_SD_BASE 0x80
#define AZX_SD_CTL_STRM_MASK GENMASK(23, 20)
#define AZX_SD_CTL_STRM(s) (((s)->stream_tag << 20) & AZX_SD_CTL_STRM_MASK)
#define AZX_SD_BDLPL_BDLPLBA_MASK GENMASK(31, 7)
#define AZX_SD_BDLPL_BDLPLBA(lb) ((lb) & AZX_SD_BDLPL_BDLPLBA_MASK)
/* Software Position Based FIFO Capability Registers */
#define AZX_CL_SPBFCS 0x20
#define AZX_REG_CL_SPBFCTL (AZX_CL_SPBFCS + 0x4)
#define AZX_REG_CL_SD_SPIB (AZX_CL_SPBFCS + 0x8)
#define AVS_CL_OP_INTERVAL_US 3
#define AVS_CL_OP_TIMEOUT_US 300
#define AVS_CL_IOC_TIMEOUT_MS 300
#define AVS_CL_STREAM_INDEX 0
struct hda_cldma {
struct device *dev;
struct hdac_bus *bus;
void __iomem *dsp_ba;
unsigned int buffer_size;
unsigned int num_periods;
unsigned int stream_tag;
void __iomem *sd_addr;
struct snd_dma_buffer dmab_data;
struct snd_dma_buffer dmab_bdl;
struct delayed_work memcpy_work;
struct completion completion;
/* runtime */
void *position;
unsigned int remaining;
unsigned int sd_status;
};
static void cldma_memcpy_work(struct work_struct *work);
struct hda_cldma code_loader = {
.stream_tag = AVS_CL_STREAM_INDEX + 1,
.memcpy_work = __DELAYED_WORK_INITIALIZER(code_loader.memcpy_work, cldma_memcpy_work, 0),
.completion = COMPLETION_INITIALIZER(code_loader.completion),
};
void hda_cldma_fill(struct hda_cldma *cl)
{
unsigned int size, offset;
if (cl->remaining > cl->buffer_size)
size = cl->buffer_size;
else
size = cl->remaining;
offset = snd_hdac_stream_readl(cl, CL_SD_SPIB);
if (offset + size > cl->buffer_size) {
unsigned int ss;
ss = cl->buffer_size - offset;
memcpy(cl->dmab_data.area + offset, cl->position, ss);
offset = 0;
size -= ss;
cl->position += ss;
cl->remaining -= ss;
}
memcpy(cl->dmab_data.area + offset, cl->position, size);
cl->position += size;
cl->remaining -= size;
snd_hdac_stream_writel(cl, CL_SD_SPIB, offset + size);
}
static void cldma_memcpy_work(struct work_struct *work)
{
struct hda_cldma *cl = container_of(work, struct hda_cldma, memcpy_work.work);
int ret;
ret = hda_cldma_start(cl);
if (ret < 0) {
dev_err(cl->dev, "cldma set RUN failed: %d\n", ret);
return;
}
while (true) {
ret = wait_for_completion_timeout(&cl->completion,
msecs_to_jiffies(AVS_CL_IOC_TIMEOUT_MS));
if (!ret) {
dev_err(cl->dev, "cldma IOC timeout\n");
break;
}
if (!(cl->sd_status & SD_INT_COMPLETE)) {
dev_err(cl->dev, "cldma transfer error, SD status: 0x%08x\n",
cl->sd_status);
break;
}
if (!cl->remaining)
break;
reinit_completion(&cl->completion);
hda_cldma_fill(cl);
/* enable CLDMA interrupt */
snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA,
AVS_ADSP_ADSPIC_CLDMA);
}
}
void hda_cldma_transfer(struct hda_cldma *cl, unsigned long start_delay)
{
if (!cl->remaining)
return;
reinit_completion(&cl->completion);
/* fill buffer with the first chunk before scheduling run */
hda_cldma_fill(cl);
schedule_delayed_work(&cl->memcpy_work, start_delay);
}
int hda_cldma_start(struct hda_cldma *cl)
{
unsigned int reg;
/* enable interrupts */
snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA,
AVS_ADSP_ADSPIC_CLDMA);
snd_hdac_stream_updateb(cl, SD_CTL, SD_INT_MASK | SD_CTL_DMA_START,
SD_INT_MASK | SD_CTL_DMA_START);
/* await DMA engine start */
return snd_hdac_stream_readb_poll(cl, SD_CTL, reg, reg & SD_CTL_DMA_START,
AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US);
}
int hda_cldma_stop(struct hda_cldma *cl)
{
unsigned int reg;
int ret;
/* disable interrupts */
snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA, 0);
snd_hdac_stream_updateb(cl, SD_CTL, SD_INT_MASK | SD_CTL_DMA_START, 0);
/* await DMA engine stop */
ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, !(reg & SD_CTL_DMA_START),
AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US);
cancel_delayed_work_sync(&cl->memcpy_work);
return ret;
}
int hda_cldma_reset(struct hda_cldma *cl)
{
unsigned int reg;
int ret;
ret = hda_cldma_stop(cl);
if (ret < 0) {
dev_err(cl->dev, "cldma stop failed: %d\n", ret);
return ret;
}
snd_hdac_stream_updateb(cl, SD_CTL, SD_CTL_STREAM_RESET, SD_CTL_STREAM_RESET);
ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, (reg & SD_CTL_STREAM_RESET),
AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US);
if (ret < 0) {
dev_err(cl->dev, "cldma set SRST failed: %d\n", ret);
return ret;
}
snd_hdac_stream_updateb(cl, SD_CTL, SD_CTL_STREAM_RESET, 0);
ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, !(reg & SD_CTL_STREAM_RESET),
AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US);
if (ret < 0) {
dev_err(cl->dev, "cldma unset SRST failed: %d\n", ret);
return ret;
}
return 0;
}
void hda_cldma_set_data(struct hda_cldma *cl, void *data, unsigned int size)
{
/* setup runtime */
cl->position = data;
cl->remaining = size;
}
static void cldma_setup_bdle(struct hda_cldma *cl, u32 bdle_size)
{
struct snd_dma_buffer *dmab = &cl->dmab_data;
__le32 *bdl = (__le32 *)cl->dmab_bdl.area;
int remaining = cl->buffer_size;
int offset = 0;
cl->num_periods = 0;
while (remaining > 0) {
phys_addr_t addr;
int chunk;
addr = snd_sgbuf_get_addr(dmab, offset);
bdl[0] = cpu_to_le32(lower_32_bits(addr));
bdl[1] = cpu_to_le32(upper_32_bits(addr));
chunk = snd_sgbuf_get_chunk_size(dmab, offset, bdle_size);
bdl[2] = cpu_to_le32(chunk);
remaining -= chunk;
/* set IOC only for the last entry */
bdl[3] = (remaining > 0) ? 0 : cpu_to_le32(0x01);
bdl += 4;
offset += chunk;
cl->num_periods++;
}
}
void hda_cldma_setup(struct hda_cldma *cl)
{
dma_addr_t bdl_addr = cl->dmab_bdl.addr;
cldma_setup_bdle(cl, cl->buffer_size / 2);
snd_hdac_stream_writel(cl, SD_BDLPL, AZX_SD_BDLPL_BDLPLBA(lower_32_bits(bdl_addr)));
snd_hdac_stream_writel(cl, SD_BDLPU, upper_32_bits(bdl_addr));
snd_hdac_stream_writel(cl, SD_CBL, cl->buffer_size);
snd_hdac_stream_writeb(cl, SD_LVI, cl->num_periods - 1);
snd_hdac_stream_updatel(cl, SD_CTL, AZX_SD_CTL_STRM_MASK, AZX_SD_CTL_STRM(cl));
/* enable spib */
snd_hdac_stream_writel(cl, CL_SPBFCTL, 1);
}
static irqreturn_t cldma_irq_handler(int irq, void *dev_id)
{
struct hda_cldma *cl = dev_id;
u32 adspis;
adspis = snd_hdac_adsp_readl(cl, AVS_ADSP_REG_ADSPIS);
if (adspis == UINT_MAX)
return IRQ_NONE;
if (!(adspis & AVS_ADSP_ADSPIS_CLDMA))
return IRQ_NONE;
cl->sd_status = snd_hdac_stream_readb(cl, SD_STS);
dev_warn(cl->dev, "%s sd_status: 0x%08x\n", __func__, cl->sd_status);
/* disable CLDMA interrupt */
snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA, 0);
complete(&cl->completion);
return IRQ_HANDLED;
}
int hda_cldma_init(struct hda_cldma *cl, struct hdac_bus *bus, void __iomem *dsp_ba,
unsigned int buffer_size)
{
struct pci_dev *pci = to_pci_dev(bus->dev);
int ret;
ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV_SG, bus->dev, buffer_size, &cl->dmab_data);
if (ret < 0)
return ret;
ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, bus->dev, BDL_SIZE, &cl->dmab_bdl);
if (ret < 0)
goto alloc_err;
cl->dev = bus->dev;
cl->bus = bus;
cl->dsp_ba = dsp_ba;
cl->buffer_size = buffer_size;
cl->sd_addr = dsp_ba + AZX_CL_SD_BASE;
ret = pci_request_irq(pci, 0, cldma_irq_handler, NULL, cl, "CLDMA");
if (ret < 0) {
dev_err(cl->dev, "Failed to request CLDMA IRQ handler: %d\n", ret);
goto req_err;
}
return 0;
req_err:
snd_dma_free_pages(&cl->dmab_bdl);
alloc_err:
snd_dma_free_pages(&cl->dmab_data);
return ret;
}
void hda_cldma_free(struct hda_cldma *cl)
{
struct pci_dev *pci = to_pci_dev(cl->dev);
pci_free_irq(pci, 0, cl);
snd_dma_free_pages(&cl->dmab_data);
snd_dma_free_pages(&cl->dmab_bdl);
}