mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-16 08:44:21 +08:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
839 lines
22 KiB
C
839 lines
22 KiB
C
/*
|
|
* Common NFSv4 ACL handling code.
|
|
*
|
|
* Copyright (c) 2002, 2003 The Regents of the University of Michigan.
|
|
* All rights reserved.
|
|
*
|
|
* Marius Aamodt Eriksen <marius@umich.edu>
|
|
* Jeff Sedlak <jsedlak@umich.edu>
|
|
* J. Bruce Fields <bfields@umich.edu>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/nfs_fs.h>
|
|
#include <linux/nfs4_acl.h>
|
|
|
|
|
|
/* mode bit translations: */
|
|
#define NFS4_READ_MODE (NFS4_ACE_READ_DATA)
|
|
#define NFS4_WRITE_MODE (NFS4_ACE_WRITE_DATA | NFS4_ACE_APPEND_DATA)
|
|
#define NFS4_EXECUTE_MODE NFS4_ACE_EXECUTE
|
|
#define NFS4_ANYONE_MODE (NFS4_ACE_READ_ATTRIBUTES | NFS4_ACE_READ_ACL | NFS4_ACE_SYNCHRONIZE)
|
|
#define NFS4_OWNER_MODE (NFS4_ACE_WRITE_ATTRIBUTES | NFS4_ACE_WRITE_ACL)
|
|
|
|
/* We don't support these bits; insist they be neither allowed nor denied */
|
|
#define NFS4_MASK_UNSUPP (NFS4_ACE_DELETE | NFS4_ACE_WRITE_OWNER \
|
|
| NFS4_ACE_READ_NAMED_ATTRS | NFS4_ACE_WRITE_NAMED_ATTRS)
|
|
|
|
/* flags used to simulate posix default ACLs */
|
|
#define NFS4_INHERITANCE_FLAGS (NFS4_ACE_FILE_INHERIT_ACE \
|
|
| NFS4_ACE_DIRECTORY_INHERIT_ACE)
|
|
|
|
#define NFS4_SUPPORTED_FLAGS (NFS4_INHERITANCE_FLAGS \
|
|
| NFS4_ACE_INHERIT_ONLY_ACE \
|
|
| NFS4_ACE_IDENTIFIER_GROUP)
|
|
|
|
#define MASK_EQUAL(mask1, mask2) \
|
|
( ((mask1) & NFS4_ACE_MASK_ALL) == ((mask2) & NFS4_ACE_MASK_ALL) )
|
|
|
|
static u32
|
|
mask_from_posix(unsigned short perm, unsigned int flags)
|
|
{
|
|
int mask = NFS4_ANYONE_MODE;
|
|
|
|
if (flags & NFS4_ACL_OWNER)
|
|
mask |= NFS4_OWNER_MODE;
|
|
if (perm & ACL_READ)
|
|
mask |= NFS4_READ_MODE;
|
|
if (perm & ACL_WRITE)
|
|
mask |= NFS4_WRITE_MODE;
|
|
if ((perm & ACL_WRITE) && (flags & NFS4_ACL_DIR))
|
|
mask |= NFS4_ACE_DELETE_CHILD;
|
|
if (perm & ACL_EXECUTE)
|
|
mask |= NFS4_EXECUTE_MODE;
|
|
return mask;
|
|
}
|
|
|
|
static u32
|
|
deny_mask_from_posix(unsigned short perm, u32 flags)
|
|
{
|
|
u32 mask = 0;
|
|
|
|
if (perm & ACL_READ)
|
|
mask |= NFS4_READ_MODE;
|
|
if (perm & ACL_WRITE)
|
|
mask |= NFS4_WRITE_MODE;
|
|
if ((perm & ACL_WRITE) && (flags & NFS4_ACL_DIR))
|
|
mask |= NFS4_ACE_DELETE_CHILD;
|
|
if (perm & ACL_EXECUTE)
|
|
mask |= NFS4_EXECUTE_MODE;
|
|
return mask;
|
|
}
|
|
|
|
/* XXX: modify functions to return NFS errors; they're only ever
|
|
* used by nfs code, after all.... */
|
|
|
|
/* We only map from NFSv4 to POSIX ACLs when setting ACLs, when we err on the
|
|
* side of being more restrictive, so the mode bit mapping below is
|
|
* pessimistic. An optimistic version would be needed to handle DENY's,
|
|
* but we espect to coalesce all ALLOWs and DENYs before mapping to mode
|
|
* bits. */
|
|
|
|
static void
|
|
low_mode_from_nfs4(u32 perm, unsigned short *mode, unsigned int flags)
|
|
{
|
|
u32 write_mode = NFS4_WRITE_MODE;
|
|
|
|
if (flags & NFS4_ACL_DIR)
|
|
write_mode |= NFS4_ACE_DELETE_CHILD;
|
|
*mode = 0;
|
|
if ((perm & NFS4_READ_MODE) == NFS4_READ_MODE)
|
|
*mode |= ACL_READ;
|
|
if ((perm & write_mode) == write_mode)
|
|
*mode |= ACL_WRITE;
|
|
if ((perm & NFS4_EXECUTE_MODE) == NFS4_EXECUTE_MODE)
|
|
*mode |= ACL_EXECUTE;
|
|
}
|
|
|
|
struct ace_container {
|
|
struct nfs4_ace *ace;
|
|
struct list_head ace_l;
|
|
};
|
|
|
|
static short ace2type(struct nfs4_ace *);
|
|
static void _posix_to_nfsv4_one(struct posix_acl *, struct nfs4_acl *,
|
|
unsigned int);
|
|
|
|
struct nfs4_acl *
|
|
nfs4_acl_posix_to_nfsv4(struct posix_acl *pacl, struct posix_acl *dpacl,
|
|
unsigned int flags)
|
|
{
|
|
struct nfs4_acl *acl;
|
|
int size = 0;
|
|
|
|
if (pacl) {
|
|
if (posix_acl_valid(pacl) < 0)
|
|
return ERR_PTR(-EINVAL);
|
|
size += 2*pacl->a_count;
|
|
}
|
|
if (dpacl) {
|
|
if (posix_acl_valid(dpacl) < 0)
|
|
return ERR_PTR(-EINVAL);
|
|
size += 2*dpacl->a_count;
|
|
}
|
|
|
|
/* Allocate for worst case: one (deny, allow) pair each: */
|
|
acl = nfs4_acl_new(size);
|
|
if (acl == NULL)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (pacl)
|
|
_posix_to_nfsv4_one(pacl, acl, flags & ~NFS4_ACL_TYPE_DEFAULT);
|
|
|
|
if (dpacl)
|
|
_posix_to_nfsv4_one(dpacl, acl, flags | NFS4_ACL_TYPE_DEFAULT);
|
|
|
|
return acl;
|
|
}
|
|
|
|
struct posix_acl_summary {
|
|
unsigned short owner;
|
|
unsigned short users;
|
|
unsigned short group;
|
|
unsigned short groups;
|
|
unsigned short other;
|
|
unsigned short mask;
|
|
};
|
|
|
|
static void
|
|
summarize_posix_acl(struct posix_acl *acl, struct posix_acl_summary *pas)
|
|
{
|
|
struct posix_acl_entry *pa, *pe;
|
|
|
|
/*
|
|
* Only pas.users and pas.groups need initialization; previous
|
|
* posix_acl_valid() calls ensure that the other fields will be
|
|
* initialized in the following loop. But, just to placate gcc:
|
|
*/
|
|
memset(pas, 0, sizeof(*pas));
|
|
pas->mask = 07;
|
|
|
|
pe = acl->a_entries + acl->a_count;
|
|
|
|
FOREACH_ACL_ENTRY(pa, acl, pe) {
|
|
switch (pa->e_tag) {
|
|
case ACL_USER_OBJ:
|
|
pas->owner = pa->e_perm;
|
|
break;
|
|
case ACL_GROUP_OBJ:
|
|
pas->group = pa->e_perm;
|
|
break;
|
|
case ACL_USER:
|
|
pas->users |= pa->e_perm;
|
|
break;
|
|
case ACL_GROUP:
|
|
pas->groups |= pa->e_perm;
|
|
break;
|
|
case ACL_OTHER:
|
|
pas->other = pa->e_perm;
|
|
break;
|
|
case ACL_MASK:
|
|
pas->mask = pa->e_perm;
|
|
break;
|
|
}
|
|
}
|
|
/* We'll only care about effective permissions: */
|
|
pas->users &= pas->mask;
|
|
pas->group &= pas->mask;
|
|
pas->groups &= pas->mask;
|
|
}
|
|
|
|
/* We assume the acl has been verified with posix_acl_valid. */
|
|
static void
|
|
_posix_to_nfsv4_one(struct posix_acl *pacl, struct nfs4_acl *acl,
|
|
unsigned int flags)
|
|
{
|
|
struct posix_acl_entry *pa, *group_owner_entry;
|
|
struct nfs4_ace *ace;
|
|
struct posix_acl_summary pas;
|
|
unsigned short deny;
|
|
int eflag = ((flags & NFS4_ACL_TYPE_DEFAULT) ?
|
|
NFS4_INHERITANCE_FLAGS | NFS4_ACE_INHERIT_ONLY_ACE : 0);
|
|
|
|
BUG_ON(pacl->a_count < 3);
|
|
summarize_posix_acl(pacl, &pas);
|
|
|
|
pa = pacl->a_entries;
|
|
ace = acl->aces + acl->naces;
|
|
|
|
/* We could deny everything not granted by the owner: */
|
|
deny = ~pas.owner;
|
|
/*
|
|
* but it is equivalent (and simpler) to deny only what is not
|
|
* granted by later entries:
|
|
*/
|
|
deny &= pas.users | pas.group | pas.groups | pas.other;
|
|
if (deny) {
|
|
ace->type = NFS4_ACE_ACCESS_DENIED_ACE_TYPE;
|
|
ace->flag = eflag;
|
|
ace->access_mask = deny_mask_from_posix(deny, flags);
|
|
ace->whotype = NFS4_ACL_WHO_OWNER;
|
|
ace++;
|
|
acl->naces++;
|
|
}
|
|
|
|
ace->type = NFS4_ACE_ACCESS_ALLOWED_ACE_TYPE;
|
|
ace->flag = eflag;
|
|
ace->access_mask = mask_from_posix(pa->e_perm, flags | NFS4_ACL_OWNER);
|
|
ace->whotype = NFS4_ACL_WHO_OWNER;
|
|
ace++;
|
|
acl->naces++;
|
|
pa++;
|
|
|
|
while (pa->e_tag == ACL_USER) {
|
|
deny = ~(pa->e_perm & pas.mask);
|
|
deny &= pas.groups | pas.group | pas.other;
|
|
if (deny) {
|
|
ace->type = NFS4_ACE_ACCESS_DENIED_ACE_TYPE;
|
|
ace->flag = eflag;
|
|
ace->access_mask = deny_mask_from_posix(deny, flags);
|
|
ace->whotype = NFS4_ACL_WHO_NAMED;
|
|
ace->who = pa->e_id;
|
|
ace++;
|
|
acl->naces++;
|
|
}
|
|
ace->type = NFS4_ACE_ACCESS_ALLOWED_ACE_TYPE;
|
|
ace->flag = eflag;
|
|
ace->access_mask = mask_from_posix(pa->e_perm & pas.mask,
|
|
flags);
|
|
ace->whotype = NFS4_ACL_WHO_NAMED;
|
|
ace->who = pa->e_id;
|
|
ace++;
|
|
acl->naces++;
|
|
pa++;
|
|
}
|
|
|
|
/* In the case of groups, we apply allow ACEs first, then deny ACEs,
|
|
* since a user can be in more than one group. */
|
|
|
|
/* allow ACEs */
|
|
|
|
group_owner_entry = pa;
|
|
|
|
ace->type = NFS4_ACE_ACCESS_ALLOWED_ACE_TYPE;
|
|
ace->flag = eflag;
|
|
ace->access_mask = mask_from_posix(pas.group, flags);
|
|
ace->whotype = NFS4_ACL_WHO_GROUP;
|
|
ace++;
|
|
acl->naces++;
|
|
pa++;
|
|
|
|
while (pa->e_tag == ACL_GROUP) {
|
|
ace->type = NFS4_ACE_ACCESS_ALLOWED_ACE_TYPE;
|
|
ace->flag = eflag | NFS4_ACE_IDENTIFIER_GROUP;
|
|
ace->access_mask = mask_from_posix(pa->e_perm & pas.mask,
|
|
flags);
|
|
ace->whotype = NFS4_ACL_WHO_NAMED;
|
|
ace->who = pa->e_id;
|
|
ace++;
|
|
acl->naces++;
|
|
pa++;
|
|
}
|
|
|
|
/* deny ACEs */
|
|
|
|
pa = group_owner_entry;
|
|
|
|
deny = ~pas.group & pas.other;
|
|
if (deny) {
|
|
ace->type = NFS4_ACE_ACCESS_DENIED_ACE_TYPE;
|
|
ace->flag = eflag;
|
|
ace->access_mask = deny_mask_from_posix(deny, flags);
|
|
ace->whotype = NFS4_ACL_WHO_GROUP;
|
|
ace++;
|
|
acl->naces++;
|
|
}
|
|
pa++;
|
|
|
|
while (pa->e_tag == ACL_GROUP) {
|
|
deny = ~(pa->e_perm & pas.mask);
|
|
deny &= pas.other;
|
|
if (deny) {
|
|
ace->type = NFS4_ACE_ACCESS_DENIED_ACE_TYPE;
|
|
ace->flag = eflag | NFS4_ACE_IDENTIFIER_GROUP;
|
|
ace->access_mask = deny_mask_from_posix(deny, flags);
|
|
ace->whotype = NFS4_ACL_WHO_NAMED;
|
|
ace->who = pa->e_id;
|
|
ace++;
|
|
acl->naces++;
|
|
}
|
|
pa++;
|
|
}
|
|
|
|
if (pa->e_tag == ACL_MASK)
|
|
pa++;
|
|
ace->type = NFS4_ACE_ACCESS_ALLOWED_ACE_TYPE;
|
|
ace->flag = eflag;
|
|
ace->access_mask = mask_from_posix(pa->e_perm, flags);
|
|
ace->whotype = NFS4_ACL_WHO_EVERYONE;
|
|
acl->naces++;
|
|
}
|
|
|
|
static void
|
|
sort_pacl_range(struct posix_acl *pacl, int start, int end) {
|
|
int sorted = 0, i;
|
|
struct posix_acl_entry tmp;
|
|
|
|
/* We just do a bubble sort; easy to do in place, and we're not
|
|
* expecting acl's to be long enough to justify anything more. */
|
|
while (!sorted) {
|
|
sorted = 1;
|
|
for (i = start; i < end; i++) {
|
|
if (pacl->a_entries[i].e_id
|
|
> pacl->a_entries[i+1].e_id) {
|
|
sorted = 0;
|
|
tmp = pacl->a_entries[i];
|
|
pacl->a_entries[i] = pacl->a_entries[i+1];
|
|
pacl->a_entries[i+1] = tmp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
sort_pacl(struct posix_acl *pacl)
|
|
{
|
|
/* posix_acl_valid requires that users and groups be in order
|
|
* by uid/gid. */
|
|
int i, j;
|
|
|
|
if (pacl->a_count <= 4)
|
|
return; /* no users or groups */
|
|
i = 1;
|
|
while (pacl->a_entries[i].e_tag == ACL_USER)
|
|
i++;
|
|
sort_pacl_range(pacl, 1, i-1);
|
|
|
|
BUG_ON(pacl->a_entries[i].e_tag != ACL_GROUP_OBJ);
|
|
j = ++i;
|
|
while (pacl->a_entries[j].e_tag == ACL_GROUP)
|
|
j++;
|
|
sort_pacl_range(pacl, i, j-1);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* While processing the NFSv4 ACE, this maintains bitmasks representing
|
|
* which permission bits have been allowed and which denied to a given
|
|
* entity: */
|
|
struct posix_ace_state {
|
|
u32 allow;
|
|
u32 deny;
|
|
};
|
|
|
|
struct posix_user_ace_state {
|
|
uid_t uid;
|
|
struct posix_ace_state perms;
|
|
};
|
|
|
|
struct posix_ace_state_array {
|
|
int n;
|
|
struct posix_user_ace_state aces[];
|
|
};
|
|
|
|
/*
|
|
* While processing the NFSv4 ACE, this maintains the partial permissions
|
|
* calculated so far: */
|
|
|
|
struct posix_acl_state {
|
|
int empty;
|
|
struct posix_ace_state owner;
|
|
struct posix_ace_state group;
|
|
struct posix_ace_state other;
|
|
struct posix_ace_state everyone;
|
|
struct posix_ace_state mask; /* Deny unused in this case */
|
|
struct posix_ace_state_array *users;
|
|
struct posix_ace_state_array *groups;
|
|
};
|
|
|
|
static int
|
|
init_state(struct posix_acl_state *state, int cnt)
|
|
{
|
|
int alloc;
|
|
|
|
memset(state, 0, sizeof(struct posix_acl_state));
|
|
state->empty = 1;
|
|
/*
|
|
* In the worst case, each individual acl could be for a distinct
|
|
* named user or group, but we don't no which, so we allocate
|
|
* enough space for either:
|
|
*/
|
|
alloc = sizeof(struct posix_ace_state_array)
|
|
+ cnt*sizeof(struct posix_user_ace_state);
|
|
state->users = kzalloc(alloc, GFP_KERNEL);
|
|
if (!state->users)
|
|
return -ENOMEM;
|
|
state->groups = kzalloc(alloc, GFP_KERNEL);
|
|
if (!state->groups) {
|
|
kfree(state->users);
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
free_state(struct posix_acl_state *state) {
|
|
kfree(state->users);
|
|
kfree(state->groups);
|
|
}
|
|
|
|
static inline void add_to_mask(struct posix_acl_state *state, struct posix_ace_state *astate)
|
|
{
|
|
state->mask.allow |= astate->allow;
|
|
}
|
|
|
|
/*
|
|
* Certain bits (SYNCHRONIZE, DELETE, WRITE_OWNER, READ/WRITE_NAMED_ATTRS,
|
|
* READ_ATTRIBUTES, READ_ACL) are currently unenforceable and don't translate
|
|
* to traditional read/write/execute permissions.
|
|
*
|
|
* It's problematic to reject acls that use certain mode bits, because it
|
|
* places the burden on users to learn the rules about which bits one
|
|
* particular server sets, without giving the user a lot of help--we return an
|
|
* error that could mean any number of different things. To make matters
|
|
* worse, the problematic bits might be introduced by some application that's
|
|
* automatically mapping from some other acl model.
|
|
*
|
|
* So wherever possible we accept anything, possibly erring on the side of
|
|
* denying more permissions than necessary.
|
|
*
|
|
* However we do reject *explicit* DENY's of a few bits representing
|
|
* permissions we could never deny:
|
|
*/
|
|
|
|
static inline int check_deny(u32 mask, int isowner)
|
|
{
|
|
if (mask & (NFS4_ACE_READ_ATTRIBUTES | NFS4_ACE_READ_ACL))
|
|
return -EINVAL;
|
|
if (!isowner)
|
|
return 0;
|
|
if (mask & (NFS4_ACE_WRITE_ATTRIBUTES | NFS4_ACE_WRITE_ACL))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static struct posix_acl *
|
|
posix_state_to_acl(struct posix_acl_state *state, unsigned int flags)
|
|
{
|
|
struct posix_acl_entry *pace;
|
|
struct posix_acl *pacl;
|
|
int nace;
|
|
int i, error = 0;
|
|
|
|
/*
|
|
* ACLs with no ACEs are treated differently in the inheritable
|
|
* and effective cases: when there are no inheritable ACEs, we
|
|
* set a zero-length default posix acl:
|
|
*/
|
|
if (state->empty && (flags & NFS4_ACL_TYPE_DEFAULT)) {
|
|
pacl = posix_acl_alloc(0, GFP_KERNEL);
|
|
return pacl ? pacl : ERR_PTR(-ENOMEM);
|
|
}
|
|
/*
|
|
* When there are no effective ACEs, the following will end
|
|
* up setting a 3-element effective posix ACL with all
|
|
* permissions zero.
|
|
*/
|
|
nace = 4 + state->users->n + state->groups->n;
|
|
pacl = posix_acl_alloc(nace, GFP_KERNEL);
|
|
if (!pacl)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
pace = pacl->a_entries;
|
|
pace->e_tag = ACL_USER_OBJ;
|
|
error = check_deny(state->owner.deny, 1);
|
|
if (error)
|
|
goto out_err;
|
|
low_mode_from_nfs4(state->owner.allow, &pace->e_perm, flags);
|
|
pace->e_id = ACL_UNDEFINED_ID;
|
|
|
|
for (i=0; i < state->users->n; i++) {
|
|
pace++;
|
|
pace->e_tag = ACL_USER;
|
|
error = check_deny(state->users->aces[i].perms.deny, 0);
|
|
if (error)
|
|
goto out_err;
|
|
low_mode_from_nfs4(state->users->aces[i].perms.allow,
|
|
&pace->e_perm, flags);
|
|
pace->e_id = state->users->aces[i].uid;
|
|
add_to_mask(state, &state->users->aces[i].perms);
|
|
}
|
|
|
|
pace++;
|
|
pace->e_tag = ACL_GROUP_OBJ;
|
|
error = check_deny(state->group.deny, 0);
|
|
if (error)
|
|
goto out_err;
|
|
low_mode_from_nfs4(state->group.allow, &pace->e_perm, flags);
|
|
pace->e_id = ACL_UNDEFINED_ID;
|
|
add_to_mask(state, &state->group);
|
|
|
|
for (i=0; i < state->groups->n; i++) {
|
|
pace++;
|
|
pace->e_tag = ACL_GROUP;
|
|
error = check_deny(state->groups->aces[i].perms.deny, 0);
|
|
if (error)
|
|
goto out_err;
|
|
low_mode_from_nfs4(state->groups->aces[i].perms.allow,
|
|
&pace->e_perm, flags);
|
|
pace->e_id = state->groups->aces[i].uid;
|
|
add_to_mask(state, &state->groups->aces[i].perms);
|
|
}
|
|
|
|
pace++;
|
|
pace->e_tag = ACL_MASK;
|
|
low_mode_from_nfs4(state->mask.allow, &pace->e_perm, flags);
|
|
pace->e_id = ACL_UNDEFINED_ID;
|
|
|
|
pace++;
|
|
pace->e_tag = ACL_OTHER;
|
|
error = check_deny(state->other.deny, 0);
|
|
if (error)
|
|
goto out_err;
|
|
low_mode_from_nfs4(state->other.allow, &pace->e_perm, flags);
|
|
pace->e_id = ACL_UNDEFINED_ID;
|
|
|
|
return pacl;
|
|
out_err:
|
|
posix_acl_release(pacl);
|
|
return ERR_PTR(error);
|
|
}
|
|
|
|
static inline void allow_bits(struct posix_ace_state *astate, u32 mask)
|
|
{
|
|
/* Allow all bits in the mask not already denied: */
|
|
astate->allow |= mask & ~astate->deny;
|
|
}
|
|
|
|
static inline void deny_bits(struct posix_ace_state *astate, u32 mask)
|
|
{
|
|
/* Deny all bits in the mask not already allowed: */
|
|
astate->deny |= mask & ~astate->allow;
|
|
}
|
|
|
|
static int find_uid(struct posix_acl_state *state, struct posix_ace_state_array *a, uid_t uid)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < a->n; i++)
|
|
if (a->aces[i].uid == uid)
|
|
return i;
|
|
/* Not found: */
|
|
a->n++;
|
|
a->aces[i].uid = uid;
|
|
a->aces[i].perms.allow = state->everyone.allow;
|
|
a->aces[i].perms.deny = state->everyone.deny;
|
|
|
|
return i;
|
|
}
|
|
|
|
static void deny_bits_array(struct posix_ace_state_array *a, u32 mask)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i < a->n; i++)
|
|
deny_bits(&a->aces[i].perms, mask);
|
|
}
|
|
|
|
static void allow_bits_array(struct posix_ace_state_array *a, u32 mask)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i < a->n; i++)
|
|
allow_bits(&a->aces[i].perms, mask);
|
|
}
|
|
|
|
static void process_one_v4_ace(struct posix_acl_state *state,
|
|
struct nfs4_ace *ace)
|
|
{
|
|
u32 mask = ace->access_mask;
|
|
int i;
|
|
|
|
state->empty = 0;
|
|
|
|
switch (ace2type(ace)) {
|
|
case ACL_USER_OBJ:
|
|
if (ace->type == NFS4_ACE_ACCESS_ALLOWED_ACE_TYPE) {
|
|
allow_bits(&state->owner, mask);
|
|
} else {
|
|
deny_bits(&state->owner, mask);
|
|
}
|
|
break;
|
|
case ACL_USER:
|
|
i = find_uid(state, state->users, ace->who);
|
|
if (ace->type == NFS4_ACE_ACCESS_ALLOWED_ACE_TYPE) {
|
|
allow_bits(&state->users->aces[i].perms, mask);
|
|
} else {
|
|
deny_bits(&state->users->aces[i].perms, mask);
|
|
mask = state->users->aces[i].perms.deny;
|
|
deny_bits(&state->owner, mask);
|
|
}
|
|
break;
|
|
case ACL_GROUP_OBJ:
|
|
if (ace->type == NFS4_ACE_ACCESS_ALLOWED_ACE_TYPE) {
|
|
allow_bits(&state->group, mask);
|
|
} else {
|
|
deny_bits(&state->group, mask);
|
|
mask = state->group.deny;
|
|
deny_bits(&state->owner, mask);
|
|
deny_bits(&state->everyone, mask);
|
|
deny_bits_array(state->users, mask);
|
|
deny_bits_array(state->groups, mask);
|
|
}
|
|
break;
|
|
case ACL_GROUP:
|
|
i = find_uid(state, state->groups, ace->who);
|
|
if (ace->type == NFS4_ACE_ACCESS_ALLOWED_ACE_TYPE) {
|
|
allow_bits(&state->groups->aces[i].perms, mask);
|
|
} else {
|
|
deny_bits(&state->groups->aces[i].perms, mask);
|
|
mask = state->groups->aces[i].perms.deny;
|
|
deny_bits(&state->owner, mask);
|
|
deny_bits(&state->group, mask);
|
|
deny_bits(&state->everyone, mask);
|
|
deny_bits_array(state->users, mask);
|
|
deny_bits_array(state->groups, mask);
|
|
}
|
|
break;
|
|
case ACL_OTHER:
|
|
if (ace->type == NFS4_ACE_ACCESS_ALLOWED_ACE_TYPE) {
|
|
allow_bits(&state->owner, mask);
|
|
allow_bits(&state->group, mask);
|
|
allow_bits(&state->other, mask);
|
|
allow_bits(&state->everyone, mask);
|
|
allow_bits_array(state->users, mask);
|
|
allow_bits_array(state->groups, mask);
|
|
} else {
|
|
deny_bits(&state->owner, mask);
|
|
deny_bits(&state->group, mask);
|
|
deny_bits(&state->other, mask);
|
|
deny_bits(&state->everyone, mask);
|
|
deny_bits_array(state->users, mask);
|
|
deny_bits_array(state->groups, mask);
|
|
}
|
|
}
|
|
}
|
|
|
|
int nfs4_acl_nfsv4_to_posix(struct nfs4_acl *acl, struct posix_acl **pacl,
|
|
struct posix_acl **dpacl, unsigned int flags)
|
|
{
|
|
struct posix_acl_state effective_acl_state, default_acl_state;
|
|
struct nfs4_ace *ace;
|
|
int ret;
|
|
|
|
ret = init_state(&effective_acl_state, acl->naces);
|
|
if (ret)
|
|
return ret;
|
|
ret = init_state(&default_acl_state, acl->naces);
|
|
if (ret)
|
|
goto out_estate;
|
|
ret = -EINVAL;
|
|
for (ace = acl->aces; ace < acl->aces + acl->naces; ace++) {
|
|
if (ace->type != NFS4_ACE_ACCESS_ALLOWED_ACE_TYPE &&
|
|
ace->type != NFS4_ACE_ACCESS_DENIED_ACE_TYPE)
|
|
goto out_dstate;
|
|
if (ace->flag & ~NFS4_SUPPORTED_FLAGS)
|
|
goto out_dstate;
|
|
if ((ace->flag & NFS4_INHERITANCE_FLAGS) == 0) {
|
|
process_one_v4_ace(&effective_acl_state, ace);
|
|
continue;
|
|
}
|
|
if (!(flags & NFS4_ACL_DIR))
|
|
goto out_dstate;
|
|
/*
|
|
* Note that when only one of FILE_INHERIT or DIRECTORY_INHERIT
|
|
* is set, we're effectively turning on the other. That's OK,
|
|
* according to rfc 3530.
|
|
*/
|
|
process_one_v4_ace(&default_acl_state, ace);
|
|
|
|
if (!(ace->flag & NFS4_ACE_INHERIT_ONLY_ACE))
|
|
process_one_v4_ace(&effective_acl_state, ace);
|
|
}
|
|
*pacl = posix_state_to_acl(&effective_acl_state, flags);
|
|
if (IS_ERR(*pacl)) {
|
|
ret = PTR_ERR(*pacl);
|
|
*pacl = NULL;
|
|
goto out_dstate;
|
|
}
|
|
*dpacl = posix_state_to_acl(&default_acl_state,
|
|
flags | NFS4_ACL_TYPE_DEFAULT);
|
|
if (IS_ERR(*dpacl)) {
|
|
ret = PTR_ERR(*dpacl);
|
|
*dpacl = NULL;
|
|
posix_acl_release(*pacl);
|
|
*pacl = NULL;
|
|
goto out_dstate;
|
|
}
|
|
sort_pacl(*pacl);
|
|
sort_pacl(*dpacl);
|
|
ret = 0;
|
|
out_dstate:
|
|
free_state(&default_acl_state);
|
|
out_estate:
|
|
free_state(&effective_acl_state);
|
|
return ret;
|
|
}
|
|
|
|
static short
|
|
ace2type(struct nfs4_ace *ace)
|
|
{
|
|
switch (ace->whotype) {
|
|
case NFS4_ACL_WHO_NAMED:
|
|
return (ace->flag & NFS4_ACE_IDENTIFIER_GROUP ?
|
|
ACL_GROUP : ACL_USER);
|
|
case NFS4_ACL_WHO_OWNER:
|
|
return ACL_USER_OBJ;
|
|
case NFS4_ACL_WHO_GROUP:
|
|
return ACL_GROUP_OBJ;
|
|
case NFS4_ACL_WHO_EVERYONE:
|
|
return ACL_OTHER;
|
|
}
|
|
BUG();
|
|
return -1;
|
|
}
|
|
|
|
EXPORT_SYMBOL(nfs4_acl_posix_to_nfsv4);
|
|
EXPORT_SYMBOL(nfs4_acl_nfsv4_to_posix);
|
|
|
|
struct nfs4_acl *
|
|
nfs4_acl_new(int n)
|
|
{
|
|
struct nfs4_acl *acl;
|
|
|
|
acl = kmalloc(sizeof(*acl) + n*sizeof(struct nfs4_ace), GFP_KERNEL);
|
|
if (acl == NULL)
|
|
return NULL;
|
|
acl->naces = 0;
|
|
return acl;
|
|
}
|
|
|
|
static struct {
|
|
char *string;
|
|
int stringlen;
|
|
int type;
|
|
} s2t_map[] = {
|
|
{
|
|
.string = "OWNER@",
|
|
.stringlen = sizeof("OWNER@") - 1,
|
|
.type = NFS4_ACL_WHO_OWNER,
|
|
},
|
|
{
|
|
.string = "GROUP@",
|
|
.stringlen = sizeof("GROUP@") - 1,
|
|
.type = NFS4_ACL_WHO_GROUP,
|
|
},
|
|
{
|
|
.string = "EVERYONE@",
|
|
.stringlen = sizeof("EVERYONE@") - 1,
|
|
.type = NFS4_ACL_WHO_EVERYONE,
|
|
},
|
|
};
|
|
|
|
int
|
|
nfs4_acl_get_whotype(char *p, u32 len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s2t_map); i++) {
|
|
if (s2t_map[i].stringlen == len &&
|
|
0 == memcmp(s2t_map[i].string, p, len))
|
|
return s2t_map[i].type;
|
|
}
|
|
return NFS4_ACL_WHO_NAMED;
|
|
}
|
|
|
|
int
|
|
nfs4_acl_write_who(int who, char *p)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s2t_map); i++) {
|
|
if (s2t_map[i].type == who) {
|
|
memcpy(p, s2t_map[i].string, s2t_map[i].stringlen);
|
|
return s2t_map[i].stringlen;
|
|
}
|
|
}
|
|
BUG();
|
|
return -1;
|
|
}
|
|
|
|
EXPORT_SYMBOL(nfs4_acl_new);
|
|
EXPORT_SYMBOL(nfs4_acl_get_whotype);
|
|
EXPORT_SYMBOL(nfs4_acl_write_who);
|