mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-18 17:54:13 +08:00
6da2ec5605
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
1714 lines
47 KiB
C
1714 lines
47 KiB
C
/*
|
|
* Copyright (c) International Business Machines Corp., 2006
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
|
|
* the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Author: Artem Bityutskiy (Битюцкий Артём)
|
|
*/
|
|
|
|
/*
|
|
* The UBI Eraseblock Association (EBA) sub-system.
|
|
*
|
|
* This sub-system is responsible for I/O to/from logical eraseblock.
|
|
*
|
|
* Although in this implementation the EBA table is fully kept and managed in
|
|
* RAM, which assumes poor scalability, it might be (partially) maintained on
|
|
* flash in future implementations.
|
|
*
|
|
* The EBA sub-system implements per-logical eraseblock locking. Before
|
|
* accessing a logical eraseblock it is locked for reading or writing. The
|
|
* per-logical eraseblock locking is implemented by means of the lock tree. The
|
|
* lock tree is an RB-tree which refers all the currently locked logical
|
|
* eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
|
|
* They are indexed by (@vol_id, @lnum) pairs.
|
|
*
|
|
* EBA also maintains the global sequence counter which is incremented each
|
|
* time a logical eraseblock is mapped to a physical eraseblock and it is
|
|
* stored in the volume identifier header. This means that each VID header has
|
|
* a unique sequence number. The sequence number is only increased an we assume
|
|
* 64 bits is enough to never overflow.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/err.h>
|
|
#include "ubi.h"
|
|
|
|
/* Number of physical eraseblocks reserved for atomic LEB change operation */
|
|
#define EBA_RESERVED_PEBS 1
|
|
|
|
/**
|
|
* struct ubi_eba_entry - structure encoding a single LEB -> PEB association
|
|
* @pnum: the physical eraseblock number attached to the LEB
|
|
*
|
|
* This structure is encoding a LEB -> PEB association. Note that the LEB
|
|
* number is not stored here, because it is the index used to access the
|
|
* entries table.
|
|
*/
|
|
struct ubi_eba_entry {
|
|
int pnum;
|
|
};
|
|
|
|
/**
|
|
* struct ubi_eba_table - LEB -> PEB association information
|
|
* @entries: the LEB to PEB mapping (one entry per LEB).
|
|
*
|
|
* This structure is private to the EBA logic and should be kept here.
|
|
* It is encoding the LEB to PEB association table, and is subject to
|
|
* changes.
|
|
*/
|
|
struct ubi_eba_table {
|
|
struct ubi_eba_entry *entries;
|
|
};
|
|
|
|
/**
|
|
* next_sqnum - get next sequence number.
|
|
* @ubi: UBI device description object
|
|
*
|
|
* This function returns next sequence number to use, which is just the current
|
|
* global sequence counter value. It also increases the global sequence
|
|
* counter.
|
|
*/
|
|
unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
|
|
{
|
|
unsigned long long sqnum;
|
|
|
|
spin_lock(&ubi->ltree_lock);
|
|
sqnum = ubi->global_sqnum++;
|
|
spin_unlock(&ubi->ltree_lock);
|
|
|
|
return sqnum;
|
|
}
|
|
|
|
/**
|
|
* ubi_get_compat - get compatibility flags of a volume.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
*
|
|
* This function returns compatibility flags for an internal volume. User
|
|
* volumes have no compatibility flags, so %0 is returned.
|
|
*/
|
|
static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
|
|
{
|
|
if (vol_id == UBI_LAYOUT_VOLUME_ID)
|
|
return UBI_LAYOUT_VOLUME_COMPAT;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_get_ldesc - get information about a LEB
|
|
* @vol: volume description object
|
|
* @lnum: logical eraseblock number
|
|
* @ldesc: the LEB descriptor to fill
|
|
*
|
|
* Used to query information about a specific LEB.
|
|
* It is currently only returning the physical position of the LEB, but will be
|
|
* extended to provide more information.
|
|
*/
|
|
void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum,
|
|
struct ubi_eba_leb_desc *ldesc)
|
|
{
|
|
ldesc->lnum = lnum;
|
|
ldesc->pnum = vol->eba_tbl->entries[lnum].pnum;
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_create_table - allocate a new EBA table and initialize it with all
|
|
* LEBs unmapped
|
|
* @vol: volume containing the EBA table to copy
|
|
* @nentries: number of entries in the table
|
|
*
|
|
* Allocate a new EBA table and initialize it with all LEBs unmapped.
|
|
* Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
|
|
*/
|
|
struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol,
|
|
int nentries)
|
|
{
|
|
struct ubi_eba_table *tbl;
|
|
int err = -ENOMEM;
|
|
int i;
|
|
|
|
tbl = kzalloc(sizeof(*tbl), GFP_KERNEL);
|
|
if (!tbl)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries),
|
|
GFP_KERNEL);
|
|
if (!tbl->entries)
|
|
goto err;
|
|
|
|
for (i = 0; i < nentries; i++)
|
|
tbl->entries[i].pnum = UBI_LEB_UNMAPPED;
|
|
|
|
return tbl;
|
|
|
|
err:
|
|
kfree(tbl->entries);
|
|
kfree(tbl);
|
|
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_destroy_table - destroy an EBA table
|
|
* @tbl: the table to destroy
|
|
*
|
|
* Destroy an EBA table.
|
|
*/
|
|
void ubi_eba_destroy_table(struct ubi_eba_table *tbl)
|
|
{
|
|
if (!tbl)
|
|
return;
|
|
|
|
kfree(tbl->entries);
|
|
kfree(tbl);
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_copy_table - copy the EBA table attached to vol into another table
|
|
* @vol: volume containing the EBA table to copy
|
|
* @dst: destination
|
|
* @nentries: number of entries to copy
|
|
*
|
|
* Copy the EBA table stored in vol into the one pointed by dst.
|
|
*/
|
|
void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst,
|
|
int nentries)
|
|
{
|
|
struct ubi_eba_table *src;
|
|
int i;
|
|
|
|
ubi_assert(dst && vol && vol->eba_tbl);
|
|
|
|
src = vol->eba_tbl;
|
|
|
|
for (i = 0; i < nentries; i++)
|
|
dst->entries[i].pnum = src->entries[i].pnum;
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_replace_table - assign a new EBA table to a volume
|
|
* @vol: volume containing the EBA table to copy
|
|
* @tbl: new EBA table
|
|
*
|
|
* Assign a new EBA table to the volume and release the old one.
|
|
*/
|
|
void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl)
|
|
{
|
|
ubi_eba_destroy_table(vol->eba_tbl);
|
|
vol->eba_tbl = tbl;
|
|
}
|
|
|
|
/**
|
|
* ltree_lookup - look up the lock tree.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
*
|
|
* This function returns a pointer to the corresponding &struct ubi_ltree_entry
|
|
* object if the logical eraseblock is locked and %NULL if it is not.
|
|
* @ubi->ltree_lock has to be locked.
|
|
*/
|
|
static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
|
|
int lnum)
|
|
{
|
|
struct rb_node *p;
|
|
|
|
p = ubi->ltree.rb_node;
|
|
while (p) {
|
|
struct ubi_ltree_entry *le;
|
|
|
|
le = rb_entry(p, struct ubi_ltree_entry, rb);
|
|
|
|
if (vol_id < le->vol_id)
|
|
p = p->rb_left;
|
|
else if (vol_id > le->vol_id)
|
|
p = p->rb_right;
|
|
else {
|
|
if (lnum < le->lnum)
|
|
p = p->rb_left;
|
|
else if (lnum > le->lnum)
|
|
p = p->rb_right;
|
|
else
|
|
return le;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ltree_add_entry - add new entry to the lock tree.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
*
|
|
* This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
|
|
* lock tree. If such entry is already there, its usage counter is increased.
|
|
* Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
|
|
* failed.
|
|
*/
|
|
static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
|
|
int vol_id, int lnum)
|
|
{
|
|
struct ubi_ltree_entry *le, *le1, *le_free;
|
|
|
|
le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
|
|
if (!le)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
le->users = 0;
|
|
init_rwsem(&le->mutex);
|
|
le->vol_id = vol_id;
|
|
le->lnum = lnum;
|
|
|
|
spin_lock(&ubi->ltree_lock);
|
|
le1 = ltree_lookup(ubi, vol_id, lnum);
|
|
|
|
if (le1) {
|
|
/*
|
|
* This logical eraseblock is already locked. The newly
|
|
* allocated lock entry is not needed.
|
|
*/
|
|
le_free = le;
|
|
le = le1;
|
|
} else {
|
|
struct rb_node **p, *parent = NULL;
|
|
|
|
/*
|
|
* No lock entry, add the newly allocated one to the
|
|
* @ubi->ltree RB-tree.
|
|
*/
|
|
le_free = NULL;
|
|
|
|
p = &ubi->ltree.rb_node;
|
|
while (*p) {
|
|
parent = *p;
|
|
le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
|
|
|
|
if (vol_id < le1->vol_id)
|
|
p = &(*p)->rb_left;
|
|
else if (vol_id > le1->vol_id)
|
|
p = &(*p)->rb_right;
|
|
else {
|
|
ubi_assert(lnum != le1->lnum);
|
|
if (lnum < le1->lnum)
|
|
p = &(*p)->rb_left;
|
|
else
|
|
p = &(*p)->rb_right;
|
|
}
|
|
}
|
|
|
|
rb_link_node(&le->rb, parent, p);
|
|
rb_insert_color(&le->rb, &ubi->ltree);
|
|
}
|
|
le->users += 1;
|
|
spin_unlock(&ubi->ltree_lock);
|
|
|
|
kfree(le_free);
|
|
return le;
|
|
}
|
|
|
|
/**
|
|
* leb_read_lock - lock logical eraseblock for reading.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
*
|
|
* This function locks a logical eraseblock for reading. Returns zero in case
|
|
* of success and a negative error code in case of failure.
|
|
*/
|
|
static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
|
|
{
|
|
struct ubi_ltree_entry *le;
|
|
|
|
le = ltree_add_entry(ubi, vol_id, lnum);
|
|
if (IS_ERR(le))
|
|
return PTR_ERR(le);
|
|
down_read(&le->mutex);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* leb_read_unlock - unlock logical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
*/
|
|
static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
|
|
{
|
|
struct ubi_ltree_entry *le;
|
|
|
|
spin_lock(&ubi->ltree_lock);
|
|
le = ltree_lookup(ubi, vol_id, lnum);
|
|
le->users -= 1;
|
|
ubi_assert(le->users >= 0);
|
|
up_read(&le->mutex);
|
|
if (le->users == 0) {
|
|
rb_erase(&le->rb, &ubi->ltree);
|
|
kfree(le);
|
|
}
|
|
spin_unlock(&ubi->ltree_lock);
|
|
}
|
|
|
|
/**
|
|
* leb_write_lock - lock logical eraseblock for writing.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
*
|
|
* This function locks a logical eraseblock for writing. Returns zero in case
|
|
* of success and a negative error code in case of failure.
|
|
*/
|
|
static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
|
|
{
|
|
struct ubi_ltree_entry *le;
|
|
|
|
le = ltree_add_entry(ubi, vol_id, lnum);
|
|
if (IS_ERR(le))
|
|
return PTR_ERR(le);
|
|
down_write(&le->mutex);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* leb_write_trylock - try to lock logical eraseblock for writing.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
*
|
|
* This function locks a logical eraseblock for writing if there is no
|
|
* contention and does nothing if there is contention. Returns %0 in case of
|
|
* success, %1 in case of contention, and and a negative error code in case of
|
|
* failure.
|
|
*/
|
|
static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
|
|
{
|
|
struct ubi_ltree_entry *le;
|
|
|
|
le = ltree_add_entry(ubi, vol_id, lnum);
|
|
if (IS_ERR(le))
|
|
return PTR_ERR(le);
|
|
if (down_write_trylock(&le->mutex))
|
|
return 0;
|
|
|
|
/* Contention, cancel */
|
|
spin_lock(&ubi->ltree_lock);
|
|
le->users -= 1;
|
|
ubi_assert(le->users >= 0);
|
|
if (le->users == 0) {
|
|
rb_erase(&le->rb, &ubi->ltree);
|
|
kfree(le);
|
|
}
|
|
spin_unlock(&ubi->ltree_lock);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* leb_write_unlock - unlock logical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
*/
|
|
static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
|
|
{
|
|
struct ubi_ltree_entry *le;
|
|
|
|
spin_lock(&ubi->ltree_lock);
|
|
le = ltree_lookup(ubi, vol_id, lnum);
|
|
le->users -= 1;
|
|
ubi_assert(le->users >= 0);
|
|
up_write(&le->mutex);
|
|
if (le->users == 0) {
|
|
rb_erase(&le->rb, &ubi->ltree);
|
|
kfree(le);
|
|
}
|
|
spin_unlock(&ubi->ltree_lock);
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_is_mapped - check if a LEB is mapped.
|
|
* @vol: volume description object
|
|
* @lnum: logical eraseblock number
|
|
*
|
|
* This function returns true if the LEB is mapped, false otherwise.
|
|
*/
|
|
bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum)
|
|
{
|
|
return vol->eba_tbl->entries[lnum].pnum >= 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_unmap_leb - un-map logical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @vol: volume description object
|
|
* @lnum: logical eraseblock number
|
|
*
|
|
* This function un-maps logical eraseblock @lnum and schedules corresponding
|
|
* physical eraseblock for erasure. Returns zero in case of success and a
|
|
* negative error code in case of failure.
|
|
*/
|
|
int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
|
|
int lnum)
|
|
{
|
|
int err, pnum, vol_id = vol->vol_id;
|
|
|
|
if (ubi->ro_mode)
|
|
return -EROFS;
|
|
|
|
err = leb_write_lock(ubi, vol_id, lnum);
|
|
if (err)
|
|
return err;
|
|
|
|
pnum = vol->eba_tbl->entries[lnum].pnum;
|
|
if (pnum < 0)
|
|
/* This logical eraseblock is already unmapped */
|
|
goto out_unlock;
|
|
|
|
dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
|
|
|
|
down_read(&ubi->fm_eba_sem);
|
|
vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
|
|
up_read(&ubi->fm_eba_sem);
|
|
err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
|
|
|
|
out_unlock:
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_UBI_FASTMAP
|
|
/**
|
|
* check_mapping - check and fixup a mapping
|
|
* @ubi: UBI device description object
|
|
* @vol: volume description object
|
|
* @lnum: logical eraseblock number
|
|
* @pnum: physical eraseblock number
|
|
*
|
|
* Checks whether a given mapping is valid. Fastmap cannot track LEB unmap
|
|
* operations, if such an operation is interrupted the mapping still looks
|
|
* good, but upon first read an ECC is reported to the upper layer.
|
|
* Normaly during the full-scan at attach time this is fixed, for Fastmap
|
|
* we have to deal with it while reading.
|
|
* If the PEB behind a LEB shows this symthom we change the mapping to
|
|
* %UBI_LEB_UNMAPPED and schedule the PEB for erasure.
|
|
*
|
|
* Returns 0 on success, negative error code in case of failure.
|
|
*/
|
|
static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
|
|
int *pnum)
|
|
{
|
|
int err;
|
|
struct ubi_vid_io_buf *vidb;
|
|
struct ubi_vid_hdr *vid_hdr;
|
|
|
|
if (!ubi->fast_attach)
|
|
return 0;
|
|
|
|
if (!vol->checkmap || test_bit(lnum, vol->checkmap))
|
|
return 0;
|
|
|
|
vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
|
|
if (!vidb)
|
|
return -ENOMEM;
|
|
|
|
err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0);
|
|
if (err > 0 && err != UBI_IO_BITFLIPS) {
|
|
int torture = 0;
|
|
|
|
switch (err) {
|
|
case UBI_IO_FF:
|
|
case UBI_IO_FF_BITFLIPS:
|
|
case UBI_IO_BAD_HDR:
|
|
case UBI_IO_BAD_HDR_EBADMSG:
|
|
break;
|
|
default:
|
|
ubi_assert(0);
|
|
}
|
|
|
|
if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS)
|
|
torture = 1;
|
|
|
|
down_read(&ubi->fm_eba_sem);
|
|
vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
|
|
up_read(&ubi->fm_eba_sem);
|
|
ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture);
|
|
|
|
*pnum = UBI_LEB_UNMAPPED;
|
|
} else if (err < 0) {
|
|
ubi_err(ubi, "unable to read VID header back from PEB %i: %i",
|
|
*pnum, err);
|
|
|
|
goto out_free;
|
|
} else {
|
|
int found_vol_id, found_lnum;
|
|
|
|
ubi_assert(err == 0 || err == UBI_IO_BITFLIPS);
|
|
|
|
vid_hdr = ubi_get_vid_hdr(vidb);
|
|
found_vol_id = be32_to_cpu(vid_hdr->vol_id);
|
|
found_lnum = be32_to_cpu(vid_hdr->lnum);
|
|
|
|
if (found_lnum != lnum || found_vol_id != vol->vol_id) {
|
|
ubi_err(ubi, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i",
|
|
*pnum, found_vol_id, found_lnum, vol->vol_id, lnum);
|
|
ubi_ro_mode(ubi);
|
|
err = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
}
|
|
|
|
set_bit(lnum, vol->checkmap);
|
|
err = 0;
|
|
|
|
out_free:
|
|
ubi_free_vid_buf(vidb);
|
|
|
|
return err;
|
|
}
|
|
#else
|
|
static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
|
|
int *pnum)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* ubi_eba_read_leb - read data.
|
|
* @ubi: UBI device description object
|
|
* @vol: volume description object
|
|
* @lnum: logical eraseblock number
|
|
* @buf: buffer to store the read data
|
|
* @offset: offset from where to read
|
|
* @len: how many bytes to read
|
|
* @check: data CRC check flag
|
|
*
|
|
* If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
|
|
* bytes. The @check flag only makes sense for static volumes and forces
|
|
* eraseblock data CRC checking.
|
|
*
|
|
* In case of success this function returns zero. In case of a static volume,
|
|
* if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
|
|
* returned for any volume type if an ECC error was detected by the MTD device
|
|
* driver. Other negative error cored may be returned in case of other errors.
|
|
*/
|
|
int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
|
|
void *buf, int offset, int len, int check)
|
|
{
|
|
int err, pnum, scrub = 0, vol_id = vol->vol_id;
|
|
struct ubi_vid_io_buf *vidb;
|
|
struct ubi_vid_hdr *vid_hdr;
|
|
uint32_t uninitialized_var(crc);
|
|
|
|
err = leb_read_lock(ubi, vol_id, lnum);
|
|
if (err)
|
|
return err;
|
|
|
|
pnum = vol->eba_tbl->entries[lnum].pnum;
|
|
if (pnum >= 0) {
|
|
err = check_mapping(ubi, vol, lnum, &pnum);
|
|
if (err < 0)
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (pnum == UBI_LEB_UNMAPPED) {
|
|
/*
|
|
* The logical eraseblock is not mapped, fill the whole buffer
|
|
* with 0xFF bytes. The exception is static volumes for which
|
|
* it is an error to read unmapped logical eraseblocks.
|
|
*/
|
|
dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
|
|
len, offset, vol_id, lnum);
|
|
leb_read_unlock(ubi, vol_id, lnum);
|
|
ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
|
|
memset(buf, 0xFF, len);
|
|
return 0;
|
|
}
|
|
|
|
dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
|
|
len, offset, vol_id, lnum, pnum);
|
|
|
|
if (vol->vol_type == UBI_DYNAMIC_VOLUME)
|
|
check = 0;
|
|
|
|
retry:
|
|
if (check) {
|
|
vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
|
|
if (!vidb) {
|
|
err = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
vid_hdr = ubi_get_vid_hdr(vidb);
|
|
|
|
err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
|
|
if (err && err != UBI_IO_BITFLIPS) {
|
|
if (err > 0) {
|
|
/*
|
|
* The header is either absent or corrupted.
|
|
* The former case means there is a bug -
|
|
* switch to read-only mode just in case.
|
|
* The latter case means a real corruption - we
|
|
* may try to recover data. FIXME: but this is
|
|
* not implemented.
|
|
*/
|
|
if (err == UBI_IO_BAD_HDR_EBADMSG ||
|
|
err == UBI_IO_BAD_HDR) {
|
|
ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
|
|
pnum, vol_id, lnum);
|
|
err = -EBADMSG;
|
|
} else {
|
|
/*
|
|
* Ending up here in the non-Fastmap case
|
|
* is a clear bug as the VID header had to
|
|
* be present at scan time to have it referenced.
|
|
* With fastmap the story is more complicated.
|
|
* Fastmap has the mapping info without the need
|
|
* of a full scan. So the LEB could have been
|
|
* unmapped, Fastmap cannot know this and keeps
|
|
* the LEB referenced.
|
|
* This is valid and works as the layer above UBI
|
|
* has to do bookkeeping about used/referenced
|
|
* LEBs in any case.
|
|
*/
|
|
if (ubi->fast_attach) {
|
|
err = -EBADMSG;
|
|
} else {
|
|
err = -EINVAL;
|
|
ubi_ro_mode(ubi);
|
|
}
|
|
}
|
|
}
|
|
goto out_free;
|
|
} else if (err == UBI_IO_BITFLIPS)
|
|
scrub = 1;
|
|
|
|
ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
|
|
ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
|
|
|
|
crc = be32_to_cpu(vid_hdr->data_crc);
|
|
ubi_free_vid_buf(vidb);
|
|
}
|
|
|
|
err = ubi_io_read_data(ubi, buf, pnum, offset, len);
|
|
if (err) {
|
|
if (err == UBI_IO_BITFLIPS)
|
|
scrub = 1;
|
|
else if (mtd_is_eccerr(err)) {
|
|
if (vol->vol_type == UBI_DYNAMIC_VOLUME)
|
|
goto out_unlock;
|
|
scrub = 1;
|
|
if (!check) {
|
|
ubi_msg(ubi, "force data checking");
|
|
check = 1;
|
|
goto retry;
|
|
}
|
|
} else
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (check) {
|
|
uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
|
|
if (crc1 != crc) {
|
|
ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
|
|
crc1, crc);
|
|
err = -EBADMSG;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
if (scrub)
|
|
err = ubi_wl_scrub_peb(ubi, pnum);
|
|
|
|
leb_read_unlock(ubi, vol_id, lnum);
|
|
return err;
|
|
|
|
out_free:
|
|
ubi_free_vid_buf(vidb);
|
|
out_unlock:
|
|
leb_read_unlock(ubi, vol_id, lnum);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_read_leb_sg - read data into a scatter gather list.
|
|
* @ubi: UBI device description object
|
|
* @vol: volume description object
|
|
* @lnum: logical eraseblock number
|
|
* @sgl: UBI scatter gather list to store the read data
|
|
* @offset: offset from where to read
|
|
* @len: how many bytes to read
|
|
* @check: data CRC check flag
|
|
*
|
|
* This function works exactly like ubi_eba_read_leb(). But instead of
|
|
* storing the read data into a buffer it writes to an UBI scatter gather
|
|
* list.
|
|
*/
|
|
int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
|
|
struct ubi_sgl *sgl, int lnum, int offset, int len,
|
|
int check)
|
|
{
|
|
int to_read;
|
|
int ret;
|
|
struct scatterlist *sg;
|
|
|
|
for (;;) {
|
|
ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
|
|
sg = &sgl->sg[sgl->list_pos];
|
|
if (len < sg->length - sgl->page_pos)
|
|
to_read = len;
|
|
else
|
|
to_read = sg->length - sgl->page_pos;
|
|
|
|
ret = ubi_eba_read_leb(ubi, vol, lnum,
|
|
sg_virt(sg) + sgl->page_pos, offset,
|
|
to_read, check);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
offset += to_read;
|
|
len -= to_read;
|
|
if (!len) {
|
|
sgl->page_pos += to_read;
|
|
if (sgl->page_pos == sg->length) {
|
|
sgl->list_pos++;
|
|
sgl->page_pos = 0;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
sgl->list_pos++;
|
|
sgl->page_pos = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* try_recover_peb - try to recover from write failure.
|
|
* @vol: volume description object
|
|
* @pnum: the physical eraseblock to recover
|
|
* @lnum: logical eraseblock number
|
|
* @buf: data which was not written because of the write failure
|
|
* @offset: offset of the failed write
|
|
* @len: how many bytes should have been written
|
|
* @vidb: VID buffer
|
|
* @retry: whether the caller should retry in case of failure
|
|
*
|
|
* This function is called in case of a write failure and moves all good data
|
|
* from the potentially bad physical eraseblock to a good physical eraseblock.
|
|
* This function also writes the data which was not written due to the failure.
|
|
* Returns 0 in case of success, and a negative error code in case of failure.
|
|
* In case of failure, the %retry parameter is set to false if this is a fatal
|
|
* error (retrying won't help), and true otherwise.
|
|
*/
|
|
static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum,
|
|
const void *buf, int offset, int len,
|
|
struct ubi_vid_io_buf *vidb, bool *retry)
|
|
{
|
|
struct ubi_device *ubi = vol->ubi;
|
|
struct ubi_vid_hdr *vid_hdr;
|
|
int new_pnum, err, vol_id = vol->vol_id, data_size;
|
|
uint32_t crc;
|
|
|
|
*retry = false;
|
|
|
|
new_pnum = ubi_wl_get_peb(ubi);
|
|
if (new_pnum < 0) {
|
|
err = new_pnum;
|
|
goto out_put;
|
|
}
|
|
|
|
ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
|
|
pnum, new_pnum);
|
|
|
|
err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
|
|
if (err && err != UBI_IO_BITFLIPS) {
|
|
if (err > 0)
|
|
err = -EIO;
|
|
goto out_put;
|
|
}
|
|
|
|
vid_hdr = ubi_get_vid_hdr(vidb);
|
|
ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC);
|
|
|
|
mutex_lock(&ubi->buf_mutex);
|
|
memset(ubi->peb_buf + offset, 0xFF, len);
|
|
|
|
/* Read everything before the area where the write failure happened */
|
|
if (offset > 0) {
|
|
err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
|
|
if (err && err != UBI_IO_BITFLIPS)
|
|
goto out_unlock;
|
|
}
|
|
|
|
*retry = true;
|
|
|
|
memcpy(ubi->peb_buf + offset, buf, len);
|
|
|
|
data_size = offset + len;
|
|
crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
|
|
vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
|
|
vid_hdr->copy_flag = 1;
|
|
vid_hdr->data_size = cpu_to_be32(data_size);
|
|
vid_hdr->data_crc = cpu_to_be32(crc);
|
|
err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&ubi->buf_mutex);
|
|
|
|
if (!err)
|
|
vol->eba_tbl->entries[lnum].pnum = new_pnum;
|
|
|
|
out_put:
|
|
up_read(&ubi->fm_eba_sem);
|
|
|
|
if (!err) {
|
|
ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
|
|
ubi_msg(ubi, "data was successfully recovered");
|
|
} else if (new_pnum >= 0) {
|
|
/*
|
|
* Bad luck? This physical eraseblock is bad too? Crud. Let's
|
|
* try to get another one.
|
|
*/
|
|
ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
|
|
ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* recover_peb - recover from write failure.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock to recover
|
|
* @vol_id: volume ID
|
|
* @lnum: logical eraseblock number
|
|
* @buf: data which was not written because of the write failure
|
|
* @offset: offset of the failed write
|
|
* @len: how many bytes should have been written
|
|
*
|
|
* This function is called in case of a write failure and moves all good data
|
|
* from the potentially bad physical eraseblock to a good physical eraseblock.
|
|
* This function also writes the data which was not written due to the failure.
|
|
* Returns 0 in case of success, and a negative error code in case of failure.
|
|
* This function tries %UBI_IO_RETRIES before giving up.
|
|
*/
|
|
static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
|
|
const void *buf, int offset, int len)
|
|
{
|
|
int err, idx = vol_id2idx(ubi, vol_id), tries;
|
|
struct ubi_volume *vol = ubi->volumes[idx];
|
|
struct ubi_vid_io_buf *vidb;
|
|
|
|
vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
|
|
if (!vidb)
|
|
return -ENOMEM;
|
|
|
|
for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
|
|
bool retry;
|
|
|
|
err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb,
|
|
&retry);
|
|
if (!err || !retry)
|
|
break;
|
|
|
|
ubi_msg(ubi, "try again");
|
|
}
|
|
|
|
ubi_free_vid_buf(vidb);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* try_write_vid_and_data - try to write VID header and data to a new PEB.
|
|
* @vol: volume description object
|
|
* @lnum: logical eraseblock number
|
|
* @vidb: the VID buffer to write
|
|
* @buf: buffer containing the data
|
|
* @offset: where to start writing data
|
|
* @len: how many bytes should be written
|
|
*
|
|
* This function tries to write VID header and data belonging to logical
|
|
* eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
|
|
* in case of success and a negative error code in case of failure.
|
|
* In case of error, it is possible that something was still written to the
|
|
* flash media, but may be some garbage.
|
|
*/
|
|
static int try_write_vid_and_data(struct ubi_volume *vol, int lnum,
|
|
struct ubi_vid_io_buf *vidb, const void *buf,
|
|
int offset, int len)
|
|
{
|
|
struct ubi_device *ubi = vol->ubi;
|
|
int pnum, opnum, err, vol_id = vol->vol_id;
|
|
|
|
pnum = ubi_wl_get_peb(ubi);
|
|
if (pnum < 0) {
|
|
err = pnum;
|
|
goto out_put;
|
|
}
|
|
|
|
opnum = vol->eba_tbl->entries[lnum].pnum;
|
|
|
|
dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
|
|
len, offset, vol_id, lnum, pnum);
|
|
|
|
err = ubi_io_write_vid_hdr(ubi, pnum, vidb);
|
|
if (err) {
|
|
ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
|
|
vol_id, lnum, pnum);
|
|
goto out_put;
|
|
}
|
|
|
|
if (len) {
|
|
err = ubi_io_write_data(ubi, buf, pnum, offset, len);
|
|
if (err) {
|
|
ubi_warn(ubi,
|
|
"failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
|
|
len, offset, vol_id, lnum, pnum);
|
|
goto out_put;
|
|
}
|
|
}
|
|
|
|
vol->eba_tbl->entries[lnum].pnum = pnum;
|
|
|
|
out_put:
|
|
up_read(&ubi->fm_eba_sem);
|
|
|
|
if (err && pnum >= 0)
|
|
err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
|
|
else if (!err && opnum >= 0)
|
|
err = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_write_leb - write data to dynamic volume.
|
|
* @ubi: UBI device description object
|
|
* @vol: volume description object
|
|
* @lnum: logical eraseblock number
|
|
* @buf: the data to write
|
|
* @offset: offset within the logical eraseblock where to write
|
|
* @len: how many bytes to write
|
|
*
|
|
* This function writes data to logical eraseblock @lnum of a dynamic volume
|
|
* @vol. Returns zero in case of success and a negative error code in case
|
|
* of failure. In case of error, it is possible that something was still
|
|
* written to the flash media, but may be some garbage.
|
|
* This function retries %UBI_IO_RETRIES times before giving up.
|
|
*/
|
|
int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
|
|
const void *buf, int offset, int len)
|
|
{
|
|
int err, pnum, tries, vol_id = vol->vol_id;
|
|
struct ubi_vid_io_buf *vidb;
|
|
struct ubi_vid_hdr *vid_hdr;
|
|
|
|
if (ubi->ro_mode)
|
|
return -EROFS;
|
|
|
|
err = leb_write_lock(ubi, vol_id, lnum);
|
|
if (err)
|
|
return err;
|
|
|
|
pnum = vol->eba_tbl->entries[lnum].pnum;
|
|
if (pnum >= 0) {
|
|
err = check_mapping(ubi, vol, lnum, &pnum);
|
|
if (err < 0)
|
|
goto out;
|
|
}
|
|
|
|
if (pnum >= 0) {
|
|
dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
|
|
len, offset, vol_id, lnum, pnum);
|
|
|
|
err = ubi_io_write_data(ubi, buf, pnum, offset, len);
|
|
if (err) {
|
|
ubi_warn(ubi, "failed to write data to PEB %d", pnum);
|
|
if (err == -EIO && ubi->bad_allowed)
|
|
err = recover_peb(ubi, pnum, vol_id, lnum, buf,
|
|
offset, len);
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* The logical eraseblock is not mapped. We have to get a free physical
|
|
* eraseblock and write the volume identifier header there first.
|
|
*/
|
|
vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
|
|
if (!vidb) {
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
vid_hdr = ubi_get_vid_hdr(vidb);
|
|
|
|
vid_hdr->vol_type = UBI_VID_DYNAMIC;
|
|
vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
|
|
vid_hdr->vol_id = cpu_to_be32(vol_id);
|
|
vid_hdr->lnum = cpu_to_be32(lnum);
|
|
vid_hdr->compat = ubi_get_compat(ubi, vol_id);
|
|
vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
|
|
|
|
for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
|
|
err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len);
|
|
if (err != -EIO || !ubi->bad_allowed)
|
|
break;
|
|
|
|
/*
|
|
* Fortunately, this is the first write operation to this
|
|
* physical eraseblock, so just put it and request a new one.
|
|
* We assume that if this physical eraseblock went bad, the
|
|
* erase code will handle that.
|
|
*/
|
|
vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
|
|
ubi_msg(ubi, "try another PEB");
|
|
}
|
|
|
|
ubi_free_vid_buf(vidb);
|
|
|
|
out:
|
|
if (err)
|
|
ubi_ro_mode(ubi);
|
|
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_write_leb_st - write data to static volume.
|
|
* @ubi: UBI device description object
|
|
* @vol: volume description object
|
|
* @lnum: logical eraseblock number
|
|
* @buf: data to write
|
|
* @len: how many bytes to write
|
|
* @used_ebs: how many logical eraseblocks will this volume contain
|
|
*
|
|
* This function writes data to logical eraseblock @lnum of static volume
|
|
* @vol. The @used_ebs argument should contain total number of logical
|
|
* eraseblock in this static volume.
|
|
*
|
|
* When writing to the last logical eraseblock, the @len argument doesn't have
|
|
* to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
|
|
* to the real data size, although the @buf buffer has to contain the
|
|
* alignment. In all other cases, @len has to be aligned.
|
|
*
|
|
* It is prohibited to write more than once to logical eraseblocks of static
|
|
* volumes. This function returns zero in case of success and a negative error
|
|
* code in case of failure.
|
|
*/
|
|
int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
|
|
int lnum, const void *buf, int len, int used_ebs)
|
|
{
|
|
int err, tries, data_size = len, vol_id = vol->vol_id;
|
|
struct ubi_vid_io_buf *vidb;
|
|
struct ubi_vid_hdr *vid_hdr;
|
|
uint32_t crc;
|
|
|
|
if (ubi->ro_mode)
|
|
return -EROFS;
|
|
|
|
if (lnum == used_ebs - 1)
|
|
/* If this is the last LEB @len may be unaligned */
|
|
len = ALIGN(data_size, ubi->min_io_size);
|
|
else
|
|
ubi_assert(!(len & (ubi->min_io_size - 1)));
|
|
|
|
vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
|
|
if (!vidb)
|
|
return -ENOMEM;
|
|
|
|
vid_hdr = ubi_get_vid_hdr(vidb);
|
|
|
|
err = leb_write_lock(ubi, vol_id, lnum);
|
|
if (err)
|
|
goto out;
|
|
|
|
vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
|
|
vid_hdr->vol_id = cpu_to_be32(vol_id);
|
|
vid_hdr->lnum = cpu_to_be32(lnum);
|
|
vid_hdr->compat = ubi_get_compat(ubi, vol_id);
|
|
vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
|
|
|
|
crc = crc32(UBI_CRC32_INIT, buf, data_size);
|
|
vid_hdr->vol_type = UBI_VID_STATIC;
|
|
vid_hdr->data_size = cpu_to_be32(data_size);
|
|
vid_hdr->used_ebs = cpu_to_be32(used_ebs);
|
|
vid_hdr->data_crc = cpu_to_be32(crc);
|
|
|
|
ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0);
|
|
|
|
for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
|
|
err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
|
|
if (err != -EIO || !ubi->bad_allowed)
|
|
break;
|
|
|
|
vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
|
|
ubi_msg(ubi, "try another PEB");
|
|
}
|
|
|
|
if (err)
|
|
ubi_ro_mode(ubi);
|
|
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
|
|
out:
|
|
ubi_free_vid_buf(vidb);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ubi_eba_atomic_leb_change - change logical eraseblock atomically.
|
|
* @ubi: UBI device description object
|
|
* @vol: volume description object
|
|
* @lnum: logical eraseblock number
|
|
* @buf: data to write
|
|
* @len: how many bytes to write
|
|
*
|
|
* This function changes the contents of a logical eraseblock atomically. @buf
|
|
* has to contain new logical eraseblock data, and @len - the length of the
|
|
* data, which has to be aligned. This function guarantees that in case of an
|
|
* unclean reboot the old contents is preserved. Returns zero in case of
|
|
* success and a negative error code in case of failure.
|
|
*
|
|
* UBI reserves one LEB for the "atomic LEB change" operation, so only one
|
|
* LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
|
|
*/
|
|
int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
|
|
int lnum, const void *buf, int len)
|
|
{
|
|
int err, tries, vol_id = vol->vol_id;
|
|
struct ubi_vid_io_buf *vidb;
|
|
struct ubi_vid_hdr *vid_hdr;
|
|
uint32_t crc;
|
|
|
|
if (ubi->ro_mode)
|
|
return -EROFS;
|
|
|
|
if (len == 0) {
|
|
/*
|
|
* Special case when data length is zero. In this case the LEB
|
|
* has to be unmapped and mapped somewhere else.
|
|
*/
|
|
err = ubi_eba_unmap_leb(ubi, vol, lnum);
|
|
if (err)
|
|
return err;
|
|
return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
|
|
}
|
|
|
|
vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
|
|
if (!vidb)
|
|
return -ENOMEM;
|
|
|
|
vid_hdr = ubi_get_vid_hdr(vidb);
|
|
|
|
mutex_lock(&ubi->alc_mutex);
|
|
err = leb_write_lock(ubi, vol_id, lnum);
|
|
if (err)
|
|
goto out_mutex;
|
|
|
|
vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
|
|
vid_hdr->vol_id = cpu_to_be32(vol_id);
|
|
vid_hdr->lnum = cpu_to_be32(lnum);
|
|
vid_hdr->compat = ubi_get_compat(ubi, vol_id);
|
|
vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
|
|
|
|
crc = crc32(UBI_CRC32_INIT, buf, len);
|
|
vid_hdr->vol_type = UBI_VID_DYNAMIC;
|
|
vid_hdr->data_size = cpu_to_be32(len);
|
|
vid_hdr->copy_flag = 1;
|
|
vid_hdr->data_crc = cpu_to_be32(crc);
|
|
|
|
dbg_eba("change LEB %d:%d", vol_id, lnum);
|
|
|
|
for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
|
|
err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
|
|
if (err != -EIO || !ubi->bad_allowed)
|
|
break;
|
|
|
|
vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
|
|
ubi_msg(ubi, "try another PEB");
|
|
}
|
|
|
|
/*
|
|
* This flash device does not admit of bad eraseblocks or
|
|
* something nasty and unexpected happened. Switch to read-only
|
|
* mode just in case.
|
|
*/
|
|
if (err)
|
|
ubi_ro_mode(ubi);
|
|
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
|
|
out_mutex:
|
|
mutex_unlock(&ubi->alc_mutex);
|
|
ubi_free_vid_buf(vidb);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* is_error_sane - check whether a read error is sane.
|
|
* @err: code of the error happened during reading
|
|
*
|
|
* This is a helper function for 'ubi_eba_copy_leb()' which is called when we
|
|
* cannot read data from the target PEB (an error @err happened). If the error
|
|
* code is sane, then we treat this error as non-fatal. Otherwise the error is
|
|
* fatal and UBI will be switched to R/O mode later.
|
|
*
|
|
* The idea is that we try not to switch to R/O mode if the read error is
|
|
* something which suggests there was a real read problem. E.g., %-EIO. Or a
|
|
* memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
|
|
* mode, simply because we do not know what happened at the MTD level, and we
|
|
* cannot handle this. E.g., the underlying driver may have become crazy, and
|
|
* it is safer to switch to R/O mode to preserve the data.
|
|
*
|
|
* And bear in mind, this is about reading from the target PEB, i.e. the PEB
|
|
* which we have just written.
|
|
*/
|
|
static int is_error_sane(int err)
|
|
{
|
|
if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
|
|
err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_copy_leb - copy logical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @from: physical eraseblock number from where to copy
|
|
* @to: physical eraseblock number where to copy
|
|
* @vid_hdr: VID header of the @from physical eraseblock
|
|
*
|
|
* This function copies logical eraseblock from physical eraseblock @from to
|
|
* physical eraseblock @to. The @vid_hdr buffer may be changed by this
|
|
* function. Returns:
|
|
* o %0 in case of success;
|
|
* o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
|
|
* o a negative error code in case of failure.
|
|
*/
|
|
int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
|
|
struct ubi_vid_io_buf *vidb)
|
|
{
|
|
int err, vol_id, lnum, data_size, aldata_size, idx;
|
|
struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
|
|
struct ubi_volume *vol;
|
|
uint32_t crc;
|
|
|
|
ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem));
|
|
|
|
vol_id = be32_to_cpu(vid_hdr->vol_id);
|
|
lnum = be32_to_cpu(vid_hdr->lnum);
|
|
|
|
dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
|
|
|
|
if (vid_hdr->vol_type == UBI_VID_STATIC) {
|
|
data_size = be32_to_cpu(vid_hdr->data_size);
|
|
aldata_size = ALIGN(data_size, ubi->min_io_size);
|
|
} else
|
|
data_size = aldata_size =
|
|
ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
|
|
|
|
idx = vol_id2idx(ubi, vol_id);
|
|
spin_lock(&ubi->volumes_lock);
|
|
/*
|
|
* Note, we may race with volume deletion, which means that the volume
|
|
* this logical eraseblock belongs to might be being deleted. Since the
|
|
* volume deletion un-maps all the volume's logical eraseblocks, it will
|
|
* be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
|
|
*/
|
|
vol = ubi->volumes[idx];
|
|
spin_unlock(&ubi->volumes_lock);
|
|
if (!vol) {
|
|
/* No need to do further work, cancel */
|
|
dbg_wl("volume %d is being removed, cancel", vol_id);
|
|
return MOVE_CANCEL_RACE;
|
|
}
|
|
|
|
/*
|
|
* We do not want anybody to write to this logical eraseblock while we
|
|
* are moving it, so lock it.
|
|
*
|
|
* Note, we are using non-waiting locking here, because we cannot sleep
|
|
* on the LEB, since it may cause deadlocks. Indeed, imagine a task is
|
|
* unmapping the LEB which is mapped to the PEB we are going to move
|
|
* (@from). This task locks the LEB and goes sleep in the
|
|
* 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
|
|
* holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
|
|
* LEB is already locked, we just do not move it and return
|
|
* %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
|
|
* we do not know the reasons of the contention - it may be just a
|
|
* normal I/O on this LEB, so we want to re-try.
|
|
*/
|
|
err = leb_write_trylock(ubi, vol_id, lnum);
|
|
if (err) {
|
|
dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
|
|
return MOVE_RETRY;
|
|
}
|
|
|
|
/*
|
|
* The LEB might have been put meanwhile, and the task which put it is
|
|
* probably waiting on @ubi->move_mutex. No need to continue the work,
|
|
* cancel it.
|
|
*/
|
|
if (vol->eba_tbl->entries[lnum].pnum != from) {
|
|
dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
|
|
vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum);
|
|
err = MOVE_CANCEL_RACE;
|
|
goto out_unlock_leb;
|
|
}
|
|
|
|
/*
|
|
* OK, now the LEB is locked and we can safely start moving it. Since
|
|
* this function utilizes the @ubi->peb_buf buffer which is shared
|
|
* with some other functions - we lock the buffer by taking the
|
|
* @ubi->buf_mutex.
|
|
*/
|
|
mutex_lock(&ubi->buf_mutex);
|
|
dbg_wl("read %d bytes of data", aldata_size);
|
|
err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
|
|
if (err && err != UBI_IO_BITFLIPS) {
|
|
ubi_warn(ubi, "error %d while reading data from PEB %d",
|
|
err, from);
|
|
err = MOVE_SOURCE_RD_ERR;
|
|
goto out_unlock_buf;
|
|
}
|
|
|
|
/*
|
|
* Now we have got to calculate how much data we have to copy. In
|
|
* case of a static volume it is fairly easy - the VID header contains
|
|
* the data size. In case of a dynamic volume it is more difficult - we
|
|
* have to read the contents, cut 0xFF bytes from the end and copy only
|
|
* the first part. We must do this to avoid writing 0xFF bytes as it
|
|
* may have some side-effects. And not only this. It is important not
|
|
* to include those 0xFFs to CRC because later the they may be filled
|
|
* by data.
|
|
*/
|
|
if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
|
|
aldata_size = data_size =
|
|
ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
|
|
|
|
cond_resched();
|
|
crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
|
|
cond_resched();
|
|
|
|
/*
|
|
* It may turn out to be that the whole @from physical eraseblock
|
|
* contains only 0xFF bytes. Then we have to only write the VID header
|
|
* and do not write any data. This also means we should not set
|
|
* @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
|
|
*/
|
|
if (data_size > 0) {
|
|
vid_hdr->copy_flag = 1;
|
|
vid_hdr->data_size = cpu_to_be32(data_size);
|
|
vid_hdr->data_crc = cpu_to_be32(crc);
|
|
}
|
|
vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
|
|
|
|
err = ubi_io_write_vid_hdr(ubi, to, vidb);
|
|
if (err) {
|
|
if (err == -EIO)
|
|
err = MOVE_TARGET_WR_ERR;
|
|
goto out_unlock_buf;
|
|
}
|
|
|
|
cond_resched();
|
|
|
|
/* Read the VID header back and check if it was written correctly */
|
|
err = ubi_io_read_vid_hdr(ubi, to, vidb, 1);
|
|
if (err) {
|
|
if (err != UBI_IO_BITFLIPS) {
|
|
ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
|
|
err, to);
|
|
if (is_error_sane(err))
|
|
err = MOVE_TARGET_RD_ERR;
|
|
} else
|
|
err = MOVE_TARGET_BITFLIPS;
|
|
goto out_unlock_buf;
|
|
}
|
|
|
|
if (data_size > 0) {
|
|
err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
|
|
if (err) {
|
|
if (err == -EIO)
|
|
err = MOVE_TARGET_WR_ERR;
|
|
goto out_unlock_buf;
|
|
}
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
ubi_assert(vol->eba_tbl->entries[lnum].pnum == from);
|
|
vol->eba_tbl->entries[lnum].pnum = to;
|
|
|
|
out_unlock_buf:
|
|
mutex_unlock(&ubi->buf_mutex);
|
|
out_unlock_leb:
|
|
leb_write_unlock(ubi, vol_id, lnum);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* print_rsvd_warning - warn about not having enough reserved PEBs.
|
|
* @ubi: UBI device description object
|
|
*
|
|
* This is a helper function for 'ubi_eba_init()' which is called when UBI
|
|
* cannot reserve enough PEBs for bad block handling. This function makes a
|
|
* decision whether we have to print a warning or not. The algorithm is as
|
|
* follows:
|
|
* o if this is a new UBI image, then just print the warning
|
|
* o if this is an UBI image which has already been used for some time, print
|
|
* a warning only if we can reserve less than 10% of the expected amount of
|
|
* the reserved PEB.
|
|
*
|
|
* The idea is that when UBI is used, PEBs become bad, and the reserved pool
|
|
* of PEBs becomes smaller, which is normal and we do not want to scare users
|
|
* with a warning every time they attach the MTD device. This was an issue
|
|
* reported by real users.
|
|
*/
|
|
static void print_rsvd_warning(struct ubi_device *ubi,
|
|
struct ubi_attach_info *ai)
|
|
{
|
|
/*
|
|
* The 1 << 18 (256KiB) number is picked randomly, just a reasonably
|
|
* large number to distinguish between newly flashed and used images.
|
|
*/
|
|
if (ai->max_sqnum > (1 << 18)) {
|
|
int min = ubi->beb_rsvd_level / 10;
|
|
|
|
if (!min)
|
|
min = 1;
|
|
if (ubi->beb_rsvd_pebs > min)
|
|
return;
|
|
}
|
|
|
|
ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
|
|
ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
|
|
if (ubi->corr_peb_count)
|
|
ubi_warn(ubi, "%d PEBs are corrupted and not used",
|
|
ubi->corr_peb_count);
|
|
}
|
|
|
|
/**
|
|
* self_check_eba - run a self check on the EBA table constructed by fastmap.
|
|
* @ubi: UBI device description object
|
|
* @ai_fastmap: UBI attach info object created by fastmap
|
|
* @ai_scan: UBI attach info object created by scanning
|
|
*
|
|
* Returns < 0 in case of an internal error, 0 otherwise.
|
|
* If a bad EBA table entry was found it will be printed out and
|
|
* ubi_assert() triggers.
|
|
*/
|
|
int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
|
|
struct ubi_attach_info *ai_scan)
|
|
{
|
|
int i, j, num_volumes, ret = 0;
|
|
int **scan_eba, **fm_eba;
|
|
struct ubi_ainf_volume *av;
|
|
struct ubi_volume *vol;
|
|
struct ubi_ainf_peb *aeb;
|
|
struct rb_node *rb;
|
|
|
|
num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
|
|
|
|
scan_eba = kmalloc_array(num_volumes, sizeof(*scan_eba), GFP_KERNEL);
|
|
if (!scan_eba)
|
|
return -ENOMEM;
|
|
|
|
fm_eba = kmalloc_array(num_volumes, sizeof(*fm_eba), GFP_KERNEL);
|
|
if (!fm_eba) {
|
|
kfree(scan_eba);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < num_volumes; i++) {
|
|
vol = ubi->volumes[i];
|
|
if (!vol)
|
|
continue;
|
|
|
|
scan_eba[i] = kmalloc_array(vol->reserved_pebs,
|
|
sizeof(**scan_eba),
|
|
GFP_KERNEL);
|
|
if (!scan_eba[i]) {
|
|
ret = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
fm_eba[i] = kmalloc_array(vol->reserved_pebs,
|
|
sizeof(**fm_eba),
|
|
GFP_KERNEL);
|
|
if (!fm_eba[i]) {
|
|
ret = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
for (j = 0; j < vol->reserved_pebs; j++)
|
|
scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
|
|
|
|
av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
|
|
if (!av)
|
|
continue;
|
|
|
|
ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
|
|
scan_eba[i][aeb->lnum] = aeb->pnum;
|
|
|
|
av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
|
|
if (!av)
|
|
continue;
|
|
|
|
ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
|
|
fm_eba[i][aeb->lnum] = aeb->pnum;
|
|
|
|
for (j = 0; j < vol->reserved_pebs; j++) {
|
|
if (scan_eba[i][j] != fm_eba[i][j]) {
|
|
if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
|
|
fm_eba[i][j] == UBI_LEB_UNMAPPED)
|
|
continue;
|
|
|
|
ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
|
|
vol->vol_id, j, fm_eba[i][j],
|
|
scan_eba[i][j]);
|
|
ubi_assert(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
out_free:
|
|
for (i = 0; i < num_volumes; i++) {
|
|
if (!ubi->volumes[i])
|
|
continue;
|
|
|
|
kfree(scan_eba[i]);
|
|
kfree(fm_eba[i]);
|
|
}
|
|
|
|
kfree(scan_eba);
|
|
kfree(fm_eba);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ubi_eba_init - initialize the EBA sub-system using attaching information.
|
|
* @ubi: UBI device description object
|
|
* @ai: attaching information
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
|
|
{
|
|
int i, err, num_volumes;
|
|
struct ubi_ainf_volume *av;
|
|
struct ubi_volume *vol;
|
|
struct ubi_ainf_peb *aeb;
|
|
struct rb_node *rb;
|
|
|
|
dbg_eba("initialize EBA sub-system");
|
|
|
|
spin_lock_init(&ubi->ltree_lock);
|
|
mutex_init(&ubi->alc_mutex);
|
|
ubi->ltree = RB_ROOT;
|
|
|
|
ubi->global_sqnum = ai->max_sqnum + 1;
|
|
num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
|
|
|
|
for (i = 0; i < num_volumes; i++) {
|
|
struct ubi_eba_table *tbl;
|
|
|
|
vol = ubi->volumes[i];
|
|
if (!vol)
|
|
continue;
|
|
|
|
cond_resched();
|
|
|
|
tbl = ubi_eba_create_table(vol, vol->reserved_pebs);
|
|
if (IS_ERR(tbl)) {
|
|
err = PTR_ERR(tbl);
|
|
goto out_free;
|
|
}
|
|
|
|
ubi_eba_replace_table(vol, tbl);
|
|
|
|
av = ubi_find_av(ai, idx2vol_id(ubi, i));
|
|
if (!av)
|
|
continue;
|
|
|
|
ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
|
|
if (aeb->lnum >= vol->reserved_pebs) {
|
|
/*
|
|
* This may happen in case of an unclean reboot
|
|
* during re-size.
|
|
*/
|
|
ubi_move_aeb_to_list(av, aeb, &ai->erase);
|
|
} else {
|
|
struct ubi_eba_entry *entry;
|
|
|
|
entry = &vol->eba_tbl->entries[aeb->lnum];
|
|
entry->pnum = aeb->pnum;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
|
|
ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
|
|
ubi->avail_pebs, EBA_RESERVED_PEBS);
|
|
if (ubi->corr_peb_count)
|
|
ubi_err(ubi, "%d PEBs are corrupted and not used",
|
|
ubi->corr_peb_count);
|
|
err = -ENOSPC;
|
|
goto out_free;
|
|
}
|
|
ubi->avail_pebs -= EBA_RESERVED_PEBS;
|
|
ubi->rsvd_pebs += EBA_RESERVED_PEBS;
|
|
|
|
if (ubi->bad_allowed) {
|
|
ubi_calculate_reserved(ubi);
|
|
|
|
if (ubi->avail_pebs < ubi->beb_rsvd_level) {
|
|
/* No enough free physical eraseblocks */
|
|
ubi->beb_rsvd_pebs = ubi->avail_pebs;
|
|
print_rsvd_warning(ubi, ai);
|
|
} else
|
|
ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
|
|
|
|
ubi->avail_pebs -= ubi->beb_rsvd_pebs;
|
|
ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
|
|
}
|
|
|
|
dbg_eba("EBA sub-system is initialized");
|
|
return 0;
|
|
|
|
out_free:
|
|
for (i = 0; i < num_volumes; i++) {
|
|
if (!ubi->volumes[i])
|
|
continue;
|
|
ubi_eba_replace_table(ubi->volumes[i], NULL);
|
|
}
|
|
return err;
|
|
}
|