linux/arch/arm64/kernel/probes/kprobes.c
Masami Hiramatsu 2efb75cd71 arm64/kprobes: Remove jprobe implementation
Remove arch dependent setjump/longjump functions
and unused fields in kprobe_ctlblk for jprobes
from arch/arm64.

Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/lkml/152942442318.15209.17767976282305601884.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-21 12:33:07 +02:00

587 lines
15 KiB
C

/*
* arch/arm64/kernel/probes/kprobes.c
*
* Kprobes support for ARM64
*
* Copyright (C) 2013 Linaro Limited.
* Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
*/
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/kprobes.h>
#include <linux/extable.h>
#include <linux/slab.h>
#include <linux/stop_machine.h>
#include <linux/sched/debug.h>
#include <linux/stringify.h>
#include <asm/traps.h>
#include <asm/ptrace.h>
#include <asm/cacheflush.h>
#include <asm/debug-monitors.h>
#include <asm/system_misc.h>
#include <asm/insn.h>
#include <linux/uaccess.h>
#include <asm/irq.h>
#include <asm/sections.h>
#include "decode-insn.h"
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
static void __kprobes
post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
{
/* prepare insn slot */
p->ainsn.api.insn[0] = cpu_to_le32(p->opcode);
flush_icache_range((uintptr_t) (p->ainsn.api.insn),
(uintptr_t) (p->ainsn.api.insn) +
MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
/*
* Needs restoring of return address after stepping xol.
*/
p->ainsn.api.restore = (unsigned long) p->addr +
sizeof(kprobe_opcode_t);
}
static void __kprobes arch_prepare_simulate(struct kprobe *p)
{
/* This instructions is not executed xol. No need to adjust the PC */
p->ainsn.api.restore = 0;
}
static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
if (p->ainsn.api.handler)
p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
/* single step simulated, now go for post processing */
post_kprobe_handler(kcb, regs);
}
int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
unsigned long probe_addr = (unsigned long)p->addr;
extern char __start_rodata[];
extern char __end_rodata[];
if (probe_addr & 0x3)
return -EINVAL;
/* copy instruction */
p->opcode = le32_to_cpu(*p->addr);
if (in_exception_text(probe_addr))
return -EINVAL;
if (probe_addr >= (unsigned long) __start_rodata &&
probe_addr <= (unsigned long) __end_rodata)
return -EINVAL;
/* decode instruction */
switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
case INSN_REJECTED: /* insn not supported */
return -EINVAL;
case INSN_GOOD_NO_SLOT: /* insn need simulation */
p->ainsn.api.insn = NULL;
break;
case INSN_GOOD: /* instruction uses slot */
p->ainsn.api.insn = get_insn_slot();
if (!p->ainsn.api.insn)
return -ENOMEM;
break;
};
/* prepare the instruction */
if (p->ainsn.api.insn)
arch_prepare_ss_slot(p);
else
arch_prepare_simulate(p);
return 0;
}
static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
{
void *addrs[1];
u32 insns[1];
addrs[0] = (void *)addr;
insns[0] = (u32)opcode;
return aarch64_insn_patch_text(addrs, insns, 1);
}
/* arm kprobe: install breakpoint in text */
void __kprobes arch_arm_kprobe(struct kprobe *p)
{
patch_text(p->addr, BRK64_OPCODE_KPROBES);
}
/* disarm kprobe: remove breakpoint from text */
void __kprobes arch_disarm_kprobe(struct kprobe *p)
{
patch_text(p->addr, p->opcode);
}
void __kprobes arch_remove_kprobe(struct kprobe *p)
{
if (p->ainsn.api.insn) {
free_insn_slot(p->ainsn.api.insn, 0);
p->ainsn.api.insn = NULL;
}
}
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
kcb->prev_kprobe.kp = kprobe_running();
kcb->prev_kprobe.status = kcb->kprobe_status;
}
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
kcb->kprobe_status = kcb->prev_kprobe.status;
}
static void __kprobes set_current_kprobe(struct kprobe *p)
{
__this_cpu_write(current_kprobe, p);
}
/*
* When PSTATE.D is set (masked), then software step exceptions can not be
* generated.
* SPSR's D bit shows the value of PSTATE.D immediately before the
* exception was taken. PSTATE.D is set while entering into any exception
* mode, however software clears it for any normal (none-debug-exception)
* mode in the exception entry. Therefore, when we are entering into kprobe
* breakpoint handler from any normal mode then SPSR.D bit is already
* cleared, however it is set when we are entering from any debug exception
* mode.
* Since we always need to generate single step exception after a kprobe
* breakpoint exception therefore we need to clear it unconditionally, when
* we become sure that the current breakpoint exception is for kprobe.
*/
static void __kprobes
spsr_set_debug_flag(struct pt_regs *regs, int mask)
{
unsigned long spsr = regs->pstate;
if (mask)
spsr |= PSR_D_BIT;
else
spsr &= ~PSR_D_BIT;
regs->pstate = spsr;
}
/*
* Interrupts need to be disabled before single-step mode is set, and not
* reenabled until after single-step mode ends.
* Without disabling interrupt on local CPU, there is a chance of
* interrupt occurrence in the period of exception return and start of
* out-of-line single-step, that result in wrongly single stepping
* into the interrupt handler.
*/
static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
struct pt_regs *regs)
{
kcb->saved_irqflag = regs->pstate;
regs->pstate |= PSR_I_BIT;
}
static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
struct pt_regs *regs)
{
if (kcb->saved_irqflag & PSR_I_BIT)
regs->pstate |= PSR_I_BIT;
else
regs->pstate &= ~PSR_I_BIT;
}
static void __kprobes
set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
{
kcb->ss_ctx.ss_pending = true;
kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
}
static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
{
kcb->ss_ctx.ss_pending = false;
kcb->ss_ctx.match_addr = 0;
}
static void __kprobes setup_singlestep(struct kprobe *p,
struct pt_regs *regs,
struct kprobe_ctlblk *kcb, int reenter)
{
unsigned long slot;
if (reenter) {
save_previous_kprobe(kcb);
set_current_kprobe(p);
kcb->kprobe_status = KPROBE_REENTER;
} else {
kcb->kprobe_status = KPROBE_HIT_SS;
}
if (p->ainsn.api.insn) {
/* prepare for single stepping */
slot = (unsigned long)p->ainsn.api.insn;
set_ss_context(kcb, slot); /* mark pending ss */
spsr_set_debug_flag(regs, 0);
/* IRQs and single stepping do not mix well. */
kprobes_save_local_irqflag(kcb, regs);
kernel_enable_single_step(regs);
instruction_pointer_set(regs, slot);
} else {
/* insn simulation */
arch_simulate_insn(p, regs);
}
}
static int __kprobes reenter_kprobe(struct kprobe *p,
struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
switch (kcb->kprobe_status) {
case KPROBE_HIT_SSDONE:
case KPROBE_HIT_ACTIVE:
kprobes_inc_nmissed_count(p);
setup_singlestep(p, regs, kcb, 1);
break;
case KPROBE_HIT_SS:
case KPROBE_REENTER:
pr_warn("Unrecoverable kprobe detected at %p.\n", p->addr);
dump_kprobe(p);
BUG();
break;
default:
WARN_ON(1);
return 0;
}
return 1;
}
static void __kprobes
post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
{
struct kprobe *cur = kprobe_running();
if (!cur)
return;
/* return addr restore if non-branching insn */
if (cur->ainsn.api.restore != 0)
instruction_pointer_set(regs, cur->ainsn.api.restore);
/* restore back original saved kprobe variables and continue */
if (kcb->kprobe_status == KPROBE_REENTER) {
restore_previous_kprobe(kcb);
return;
}
/* call post handler */
kcb->kprobe_status = KPROBE_HIT_SSDONE;
if (cur->post_handler) {
/* post_handler can hit breakpoint and single step
* again, so we enable D-flag for recursive exception.
*/
cur->post_handler(cur, regs, 0);
}
reset_current_kprobe();
}
int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
switch (kcb->kprobe_status) {
case KPROBE_HIT_SS:
case KPROBE_REENTER:
/*
* We are here because the instruction being single
* stepped caused a page fault. We reset the current
* kprobe and the ip points back to the probe address
* and allow the page fault handler to continue as a
* normal page fault.
*/
instruction_pointer_set(regs, (unsigned long) cur->addr);
if (!instruction_pointer(regs))
BUG();
kernel_disable_single_step();
if (kcb->kprobe_status == KPROBE_REENTER)
restore_previous_kprobe(kcb);
else
reset_current_kprobe();
break;
case KPROBE_HIT_ACTIVE:
case KPROBE_HIT_SSDONE:
/*
* We increment the nmissed count for accounting,
* we can also use npre/npostfault count for accounting
* these specific fault cases.
*/
kprobes_inc_nmissed_count(cur);
/*
* We come here because instructions in the pre/post
* handler caused the page_fault, this could happen
* if handler tries to access user space by
* copy_from_user(), get_user() etc. Let the
* user-specified handler try to fix it first.
*/
if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
return 1;
/*
* In case the user-specified fault handler returned
* zero, try to fix up.
*/
if (fixup_exception(regs))
return 1;
}
return 0;
}
static void __kprobes kprobe_handler(struct pt_regs *regs)
{
struct kprobe *p, *cur_kprobe;
struct kprobe_ctlblk *kcb;
unsigned long addr = instruction_pointer(regs);
kcb = get_kprobe_ctlblk();
cur_kprobe = kprobe_running();
p = get_kprobe((kprobe_opcode_t *) addr);
if (p) {
if (cur_kprobe) {
if (reenter_kprobe(p, regs, kcb))
return;
} else {
/* Probe hit */
set_current_kprobe(p);
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
/*
* If we have no pre-handler or it returned 0, we
* continue with normal processing. If we have a
* pre-handler and it returned non-zero, it prepped
* for calling the break_handler below on re-entry,
* so get out doing nothing more here.
*
* pre_handler can hit a breakpoint and can step thru
* before return, keep PSTATE D-flag enabled until
* pre_handler return back.
*/
if (!p->pre_handler || !p->pre_handler(p, regs)) {
setup_singlestep(p, regs, kcb, 0);
return;
}
}
} else if ((le32_to_cpu(*(kprobe_opcode_t *) addr) ==
BRK64_OPCODE_KPROBES) && cur_kprobe) {
/* We probably hit a jprobe. Call its break handler. */
if (cur_kprobe->break_handler &&
cur_kprobe->break_handler(cur_kprobe, regs)) {
setup_singlestep(cur_kprobe, regs, kcb, 0);
return;
}
}
/*
* The breakpoint instruction was removed right
* after we hit it. Another cpu has removed
* either a probepoint or a debugger breakpoint
* at this address. In either case, no further
* handling of this interrupt is appropriate.
* Return back to original instruction, and continue.
*/
}
static int __kprobes
kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
{
if ((kcb->ss_ctx.ss_pending)
&& (kcb->ss_ctx.match_addr == addr)) {
clear_ss_context(kcb); /* clear pending ss */
return DBG_HOOK_HANDLED;
}
/* not ours, kprobes should ignore it */
return DBG_HOOK_ERROR;
}
int __kprobes
kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
int retval;
/* return error if this is not our step */
retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
if (retval == DBG_HOOK_HANDLED) {
kprobes_restore_local_irqflag(kcb, regs);
kernel_disable_single_step();
post_kprobe_handler(kcb, regs);
}
return retval;
}
int __kprobes
kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
{
kprobe_handler(regs);
return DBG_HOOK_HANDLED;
}
bool arch_within_kprobe_blacklist(unsigned long addr)
{
if ((addr >= (unsigned long)__kprobes_text_start &&
addr < (unsigned long)__kprobes_text_end) ||
(addr >= (unsigned long)__entry_text_start &&
addr < (unsigned long)__entry_text_end) ||
(addr >= (unsigned long)__idmap_text_start &&
addr < (unsigned long)__idmap_text_end) ||
!!search_exception_tables(addr))
return true;
if (!is_kernel_in_hyp_mode()) {
if ((addr >= (unsigned long)__hyp_text_start &&
addr < (unsigned long)__hyp_text_end) ||
(addr >= (unsigned long)__hyp_idmap_text_start &&
addr < (unsigned long)__hyp_idmap_text_end))
return true;
}
return false;
}
void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
{
struct kretprobe_instance *ri = NULL;
struct hlist_head *head, empty_rp;
struct hlist_node *tmp;
unsigned long flags, orig_ret_address = 0;
unsigned long trampoline_address =
(unsigned long)&kretprobe_trampoline;
kprobe_opcode_t *correct_ret_addr = NULL;
INIT_HLIST_HEAD(&empty_rp);
kretprobe_hash_lock(current, &head, &flags);
/*
* It is possible to have multiple instances associated with a given
* task either because multiple functions in the call path have
* return probes installed on them, and/or more than one
* return probe was registered for a target function.
*
* We can handle this because:
* - instances are always pushed into the head of the list
* - when multiple return probes are registered for the same
* function, the (chronologically) first instance's ret_addr
* will be the real return address, and all the rest will
* point to kretprobe_trampoline.
*/
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
if (ri->task != current)
/* another task is sharing our hash bucket */
continue;
orig_ret_address = (unsigned long)ri->ret_addr;
if (orig_ret_address != trampoline_address)
/*
* This is the real return address. Any other
* instances associated with this task are for
* other calls deeper on the call stack
*/
break;
}
kretprobe_assert(ri, orig_ret_address, trampoline_address);
correct_ret_addr = ri->ret_addr;
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
if (ri->task != current)
/* another task is sharing our hash bucket */
continue;
orig_ret_address = (unsigned long)ri->ret_addr;
if (ri->rp && ri->rp->handler) {
__this_cpu_write(current_kprobe, &ri->rp->kp);
get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
ri->ret_addr = correct_ret_addr;
ri->rp->handler(ri, regs);
__this_cpu_write(current_kprobe, NULL);
}
recycle_rp_inst(ri, &empty_rp);
if (orig_ret_address != trampoline_address)
/*
* This is the real return address. Any other
* instances associated with this task are for
* other calls deeper on the call stack
*/
break;
}
kretprobe_hash_unlock(current, &flags);
hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
hlist_del(&ri->hlist);
kfree(ri);
}
return (void *)orig_ret_address;
}
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
struct pt_regs *regs)
{
ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
/* replace return addr (x30) with trampoline */
regs->regs[30] = (long)&kretprobe_trampoline;
}
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
{
return 0;
}
int __init arch_init_kprobes(void)
{
return 0;
}