linux/arch/x86
Rick Edgecombe 31255e072b x86/shstk: Delay signal entry SSP write until after user accesses
When a signal is being delivered, the kernel needs to make accesses to
userspace. These accesses could encounter an access error, in which case
the signal delivery itself will trigger a segfault. Usually this would
result in the kernel killing the process. But in the case of a SEGV signal
handler being configured, the failure of the first signal delivery will
result in *another* signal getting delivered. The second signal may
succeed if another thread has resolved the issue that triggered the
segfault (i.e. a well timed mprotect()/mmap()), or the second signal is
being delivered to another stack (i.e. an alt stack).

On x86, in the non-shadow stack case, all the accesses to userspace are
done before changes to the registers (in pt_regs). The operation is
aborted when an access error occurs, so although there may be writes done
for the first signal, control flow changes for the signal (regs->ip,
regs->sp, etc) are not committed until all the accesses have already
completed successfully. This means that the second signal will be
delivered as if it happened at the time of the first signal. It will
effectively replace the first aborted signal, overwriting the half-written
frame of the aborted signal. So on sigreturn from the second signal,
control flow will resume happily from the point of control flow where the
original signal was delivered.

The problem is, when shadow stack is active, the shadow stack SSP
register/MSR is updated *before* some of the userspace accesses. This
means if the earlier accesses succeed and the later ones fail, the second
signal will not be delivered at the same spot on the shadow stack as the
first one. So on sigreturn from the second signal, the SSP will be
pointing to the wrong location on the shadow stack (off by a frame).

Pengfei privately reported that while using a shadow stack enabled glibc,
the “signal06” test in the LTP test-suite hung. It turns out it is
testing the above described double signal scenario. When this test was
compiled with shadow stack, the first signal pushed a shadow stack
sigframe, then the second pushed another. When the second signal was
handled, the SSP was at the first shadow stack signal frame instead of
the original location. The test then got stuck as the #CP from the twice
incremented SSP was incorrect and generated segfaults in a loop.

Fix this by adjusting the SSP register only after any userspace accesses,
such that there can be no failures after the SSP is adjusted. Do this by
moving the shadow stack sigframe push logic to happen after all other
userspace accesses.

Note, sigreturn (as opposed to the signal delivery dealt with in this
patch) has ordering behavior that could lead to similar failures. The
ordering issues there extend beyond shadow stack to include the alt stack
restoration. Fixing that would require cross-arch changes, and the
ordering today does not cause any known test or apps breakages. So leave
it as is, for now.

[ dhansen: minor changelog/subject tweak ]

Fixes: 05e36022c0 ("x86/shstk: Handle signals for shadow stack")
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Cc:stable@vger.kernel.org
Link: https://lore.kernel.org/all/20231107182251.91276-1-rick.p.edgecombe%40intel.com
Link: https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/syscalls/signal/signal06.c
2023-11-08 08:55:37 -08:00
..
boot x86/sev: Check for user-space IOIO pointing to kernel space 2023-10-17 10:58:16 +02:00
coco - Some SEV and CC platform helpers cleanup and simplifications now that 2023-06-27 13:26:30 -07:00
configs - The first, cleanup part of the microcode loader reorg tglx has been 2023-08-28 15:55:20 -07:00
crypto crypto: x86/aesni - remove unused parameter to aes_set_key_common() 2023-07-22 13:59:39 +12:00
entry xen: simplify evtchn_do_upcall() call maze 2023-09-19 07:04:49 +02:00
events perf/x86/lbr: Filter vsyscall addresses 2023-10-08 12:25:18 +02:00
hyperv x86/hyperv: Add common print prefix "Hyper-V" in hv_init 2023-09-22 18:43:09 +00:00
ia32
include x86/i8259: Skip probing when ACPI/MADT advertises PCAT compatibility 2023-10-27 20:36:49 +02:00
kernel x86/shstk: Delay signal entry SSP write until after user accesses 2023-11-08 08:55:37 -08:00
kvm KVM x86/pmu fixes for 6.6: 2023-10-15 08:24:18 -04:00
lib x86/asm: Fix build of UML with KASAN 2023-09-18 19:30:08 +02:00
math-emu x86/fpu: Include asm/fpu/regset.h 2023-05-18 11:56:18 -07:00
mm Add x86 shadow stack support 2023-08-31 12:20:12 -07:00
net bpf: Support new 32bit offset jmp instruction 2023-07-27 18:52:33 -07:00
pci pci-v6.6-changes 2023-08-30 20:23:07 -07:00
platform efi/x86: Move EFI runtime call setup/teardown helpers out of line 2023-09-11 06:37:50 +00:00
power x86/topology: Remove CPU0 hotplug option 2023-05-15 13:44:49 +02:00
purgatory x86/purgatory: Remove LTO flags 2023-09-17 09:49:03 +02:00
ras
realmode x86/realmode: Make stack lock work in trampoline_compat() 2023-05-30 14:11:47 +02:00
tools ELF: fix all "Elf" typos 2023-04-08 13:45:37 -07:00
um um: Hard-code the result of 'uname -s' 2023-08-26 22:40:37 +02:00
video Merge drm/drm-next into drm-misc-next 2023-07-24 15:44:47 +02:00
virt/vmx/tdx
xen xen/efi: refactor deprecated strncpy 2023-09-19 07:04:49 +02:00
.gitignore
Kbuild
Kconfig efi/x86: Ensure that EFI_RUNTIME_MAP is enabled for kexec 2023-09-11 06:37:50 +00:00
Kconfig.assembler x86/shstk: Add Kconfig option for shadow stack 2023-07-11 14:12:18 -07:00
Kconfig.cpu x86/cpu: Remove X86_FEATURE_NAMES 2023-05-15 20:03:08 +02:00
Kconfig.debug docs: move x86 documentation into Documentation/arch/ 2023-03-30 12:58:51 -06:00
Makefile Kbuild updates for v6.6 2023-09-05 11:01:47 -07:00
Makefile_32.cpu
Makefile.postlink x86/build: Avoid relocation information in final vmlinux 2023-06-14 19:54:40 +02:00
Makefile.um um: Only disable SSE on clang to work around old GCC bugs 2023-04-04 09:57:05 +02:00