mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-15 15:04:27 +08:00
89b3098703
Current arch_cpu_idle() is called with IRQs disabled, but will return with IRQs enabled. However, the very first thing the generic code does after calling arch_cpu_idle() is raw_local_irq_disable(). This means that architectures that can idle with IRQs disabled end up doing a pointless 'enable-disable' dance. Therefore, push this IRQ disabling into the idle function, meaning that those architectures can avoid the pointless IRQ state flipping. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Tony Lindgren <tony@atomide.com> Tested-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com> Acked-by: Mark Rutland <mark.rutland@arm.com> [arm64] Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Guo Ren <guoren@kernel.org> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20230112195540.618076436@infradead.org
400 lines
11 KiB
C
400 lines
11 KiB
C
/*
|
|
* arch/xtensa/kernel/process.c
|
|
*
|
|
* Xtensa Processor version.
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2001 - 2005 Tensilica Inc.
|
|
*
|
|
* Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
|
|
* Chris Zankel <chris@zankel.net>
|
|
* Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
|
|
* Kevin Chea
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/init.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/init_task.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mqueue.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/rcupdate.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/platform.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/irq.h>
|
|
#include <linux/atomic.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/regs.h>
|
|
#include <asm/hw_breakpoint.h>
|
|
#include <asm/traps.h>
|
|
|
|
extern void ret_from_fork(void);
|
|
extern void ret_from_kernel_thread(void);
|
|
|
|
void (*pm_power_off)(void) = NULL;
|
|
EXPORT_SYMBOL(pm_power_off);
|
|
|
|
|
|
#ifdef CONFIG_STACKPROTECTOR
|
|
#include <linux/stackprotector.h>
|
|
unsigned long __stack_chk_guard __read_mostly;
|
|
EXPORT_SYMBOL(__stack_chk_guard);
|
|
#endif
|
|
|
|
#if XTENSA_HAVE_COPROCESSORS
|
|
|
|
void local_coprocessors_flush_release_all(void)
|
|
{
|
|
struct thread_info **coprocessor_owner;
|
|
struct thread_info *unique_owner[XCHAL_CP_MAX];
|
|
int n = 0;
|
|
int i, j;
|
|
|
|
coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
|
|
xtensa_set_sr(XCHAL_CP_MASK, cpenable);
|
|
|
|
for (i = 0; i < XCHAL_CP_MAX; i++) {
|
|
struct thread_info *ti = coprocessor_owner[i];
|
|
|
|
if (ti) {
|
|
coprocessor_flush(ti, i);
|
|
|
|
for (j = 0; j < n; j++)
|
|
if (unique_owner[j] == ti)
|
|
break;
|
|
if (j == n)
|
|
unique_owner[n++] = ti;
|
|
|
|
coprocessor_owner[i] = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < n; i++) {
|
|
/* pairs with memw (1) in fast_coprocessor and memw in switch_to */
|
|
smp_wmb();
|
|
unique_owner[i]->cpenable = 0;
|
|
}
|
|
xtensa_set_sr(0, cpenable);
|
|
}
|
|
|
|
static void local_coprocessor_release_all(void *info)
|
|
{
|
|
struct thread_info *ti = info;
|
|
struct thread_info **coprocessor_owner;
|
|
int i;
|
|
|
|
coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
|
|
|
|
/* Walk through all cp owners and release it for the requested one. */
|
|
|
|
for (i = 0; i < XCHAL_CP_MAX; i++) {
|
|
if (coprocessor_owner[i] == ti)
|
|
coprocessor_owner[i] = NULL;
|
|
}
|
|
/* pairs with memw (1) in fast_coprocessor and memw in switch_to */
|
|
smp_wmb();
|
|
ti->cpenable = 0;
|
|
if (ti == current_thread_info())
|
|
xtensa_set_sr(0, cpenable);
|
|
}
|
|
|
|
void coprocessor_release_all(struct thread_info *ti)
|
|
{
|
|
if (ti->cpenable) {
|
|
/* pairs with memw (2) in fast_coprocessor */
|
|
smp_rmb();
|
|
smp_call_function_single(ti->cp_owner_cpu,
|
|
local_coprocessor_release_all,
|
|
ti, true);
|
|
}
|
|
}
|
|
|
|
static void local_coprocessor_flush_all(void *info)
|
|
{
|
|
struct thread_info *ti = info;
|
|
struct thread_info **coprocessor_owner;
|
|
unsigned long old_cpenable;
|
|
int i;
|
|
|
|
coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
|
|
old_cpenable = xtensa_xsr(ti->cpenable, cpenable);
|
|
|
|
for (i = 0; i < XCHAL_CP_MAX; i++) {
|
|
if (coprocessor_owner[i] == ti)
|
|
coprocessor_flush(ti, i);
|
|
}
|
|
xtensa_set_sr(old_cpenable, cpenable);
|
|
}
|
|
|
|
void coprocessor_flush_all(struct thread_info *ti)
|
|
{
|
|
if (ti->cpenable) {
|
|
/* pairs with memw (2) in fast_coprocessor */
|
|
smp_rmb();
|
|
smp_call_function_single(ti->cp_owner_cpu,
|
|
local_coprocessor_flush_all,
|
|
ti, true);
|
|
}
|
|
}
|
|
|
|
static void local_coprocessor_flush_release_all(void *info)
|
|
{
|
|
local_coprocessor_flush_all(info);
|
|
local_coprocessor_release_all(info);
|
|
}
|
|
|
|
void coprocessor_flush_release_all(struct thread_info *ti)
|
|
{
|
|
if (ti->cpenable) {
|
|
/* pairs with memw (2) in fast_coprocessor */
|
|
smp_rmb();
|
|
smp_call_function_single(ti->cp_owner_cpu,
|
|
local_coprocessor_flush_release_all,
|
|
ti, true);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Powermanagement idle function, if any is provided by the platform.
|
|
*/
|
|
void arch_cpu_idle(void)
|
|
{
|
|
platform_idle();
|
|
raw_local_irq_disable();
|
|
}
|
|
|
|
/*
|
|
* This is called when the thread calls exit().
|
|
*/
|
|
void exit_thread(struct task_struct *tsk)
|
|
{
|
|
#if XTENSA_HAVE_COPROCESSORS
|
|
coprocessor_release_all(task_thread_info(tsk));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Flush thread state. This is called when a thread does an execve()
|
|
* Note that we flush coprocessor registers for the case execve fails.
|
|
*/
|
|
void flush_thread(void)
|
|
{
|
|
#if XTENSA_HAVE_COPROCESSORS
|
|
struct thread_info *ti = current_thread_info();
|
|
coprocessor_flush_release_all(ti);
|
|
#endif
|
|
flush_ptrace_hw_breakpoint(current);
|
|
}
|
|
|
|
/*
|
|
* this gets called so that we can store coprocessor state into memory and
|
|
* copy the current task into the new thread.
|
|
*/
|
|
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
|
|
{
|
|
#if XTENSA_HAVE_COPROCESSORS
|
|
coprocessor_flush_all(task_thread_info(src));
|
|
#endif
|
|
*dst = *src;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy thread.
|
|
*
|
|
* There are two modes in which this function is called:
|
|
* 1) Userspace thread creation,
|
|
* regs != NULL, usp_thread_fn is userspace stack pointer.
|
|
* It is expected to copy parent regs (in case CLONE_VM is not set
|
|
* in the clone_flags) and set up passed usp in the childregs.
|
|
* 2) Kernel thread creation,
|
|
* regs == NULL, usp_thread_fn is the function to run in the new thread
|
|
* and thread_fn_arg is its parameter.
|
|
* childregs are not used for the kernel threads.
|
|
*
|
|
* The stack layout for the new thread looks like this:
|
|
*
|
|
* +------------------------+
|
|
* | childregs |
|
|
* +------------------------+ <- thread.sp = sp in dummy-frame
|
|
* | dummy-frame | (saved in dummy-frame spill-area)
|
|
* +------------------------+
|
|
*
|
|
* We create a dummy frame to return to either ret_from_fork or
|
|
* ret_from_kernel_thread:
|
|
* a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
|
|
* sp points to itself (thread.sp)
|
|
* a2, a3 are unused for userspace threads,
|
|
* a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
|
|
*
|
|
* Note: This is a pristine frame, so we don't need any spill region on top of
|
|
* childregs.
|
|
*
|
|
* The fun part: if we're keeping the same VM (i.e. cloning a thread,
|
|
* not an entire process), we're normally given a new usp, and we CANNOT share
|
|
* any live address register windows. If we just copy those live frames over,
|
|
* the two threads (parent and child) will overflow the same frames onto the
|
|
* parent stack at different times, likely corrupting the parent stack (esp.
|
|
* if the parent returns from functions that called clone() and calls new
|
|
* ones, before the child overflows its now old copies of its parent windows).
|
|
* One solution is to spill windows to the parent stack, but that's fairly
|
|
* involved. Much simpler to just not copy those live frames across.
|
|
*/
|
|
|
|
int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
|
|
{
|
|
unsigned long clone_flags = args->flags;
|
|
unsigned long usp_thread_fn = args->stack;
|
|
unsigned long tls = args->tls;
|
|
struct pt_regs *childregs = task_pt_regs(p);
|
|
|
|
#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
|
|
struct thread_info *ti;
|
|
#endif
|
|
|
|
#if defined(__XTENSA_WINDOWED_ABI__)
|
|
/* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
|
|
SPILL_SLOT(childregs, 1) = (unsigned long)childregs;
|
|
SPILL_SLOT(childregs, 0) = 0;
|
|
|
|
p->thread.sp = (unsigned long)childregs;
|
|
#elif defined(__XTENSA_CALL0_ABI__)
|
|
/* Reserve 16 bytes for the _switch_to stack frame. */
|
|
p->thread.sp = (unsigned long)childregs - 16;
|
|
#else
|
|
#error Unsupported Xtensa ABI
|
|
#endif
|
|
|
|
if (!args->fn) {
|
|
struct pt_regs *regs = current_pt_regs();
|
|
unsigned long usp = usp_thread_fn ?
|
|
usp_thread_fn : regs->areg[1];
|
|
|
|
p->thread.ra = MAKE_RA_FOR_CALL(
|
|
(unsigned long)ret_from_fork, 0x1);
|
|
|
|
*childregs = *regs;
|
|
childregs->areg[1] = usp;
|
|
childregs->areg[2] = 0;
|
|
|
|
/* When sharing memory with the parent thread, the child
|
|
usually starts on a pristine stack, so we have to reset
|
|
windowbase, windowstart and wmask.
|
|
(Note that such a new thread is required to always create
|
|
an initial call4 frame)
|
|
The exception is vfork, where the new thread continues to
|
|
run on the parent's stack until it calls execve. This could
|
|
be a call8 or call12, which requires a legal stack frame
|
|
of the previous caller for the overflow handlers to work.
|
|
(Note that it's always legal to overflow live registers).
|
|
In this case, ensure to spill at least the stack pointer
|
|
of that frame. */
|
|
|
|
if (clone_flags & CLONE_VM) {
|
|
/* check that caller window is live and same stack */
|
|
int len = childregs->wmask & ~0xf;
|
|
if (regs->areg[1] == usp && len != 0) {
|
|
int callinc = (regs->areg[0] >> 30) & 3;
|
|
int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
|
|
put_user(regs->areg[caller_ars+1],
|
|
(unsigned __user*)(usp - 12));
|
|
}
|
|
childregs->wmask = 1;
|
|
childregs->windowstart = 1;
|
|
childregs->windowbase = 0;
|
|
}
|
|
|
|
if (clone_flags & CLONE_SETTLS)
|
|
childregs->threadptr = tls;
|
|
} else {
|
|
p->thread.ra = MAKE_RA_FOR_CALL(
|
|
(unsigned long)ret_from_kernel_thread, 1);
|
|
|
|
/* pass parameters to ret_from_kernel_thread: */
|
|
#if defined(__XTENSA_WINDOWED_ABI__)
|
|
/*
|
|
* a2 = thread_fn, a3 = thread_fn arg.
|
|
* Window underflow will load registers from the
|
|
* spill slots on the stack on return from _switch_to.
|
|
*/
|
|
SPILL_SLOT(childregs, 2) = (unsigned long)args->fn;
|
|
SPILL_SLOT(childregs, 3) = (unsigned long)args->fn_arg;
|
|
#elif defined(__XTENSA_CALL0_ABI__)
|
|
/*
|
|
* a12 = thread_fn, a13 = thread_fn arg.
|
|
* _switch_to epilogue will load registers from the stack.
|
|
*/
|
|
((unsigned long *)p->thread.sp)[0] = (unsigned long)args->fn;
|
|
((unsigned long *)p->thread.sp)[1] = (unsigned long)args->fn_arg;
|
|
#else
|
|
#error Unsupported Xtensa ABI
|
|
#endif
|
|
|
|
/* Childregs are only used when we're going to userspace
|
|
* in which case start_thread will set them up.
|
|
*/
|
|
}
|
|
|
|
#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
|
|
ti = task_thread_info(p);
|
|
ti->cpenable = 0;
|
|
#endif
|
|
|
|
clear_ptrace_hw_breakpoint(p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* These bracket the sleeping functions..
|
|
*/
|
|
|
|
unsigned long __get_wchan(struct task_struct *p)
|
|
{
|
|
unsigned long sp, pc;
|
|
unsigned long stack_page = (unsigned long) task_stack_page(p);
|
|
int count = 0;
|
|
|
|
sp = p->thread.sp;
|
|
pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
|
|
|
|
do {
|
|
if (sp < stack_page + sizeof(struct task_struct) ||
|
|
sp >= (stack_page + THREAD_SIZE) ||
|
|
pc == 0)
|
|
return 0;
|
|
if (!in_sched_functions(pc))
|
|
return pc;
|
|
|
|
/* Stack layout: sp-4: ra, sp-3: sp' */
|
|
|
|
pc = MAKE_PC_FROM_RA(SPILL_SLOT(sp, 0), sp);
|
|
sp = SPILL_SLOT(sp, 1);
|
|
} while (count++ < 16);
|
|
return 0;
|
|
}
|