mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-13 14:24:11 +08:00
310c33dc7a
Alexandre Ghiti <alexghiti@rivosinc.com> says: After multiple attempts, this patchset is now based on the fact that the 64b kernel mapping was moved outside the linear mapping. The first patch allows to build relocatable kernels but is not selected by default. That patch is a requirement for KASLR. The second and third patches take advantage of an already existing powerpc script that checks relocations at compile-time, and uses it for riscv. * b4-shazam-merge: riscv: Use --emit-relocs in order to move .rela.dyn in init riscv: Check relocations at compile time powerpc: Move script to check relocations at compile time in scripts/ riscv: Introduce CONFIG_RELOCATABLE riscv: Move .rela.dyn outside of init to avoid empty relocations riscv: Prepare EFI header for relocatable kernels Link: https://lore.kernel.org/r/20230329045329.64565-1-alexghiti@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
777 lines
23 KiB
Plaintext
777 lines
23 KiB
Plaintext
# SPDX-License-Identifier: GPL-2.0-only
|
|
#
|
|
# For a description of the syntax of this configuration file,
|
|
# see Documentation/kbuild/kconfig-language.rst.
|
|
#
|
|
|
|
config 64BIT
|
|
bool
|
|
|
|
config 32BIT
|
|
bool
|
|
|
|
config RISCV
|
|
def_bool y
|
|
select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
|
|
select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
|
|
select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
|
|
select ARCH_HAS_BINFMT_FLAT
|
|
select ARCH_HAS_CURRENT_STACK_POINTER
|
|
select ARCH_HAS_DEBUG_VIRTUAL if MMU
|
|
select ARCH_HAS_DEBUG_VM_PGTABLE
|
|
select ARCH_HAS_DEBUG_WX
|
|
select ARCH_HAS_FORTIFY_SOURCE
|
|
select ARCH_HAS_GCOV_PROFILE_ALL
|
|
select ARCH_HAS_GIGANTIC_PAGE
|
|
select ARCH_HAS_KCOV
|
|
select ARCH_HAS_MMIOWB
|
|
select ARCH_HAS_PMEM_API
|
|
select ARCH_HAS_PTE_SPECIAL
|
|
select ARCH_HAS_SET_DIRECT_MAP if MMU
|
|
select ARCH_HAS_SET_MEMORY if MMU
|
|
select ARCH_HAS_STRICT_KERNEL_RWX if MMU && !XIP_KERNEL
|
|
select ARCH_HAS_STRICT_MODULE_RWX if MMU && !XIP_KERNEL
|
|
select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
|
|
select ARCH_HAS_UBSAN_SANITIZE_ALL
|
|
select ARCH_HAS_VDSO_DATA
|
|
select ARCH_OPTIONAL_KERNEL_RWX if ARCH_HAS_STRICT_KERNEL_RWX
|
|
select ARCH_OPTIONAL_KERNEL_RWX_DEFAULT
|
|
select ARCH_STACKWALK
|
|
select ARCH_SUPPORTS_ATOMIC_RMW
|
|
select ARCH_SUPPORTS_DEBUG_PAGEALLOC if MMU
|
|
select ARCH_SUPPORTS_HUGETLBFS if MMU
|
|
select ARCH_SUPPORTS_PAGE_TABLE_CHECK if MMU
|
|
select ARCH_USE_MEMTEST
|
|
select ARCH_USE_QUEUED_RWLOCKS
|
|
select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT if MMU
|
|
select ARCH_WANT_FRAME_POINTERS
|
|
select ARCH_WANT_GENERAL_HUGETLB if !RISCV_ISA_SVNAPOT
|
|
select ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
|
|
select ARCH_WANT_HUGE_PMD_SHARE if 64BIT
|
|
select ARCH_WANT_LD_ORPHAN_WARN if !XIP_KERNEL
|
|
select ARCH_WANTS_THP_SWAP if HAVE_ARCH_TRANSPARENT_HUGEPAGE
|
|
select BINFMT_FLAT_NO_DATA_START_OFFSET if !MMU
|
|
select BUILDTIME_TABLE_SORT if MMU
|
|
select CLINT_TIMER if !MMU
|
|
select CLONE_BACKWARDS
|
|
select COMMON_CLK
|
|
select CPU_PM if CPU_IDLE
|
|
select EDAC_SUPPORT
|
|
select GENERIC_ARCH_TOPOLOGY
|
|
select GENERIC_ATOMIC64 if !64BIT
|
|
select GENERIC_CLOCKEVENTS_BROADCAST if SMP
|
|
select GENERIC_EARLY_IOREMAP
|
|
select GENERIC_ENTRY
|
|
select GENERIC_GETTIMEOFDAY if HAVE_GENERIC_VDSO
|
|
select GENERIC_IDLE_POLL_SETUP
|
|
select GENERIC_IOREMAP if MMU
|
|
select GENERIC_IRQ_MULTI_HANDLER
|
|
select GENERIC_IRQ_SHOW
|
|
select GENERIC_IRQ_SHOW_LEVEL
|
|
select GENERIC_LIB_DEVMEM_IS_ALLOWED
|
|
select GENERIC_PCI_IOMAP
|
|
select GENERIC_PTDUMP if MMU
|
|
select GENERIC_SCHED_CLOCK
|
|
select GENERIC_SMP_IDLE_THREAD
|
|
select GENERIC_TIME_VSYSCALL if MMU && 64BIT
|
|
select GENERIC_VDSO_TIME_NS if HAVE_GENERIC_VDSO
|
|
select HARDIRQS_SW_RESEND
|
|
select HAVE_ARCH_AUDITSYSCALL
|
|
select HAVE_ARCH_HUGE_VMALLOC if HAVE_ARCH_HUGE_VMAP
|
|
select HAVE_ARCH_HUGE_VMAP if MMU && 64BIT && !XIP_KERNEL
|
|
select HAVE_ARCH_JUMP_LABEL if !XIP_KERNEL
|
|
select HAVE_ARCH_JUMP_LABEL_RELATIVE if !XIP_KERNEL
|
|
select HAVE_ARCH_KASAN if MMU && 64BIT
|
|
select HAVE_ARCH_KASAN_VMALLOC if MMU && 64BIT
|
|
select HAVE_ARCH_KFENCE if MMU && 64BIT
|
|
select HAVE_ARCH_KGDB if !XIP_KERNEL
|
|
select HAVE_ARCH_KGDB_QXFER_PKT
|
|
select HAVE_ARCH_MMAP_RND_BITS if MMU
|
|
select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
|
|
select HAVE_ARCH_SECCOMP_FILTER
|
|
select HAVE_ARCH_THREAD_STRUCT_WHITELIST
|
|
select HAVE_ARCH_TRACEHOOK
|
|
select HAVE_ARCH_TRANSPARENT_HUGEPAGE if 64BIT && MMU
|
|
select HAVE_ARCH_VMAP_STACK if MMU && 64BIT
|
|
select HAVE_ASM_MODVERSIONS
|
|
select HAVE_CONTEXT_TRACKING_USER
|
|
select HAVE_DEBUG_KMEMLEAK
|
|
select HAVE_DMA_CONTIGUOUS if MMU
|
|
select HAVE_EBPF_JIT if MMU
|
|
select HAVE_FUNCTION_ARG_ACCESS_API
|
|
select HAVE_FUNCTION_ERROR_INJECTION
|
|
select HAVE_GCC_PLUGINS
|
|
select HAVE_GENERIC_VDSO if MMU && 64BIT
|
|
select HAVE_IRQ_TIME_ACCOUNTING
|
|
select HAVE_KPROBES if !XIP_KERNEL
|
|
select HAVE_KPROBES_ON_FTRACE if !XIP_KERNEL
|
|
select HAVE_KRETPROBES if !XIP_KERNEL
|
|
select HAVE_RETHOOK if !XIP_KERNEL
|
|
select HAVE_MOVE_PMD
|
|
select HAVE_MOVE_PUD
|
|
select HAVE_PCI
|
|
select HAVE_PERF_EVENTS
|
|
select HAVE_PERF_REGS
|
|
select HAVE_PERF_USER_STACK_DUMP
|
|
select HAVE_POSIX_CPU_TIMERS_TASK_WORK
|
|
select HAVE_REGS_AND_STACK_ACCESS_API
|
|
select HAVE_RSEQ
|
|
select HAVE_STACKPROTECTOR
|
|
select HAVE_SYSCALL_TRACEPOINTS
|
|
select IRQ_DOMAIN
|
|
select IRQ_FORCED_THREADING
|
|
select KASAN_VMALLOC if KASAN
|
|
select MODULES_USE_ELF_RELA if MODULES
|
|
select MODULE_SECTIONS if MODULES
|
|
select OF
|
|
select OF_DMA_DEFAULT_COHERENT
|
|
select OF_EARLY_FLATTREE
|
|
select OF_IRQ
|
|
select PCI_DOMAINS_GENERIC if PCI
|
|
select PCI_MSI if PCI
|
|
select RISCV_ALTERNATIVE if !XIP_KERNEL
|
|
select RISCV_INTC
|
|
select RISCV_TIMER if RISCV_SBI
|
|
select SIFIVE_PLIC
|
|
select SPARSE_IRQ
|
|
select SYSCTL_EXCEPTION_TRACE
|
|
select THREAD_INFO_IN_TASK
|
|
select TRACE_IRQFLAGS_SUPPORT
|
|
select UACCESS_MEMCPY if !MMU
|
|
select ZONE_DMA32 if 64BIT
|
|
select HAVE_DYNAMIC_FTRACE if !XIP_KERNEL && MMU && $(cc-option,-fpatchable-function-entry=8)
|
|
select HAVE_DYNAMIC_FTRACE_WITH_REGS if HAVE_DYNAMIC_FTRACE
|
|
select HAVE_FTRACE_MCOUNT_RECORD if !XIP_KERNEL
|
|
select HAVE_FUNCTION_GRAPH_TRACER
|
|
select HAVE_FUNCTION_TRACER if !XIP_KERNEL && !PREEMPTION
|
|
|
|
config ARCH_MMAP_RND_BITS_MIN
|
|
default 18 if 64BIT
|
|
default 8
|
|
|
|
config ARCH_MMAP_RND_COMPAT_BITS_MIN
|
|
default 8
|
|
|
|
# max bits determined by the following formula:
|
|
# VA_BITS - PAGE_SHIFT - 3
|
|
config ARCH_MMAP_RND_BITS_MAX
|
|
default 24 if 64BIT # SV39 based
|
|
default 17
|
|
|
|
config ARCH_MMAP_RND_COMPAT_BITS_MAX
|
|
default 17
|
|
|
|
# set if we run in machine mode, cleared if we run in supervisor mode
|
|
config RISCV_M_MODE
|
|
bool
|
|
default !MMU
|
|
|
|
# set if we are running in S-mode and can use SBI calls
|
|
config RISCV_SBI
|
|
bool
|
|
depends on !RISCV_M_MODE
|
|
default y
|
|
|
|
config MMU
|
|
bool "MMU-based Paged Memory Management Support"
|
|
default y
|
|
help
|
|
Select if you want MMU-based virtualised addressing space
|
|
support by paged memory management. If unsure, say 'Y'.
|
|
|
|
config PAGE_OFFSET
|
|
hex
|
|
default 0xC0000000 if 32BIT && MMU
|
|
default 0x80000000 if !MMU
|
|
default 0xff60000000000000 if 64BIT
|
|
|
|
config KASAN_SHADOW_OFFSET
|
|
hex
|
|
depends on KASAN_GENERIC
|
|
default 0xdfffffff00000000 if 64BIT
|
|
default 0xffffffff if 32BIT
|
|
|
|
config ARCH_FLATMEM_ENABLE
|
|
def_bool !NUMA
|
|
|
|
config ARCH_SPARSEMEM_ENABLE
|
|
def_bool y
|
|
depends on MMU
|
|
select SPARSEMEM_STATIC if 32BIT && SPARSEMEM
|
|
select SPARSEMEM_VMEMMAP_ENABLE if 64BIT
|
|
|
|
config ARCH_SELECT_MEMORY_MODEL
|
|
def_bool ARCH_SPARSEMEM_ENABLE
|
|
|
|
config ARCH_SUPPORTS_UPROBES
|
|
def_bool y
|
|
|
|
config STACKTRACE_SUPPORT
|
|
def_bool y
|
|
|
|
config GENERIC_BUG
|
|
def_bool y
|
|
depends on BUG
|
|
select GENERIC_BUG_RELATIVE_POINTERS if 64BIT
|
|
|
|
config GENERIC_BUG_RELATIVE_POINTERS
|
|
bool
|
|
|
|
config GENERIC_CALIBRATE_DELAY
|
|
def_bool y
|
|
|
|
config GENERIC_CSUM
|
|
def_bool y
|
|
|
|
config GENERIC_HWEIGHT
|
|
def_bool y
|
|
|
|
config FIX_EARLYCON_MEM
|
|
def_bool MMU
|
|
|
|
config PGTABLE_LEVELS
|
|
int
|
|
default 5 if 64BIT
|
|
default 2
|
|
|
|
config LOCKDEP_SUPPORT
|
|
def_bool y
|
|
|
|
config RISCV_DMA_NONCOHERENT
|
|
bool
|
|
select ARCH_HAS_DMA_PREP_COHERENT
|
|
select ARCH_HAS_SETUP_DMA_OPS
|
|
select ARCH_HAS_SYNC_DMA_FOR_CPU
|
|
select ARCH_HAS_SYNC_DMA_FOR_DEVICE
|
|
select DMA_DIRECT_REMAP
|
|
|
|
config AS_HAS_INSN
|
|
def_bool $(as-instr,.insn r 51$(comma) 0$(comma) 0$(comma) t0$(comma) t0$(comma) zero)
|
|
|
|
source "arch/riscv/Kconfig.socs"
|
|
source "arch/riscv/Kconfig.errata"
|
|
|
|
menu "Platform type"
|
|
|
|
config NONPORTABLE
|
|
bool "Allow configurations that result in non-portable kernels"
|
|
help
|
|
RISC-V kernel binaries are compatible between all known systems
|
|
whenever possible, but there are some use cases that can only be
|
|
satisfied by configurations that result in kernel binaries that are
|
|
not portable between systems.
|
|
|
|
Selecting N does not guarantee kernels will be portable to all known
|
|
systems. Selecting any of the options guarded by NONPORTABLE will
|
|
result in kernel binaries that are unlikely to be portable between
|
|
systems.
|
|
|
|
If unsure, say N.
|
|
|
|
choice
|
|
prompt "Base ISA"
|
|
default ARCH_RV64I
|
|
help
|
|
This selects the base ISA that this kernel will target and must match
|
|
the target platform.
|
|
|
|
config ARCH_RV32I
|
|
bool "RV32I"
|
|
depends on NONPORTABLE
|
|
select 32BIT
|
|
select GENERIC_LIB_ASHLDI3
|
|
select GENERIC_LIB_ASHRDI3
|
|
select GENERIC_LIB_LSHRDI3
|
|
select GENERIC_LIB_UCMPDI2
|
|
|
|
config ARCH_RV64I
|
|
bool "RV64I"
|
|
select 64BIT
|
|
select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
|
|
select SWIOTLB if MMU
|
|
|
|
endchoice
|
|
|
|
# We must be able to map all physical memory into the kernel, but the compiler
|
|
# is still a bit more efficient when generating code if it's setup in a manner
|
|
# such that it can only map 2GiB of memory.
|
|
choice
|
|
prompt "Kernel Code Model"
|
|
default CMODEL_MEDLOW if 32BIT
|
|
default CMODEL_MEDANY if 64BIT
|
|
|
|
config CMODEL_MEDLOW
|
|
bool "medium low code model"
|
|
config CMODEL_MEDANY
|
|
bool "medium any code model"
|
|
endchoice
|
|
|
|
config MODULE_SECTIONS
|
|
bool
|
|
select HAVE_MOD_ARCH_SPECIFIC
|
|
|
|
config SMP
|
|
bool "Symmetric Multi-Processing"
|
|
help
|
|
This enables support for systems with more than one CPU. If
|
|
you say N here, the kernel will run on single and
|
|
multiprocessor machines, but will use only one CPU of a
|
|
multiprocessor machine. If you say Y here, the kernel will run
|
|
on many, but not all, single processor machines. On a single
|
|
processor machine, the kernel will run faster if you say N
|
|
here.
|
|
|
|
If you don't know what to do here, say N.
|
|
|
|
config SCHED_MC
|
|
bool "Multi-core scheduler support"
|
|
depends on SMP
|
|
help
|
|
Multi-core scheduler support improves the CPU scheduler's decision
|
|
making when dealing with multi-core CPU chips at a cost of slightly
|
|
increased overhead in some places. If unsure say N here.
|
|
|
|
config NR_CPUS
|
|
int "Maximum number of CPUs (2-512)"
|
|
depends on SMP
|
|
range 2 512 if !RISCV_SBI_V01
|
|
range 2 32 if RISCV_SBI_V01 && 32BIT
|
|
range 2 64 if RISCV_SBI_V01 && 64BIT
|
|
default "32" if 32BIT
|
|
default "64" if 64BIT
|
|
|
|
config HOTPLUG_CPU
|
|
bool "Support for hot-pluggable CPUs"
|
|
depends on SMP
|
|
select GENERIC_IRQ_MIGRATION
|
|
help
|
|
|
|
Say Y here to experiment with turning CPUs off and on. CPUs
|
|
can be controlled through /sys/devices/system/cpu.
|
|
|
|
Say N if you want to disable CPU hotplug.
|
|
|
|
choice
|
|
prompt "CPU Tuning"
|
|
default TUNE_GENERIC
|
|
|
|
config TUNE_GENERIC
|
|
bool "generic"
|
|
|
|
endchoice
|
|
|
|
# Common NUMA Features
|
|
config NUMA
|
|
bool "NUMA Memory Allocation and Scheduler Support"
|
|
depends on SMP && MMU
|
|
select ARCH_SUPPORTS_NUMA_BALANCING
|
|
select GENERIC_ARCH_NUMA
|
|
select NEED_PER_CPU_EMBED_FIRST_CHUNK
|
|
select OF_NUMA
|
|
select USE_PERCPU_NUMA_NODE_ID
|
|
help
|
|
Enable NUMA (Non-Uniform Memory Access) support.
|
|
|
|
The kernel will try to allocate memory used by a CPU on the
|
|
local memory of the CPU and add some more NUMA awareness to the kernel.
|
|
|
|
config NODES_SHIFT
|
|
int "Maximum NUMA Nodes (as a power of 2)"
|
|
range 1 10
|
|
default "2"
|
|
depends on NUMA
|
|
help
|
|
Specify the maximum number of NUMA Nodes available on the target
|
|
system. Increases memory reserved to accommodate various tables.
|
|
|
|
config RISCV_ALTERNATIVE
|
|
bool
|
|
depends on !XIP_KERNEL
|
|
help
|
|
This Kconfig allows the kernel to automatically patch the
|
|
erratum or cpufeature required by the execution platform at run
|
|
time. The code patching overhead is minimal, as it's only done
|
|
once at boot and once on each module load.
|
|
|
|
config RISCV_ALTERNATIVE_EARLY
|
|
bool
|
|
depends on RISCV_ALTERNATIVE
|
|
help
|
|
Allows early patching of the kernel for special errata
|
|
|
|
config RISCV_ISA_C
|
|
bool "Emit compressed instructions when building Linux"
|
|
default y
|
|
help
|
|
Adds "C" to the ISA subsets that the toolchain is allowed to emit
|
|
when building Linux, which results in compressed instructions in the
|
|
Linux binary.
|
|
|
|
If you don't know what to do here, say Y.
|
|
|
|
config RISCV_ISA_SVNAPOT
|
|
bool "Svnapot extension support for supervisor mode NAPOT pages"
|
|
depends on 64BIT && MMU
|
|
depends on RISCV_ALTERNATIVE
|
|
default y
|
|
help
|
|
Allow kernel to detect the Svnapot ISA-extension dynamically at boot
|
|
time and enable its usage.
|
|
|
|
The Svnapot extension is used to mark contiguous PTEs as a range
|
|
of contiguous virtual-to-physical translations for a naturally
|
|
aligned power-of-2 (NAPOT) granularity larger than the base 4KB page
|
|
size. When HUGETLBFS is also selected this option unconditionally
|
|
allocates some memory for each NAPOT page size supported by the kernel.
|
|
When optimizing for low memory consumption and for platforms without
|
|
the Svnapot extension, it may be better to say N here.
|
|
|
|
If you don't know what to do here, say Y.
|
|
|
|
config RISCV_ISA_SVPBMT
|
|
bool "Svpbmt extension support for supervisor mode page-based memory types"
|
|
depends on 64BIT && MMU
|
|
depends on RISCV_ALTERNATIVE
|
|
default y
|
|
help
|
|
Adds support to dynamically detect the presence of the Svpbmt
|
|
ISA-extension (Supervisor-mode: page-based memory types) and
|
|
enable its usage.
|
|
|
|
The memory type for a page contains a combination of attributes
|
|
that indicate the cacheability, idempotency, and ordering
|
|
properties for access to that page.
|
|
|
|
The Svpbmt extension is only available on 64-bit cpus.
|
|
|
|
If you don't know what to do here, say Y.
|
|
|
|
config TOOLCHAIN_HAS_ZBB
|
|
bool
|
|
default y
|
|
depends on !64BIT || $(cc-option,-mabi=lp64 -march=rv64ima_zbb)
|
|
depends on !32BIT || $(cc-option,-mabi=ilp32 -march=rv32ima_zbb)
|
|
depends on LLD_VERSION >= 150000 || LD_VERSION >= 23900
|
|
depends on AS_IS_GNU
|
|
|
|
config RISCV_ISA_ZBB
|
|
bool "Zbb extension support for bit manipulation instructions"
|
|
depends on TOOLCHAIN_HAS_ZBB
|
|
depends on MMU
|
|
depends on RISCV_ALTERNATIVE
|
|
default y
|
|
help
|
|
Adds support to dynamically detect the presence of the ZBB
|
|
extension (basic bit manipulation) and enable its usage.
|
|
|
|
The Zbb extension provides instructions to accelerate a number
|
|
of bit-specific operations (count bit population, sign extending,
|
|
bitrotation, etc).
|
|
|
|
If you don't know what to do here, say Y.
|
|
|
|
config RISCV_ISA_ZICBOM
|
|
bool "Zicbom extension support for non-coherent DMA operation"
|
|
depends on MMU
|
|
depends on RISCV_ALTERNATIVE
|
|
default y
|
|
select RISCV_DMA_NONCOHERENT
|
|
help
|
|
Adds support to dynamically detect the presence of the ZICBOM
|
|
extension (Cache Block Management Operations) and enable its
|
|
usage.
|
|
|
|
The Zicbom extension can be used to handle for example
|
|
non-coherent DMA support on devices that need it.
|
|
|
|
If you don't know what to do here, say Y.
|
|
|
|
config RISCV_ISA_ZICBOZ
|
|
bool "Zicboz extension support for faster zeroing of memory"
|
|
depends on MMU
|
|
depends on RISCV_ALTERNATIVE
|
|
default y
|
|
help
|
|
Enable the use of the Zicboz extension (cbo.zero instruction)
|
|
when available.
|
|
|
|
The Zicboz extension is used for faster zeroing of memory.
|
|
|
|
If you don't know what to do here, say Y.
|
|
|
|
config TOOLCHAIN_HAS_ZIHINTPAUSE
|
|
bool
|
|
default y
|
|
depends on !64BIT || $(cc-option,-mabi=lp64 -march=rv64ima_zihintpause)
|
|
depends on !32BIT || $(cc-option,-mabi=ilp32 -march=rv32ima_zihintpause)
|
|
depends on LLD_VERSION >= 150000 || LD_VERSION >= 23600
|
|
|
|
config FPU
|
|
bool "FPU support"
|
|
default y
|
|
help
|
|
Say N here if you want to disable all floating-point related procedure
|
|
in the kernel.
|
|
|
|
If you don't know what to do here, say Y.
|
|
|
|
endmenu # "Platform type"
|
|
|
|
menu "Kernel features"
|
|
|
|
source "kernel/Kconfig.hz"
|
|
|
|
config RISCV_SBI_V01
|
|
bool "SBI v0.1 support"
|
|
depends on RISCV_SBI
|
|
help
|
|
This config allows kernel to use SBI v0.1 APIs. This will be
|
|
deprecated in future once legacy M-mode software are no longer in use.
|
|
|
|
config RISCV_BOOT_SPINWAIT
|
|
bool "Spinwait booting method"
|
|
depends on SMP
|
|
default y if RISCV_SBI_V01 || RISCV_M_MODE
|
|
help
|
|
This enables support for booting Linux via spinwait method. In the
|
|
spinwait method, all cores randomly jump to Linux. One of the cores
|
|
gets chosen via lottery and all other keep spinning on a percpu
|
|
variable. This method cannot support CPU hotplug and sparse hartid
|
|
scheme. It should be only enabled for M-mode Linux or platforms relying
|
|
on older firmware without SBI HSM extension. All other platforms should
|
|
rely on ordered booting via SBI HSM extension which gets chosen
|
|
dynamically at runtime if the firmware supports it.
|
|
|
|
Since spinwait is incompatible with sparse hart IDs, it requires
|
|
NR_CPUS be large enough to contain the physical hart ID of the first
|
|
hart to enter Linux.
|
|
|
|
If unsure what to do here, say N.
|
|
|
|
config KEXEC
|
|
bool "Kexec system call"
|
|
depends on MMU
|
|
select HOTPLUG_CPU if SMP
|
|
select KEXEC_CORE
|
|
help
|
|
kexec is a system call that implements the ability to shutdown your
|
|
current kernel, and to start another kernel. It is like a reboot
|
|
but it is independent of the system firmware. And like a reboot
|
|
you can start any kernel with it, not just Linux.
|
|
|
|
The name comes from the similarity to the exec system call.
|
|
|
|
config KEXEC_FILE
|
|
bool "kexec file based systmem call"
|
|
depends on 64BIT && MMU
|
|
select HAVE_IMA_KEXEC if IMA
|
|
select KEXEC_CORE
|
|
select KEXEC_ELF
|
|
help
|
|
This is new version of kexec system call. This system call is
|
|
file based and takes file descriptors as system call argument
|
|
for kernel and initramfs as opposed to list of segments as
|
|
accepted by previous system call.
|
|
|
|
If you don't know what to do here, say Y.
|
|
|
|
config ARCH_HAS_KEXEC_PURGATORY
|
|
def_bool KEXEC_FILE
|
|
depends on CRYPTO=y
|
|
depends on CRYPTO_SHA256=y
|
|
|
|
config CRASH_DUMP
|
|
bool "Build kdump crash kernel"
|
|
help
|
|
Generate crash dump after being started by kexec. This should
|
|
be normally only set in special crash dump kernels which are
|
|
loaded in the main kernel with kexec-tools into a specially
|
|
reserved region and then later executed after a crash by
|
|
kdump/kexec.
|
|
|
|
For more details see Documentation/admin-guide/kdump/kdump.rst
|
|
|
|
config COMPAT
|
|
bool "Kernel support for 32-bit U-mode"
|
|
default 64BIT
|
|
depends on 64BIT && MMU
|
|
help
|
|
This option enables support for a 32-bit U-mode running under a 64-bit
|
|
kernel at S-mode. riscv32-specific components such as system calls,
|
|
the user helper functions (vdso), signal rt_frame functions and the
|
|
ptrace interface are handled appropriately by the kernel.
|
|
|
|
If you want to execute 32-bit userspace applications, say Y.
|
|
|
|
config RELOCATABLE
|
|
bool "Build a relocatable kernel"
|
|
depends on MMU && 64BIT && !XIP_KERNEL
|
|
help
|
|
This builds a kernel as a Position Independent Executable (PIE),
|
|
which retains all relocation metadata required to relocate the
|
|
kernel binary at runtime to a different virtual address than the
|
|
address it was linked at.
|
|
Since RISCV uses the RELA relocation format, this requires a
|
|
relocation pass at runtime even if the kernel is loaded at the
|
|
same address it was linked at.
|
|
|
|
If unsure, say N.
|
|
|
|
endmenu # "Kernel features"
|
|
|
|
menu "Boot options"
|
|
|
|
config CMDLINE
|
|
string "Built-in kernel command line"
|
|
help
|
|
For most platforms, the arguments for the kernel's command line
|
|
are provided at run-time, during boot. However, there are cases
|
|
where either no arguments are being provided or the provided
|
|
arguments are insufficient or even invalid.
|
|
|
|
When that occurs, it is possible to define a built-in command
|
|
line here and choose how the kernel should use it later on.
|
|
|
|
choice
|
|
prompt "Built-in command line usage" if CMDLINE != ""
|
|
default CMDLINE_FALLBACK
|
|
help
|
|
Choose how the kernel will handle the provided built-in command
|
|
line.
|
|
|
|
config CMDLINE_FALLBACK
|
|
bool "Use bootloader kernel arguments if available"
|
|
help
|
|
Use the built-in command line as fallback in case we get nothing
|
|
during boot. This is the default behaviour.
|
|
|
|
config CMDLINE_EXTEND
|
|
bool "Extend bootloader kernel arguments"
|
|
help
|
|
The command-line arguments provided during boot will be
|
|
appended to the built-in command line. This is useful in
|
|
cases where the provided arguments are insufficient and
|
|
you don't want to or cannot modify them.
|
|
|
|
config CMDLINE_FORCE
|
|
bool "Always use the default kernel command string"
|
|
help
|
|
Always use the built-in command line, even if we get one during
|
|
boot. This is useful in case you need to override the provided
|
|
command line on systems where you don't have or want control
|
|
over it.
|
|
|
|
endchoice
|
|
|
|
config EFI_STUB
|
|
bool
|
|
|
|
config EFI
|
|
bool "UEFI runtime support"
|
|
depends on OF && !XIP_KERNEL
|
|
depends on MMU
|
|
default y
|
|
select EFI_GENERIC_STUB
|
|
select EFI_PARAMS_FROM_FDT
|
|
select EFI_RUNTIME_WRAPPERS
|
|
select EFI_STUB
|
|
select LIBFDT
|
|
select RISCV_ISA_C
|
|
select UCS2_STRING
|
|
help
|
|
This option provides support for runtime services provided
|
|
by UEFI firmware (such as non-volatile variables, realtime
|
|
clock, and platform reset). A UEFI stub is also provided to
|
|
allow the kernel to be booted as an EFI application. This
|
|
is only useful on systems that have UEFI firmware.
|
|
|
|
config CC_HAVE_STACKPROTECTOR_TLS
|
|
def_bool $(cc-option,-mstack-protector-guard=tls -mstack-protector-guard-reg=tp -mstack-protector-guard-offset=0)
|
|
|
|
config STACKPROTECTOR_PER_TASK
|
|
def_bool y
|
|
depends on !RANDSTRUCT
|
|
depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_TLS
|
|
|
|
config PHYS_RAM_BASE_FIXED
|
|
bool "Explicitly specified physical RAM address"
|
|
depends on NONPORTABLE
|
|
default n
|
|
|
|
config PHYS_RAM_BASE
|
|
hex "Platform Physical RAM address"
|
|
depends on PHYS_RAM_BASE_FIXED
|
|
default "0x80000000"
|
|
help
|
|
This is the physical address of RAM in the system. It has to be
|
|
explicitly specified to run early relocations of read-write data
|
|
from flash to RAM.
|
|
|
|
config XIP_KERNEL
|
|
bool "Kernel Execute-In-Place from ROM"
|
|
depends on MMU && SPARSEMEM && NONPORTABLE
|
|
# This prevents XIP from being enabled by all{yes,mod}config, which
|
|
# fail to build since XIP doesn't support large kernels.
|
|
depends on !COMPILE_TEST
|
|
select PHYS_RAM_BASE_FIXED
|
|
help
|
|
Execute-In-Place allows the kernel to run from non-volatile storage
|
|
directly addressable by the CPU, such as NOR flash. This saves RAM
|
|
space since the text section of the kernel is not loaded from flash
|
|
to RAM. Read-write sections, such as the data section and stack,
|
|
are still copied to RAM. The XIP kernel is not compressed since
|
|
it has to run directly from flash, so it will take more space to
|
|
store it. The flash address used to link the kernel object files,
|
|
and for storing it, is configuration dependent. Therefore, if you
|
|
say Y here, you must know the proper physical address where to
|
|
store the kernel image depending on your own flash memory usage.
|
|
|
|
Also note that the make target becomes "make xipImage" rather than
|
|
"make zImage" or "make Image". The final kernel binary to put in
|
|
ROM memory will be arch/riscv/boot/xipImage.
|
|
|
|
SPARSEMEM is required because the kernel text and rodata that are
|
|
flash resident are not backed by memmap, then any attempt to get
|
|
a struct page on those regions will trigger a fault.
|
|
|
|
If unsure, say N.
|
|
|
|
config XIP_PHYS_ADDR
|
|
hex "XIP Kernel Physical Location"
|
|
depends on XIP_KERNEL
|
|
default "0x21000000"
|
|
help
|
|
This is the physical address in your flash memory the kernel will
|
|
be linked for and stored to. This address is dependent on your
|
|
own flash usage.
|
|
|
|
endmenu # "Boot options"
|
|
|
|
config BUILTIN_DTB
|
|
bool
|
|
depends on OF && NONPORTABLE
|
|
default y if XIP_KERNEL
|
|
|
|
config PORTABLE
|
|
bool
|
|
default !NONPORTABLE
|
|
select EFI
|
|
select MMU
|
|
select OF
|
|
|
|
menu "Power management options"
|
|
|
|
source "kernel/power/Kconfig"
|
|
|
|
endmenu # "Power management options"
|
|
|
|
menu "CPU Power Management"
|
|
|
|
source "drivers/cpuidle/Kconfig"
|
|
|
|
source "drivers/cpufreq/Kconfig"
|
|
|
|
endmenu # "CPU Power Management"
|
|
|
|
source "arch/riscv/kvm/Kconfig"
|