mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-25 07:14:36 +08:00
b5492af78c
This patch moves some inode-related definitions from node.h to f2fs.h to add new features. Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
395 lines
10 KiB
C
395 lines
10 KiB
C
/*
|
|
* fs/f2fs/node.h
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
/* start node id of a node block dedicated to the given node id */
|
|
#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
|
|
|
|
/* node block offset on the NAT area dedicated to the given start node id */
|
|
#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
|
|
|
|
/* # of pages to perform readahead before building free nids */
|
|
#define FREE_NID_PAGES 4
|
|
|
|
/* maximum readahead size for node during getting data blocks */
|
|
#define MAX_RA_NODE 128
|
|
|
|
/* control the memory footprint threshold (10MB per 1GB ram) */
|
|
#define DEF_RAM_THRESHOLD 10
|
|
|
|
/* vector size for gang look-up from nat cache that consists of radix tree */
|
|
#define NATVEC_SIZE 64
|
|
#define SETVEC_SIZE 32
|
|
|
|
/* return value for read_node_page */
|
|
#define LOCKED_PAGE 1
|
|
|
|
/* For flag in struct node_info */
|
|
enum {
|
|
IS_CHECKPOINTED, /* is it checkpointed before? */
|
|
HAS_FSYNCED_INODE, /* is the inode fsynced before? */
|
|
HAS_LAST_FSYNC, /* has the latest node fsync mark? */
|
|
IS_DIRTY, /* this nat entry is dirty? */
|
|
};
|
|
|
|
/*
|
|
* For node information
|
|
*/
|
|
struct node_info {
|
|
nid_t nid; /* node id */
|
|
nid_t ino; /* inode number of the node's owner */
|
|
block_t blk_addr; /* block address of the node */
|
|
unsigned char version; /* version of the node */
|
|
unsigned char flag; /* for node information bits */
|
|
};
|
|
|
|
struct nat_entry {
|
|
struct list_head list; /* for clean or dirty nat list */
|
|
struct node_info ni; /* in-memory node information */
|
|
};
|
|
|
|
#define nat_get_nid(nat) (nat->ni.nid)
|
|
#define nat_set_nid(nat, n) (nat->ni.nid = n)
|
|
#define nat_get_blkaddr(nat) (nat->ni.blk_addr)
|
|
#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
|
|
#define nat_get_ino(nat) (nat->ni.ino)
|
|
#define nat_set_ino(nat, i) (nat->ni.ino = i)
|
|
#define nat_get_version(nat) (nat->ni.version)
|
|
#define nat_set_version(nat, v) (nat->ni.version = v)
|
|
|
|
#define inc_node_version(version) (++version)
|
|
|
|
static inline void copy_node_info(struct node_info *dst,
|
|
struct node_info *src)
|
|
{
|
|
dst->nid = src->nid;
|
|
dst->ino = src->ino;
|
|
dst->blk_addr = src->blk_addr;
|
|
dst->version = src->version;
|
|
/* should not copy flag here */
|
|
}
|
|
|
|
static inline void set_nat_flag(struct nat_entry *ne,
|
|
unsigned int type, bool set)
|
|
{
|
|
unsigned char mask = 0x01 << type;
|
|
if (set)
|
|
ne->ni.flag |= mask;
|
|
else
|
|
ne->ni.flag &= ~mask;
|
|
}
|
|
|
|
static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
|
|
{
|
|
unsigned char mask = 0x01 << type;
|
|
return ne->ni.flag & mask;
|
|
}
|
|
|
|
static inline void nat_reset_flag(struct nat_entry *ne)
|
|
{
|
|
/* these states can be set only after checkpoint was done */
|
|
set_nat_flag(ne, IS_CHECKPOINTED, true);
|
|
set_nat_flag(ne, HAS_FSYNCED_INODE, false);
|
|
set_nat_flag(ne, HAS_LAST_FSYNC, true);
|
|
}
|
|
|
|
static inline void node_info_from_raw_nat(struct node_info *ni,
|
|
struct f2fs_nat_entry *raw_ne)
|
|
{
|
|
ni->ino = le32_to_cpu(raw_ne->ino);
|
|
ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
|
|
ni->version = raw_ne->version;
|
|
}
|
|
|
|
static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
|
|
struct node_info *ni)
|
|
{
|
|
raw_ne->ino = cpu_to_le32(ni->ino);
|
|
raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
|
|
raw_ne->version = ni->version;
|
|
}
|
|
|
|
enum mem_type {
|
|
FREE_NIDS, /* indicates the free nid list */
|
|
NAT_ENTRIES, /* indicates the cached nat entry */
|
|
DIRTY_DENTS, /* indicates dirty dentry pages */
|
|
INO_ENTRIES, /* indicates inode entries */
|
|
EXTENT_CACHE, /* indicates extent cache */
|
|
BASE_CHECK, /* check kernel status */
|
|
};
|
|
|
|
struct nat_entry_set {
|
|
struct list_head set_list; /* link with other nat sets */
|
|
struct list_head entry_list; /* link with dirty nat entries */
|
|
nid_t set; /* set number*/
|
|
unsigned int entry_cnt; /* the # of nat entries in set */
|
|
};
|
|
|
|
/*
|
|
* For free nid mangement
|
|
*/
|
|
enum nid_state {
|
|
NID_NEW, /* newly added to free nid list */
|
|
NID_ALLOC /* it is allocated */
|
|
};
|
|
|
|
struct free_nid {
|
|
struct list_head list; /* for free node id list */
|
|
nid_t nid; /* node id */
|
|
int state; /* in use or not: NID_NEW or NID_ALLOC */
|
|
};
|
|
|
|
static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
struct free_nid *fnid;
|
|
|
|
spin_lock(&nm_i->free_nid_list_lock);
|
|
if (nm_i->fcnt <= 0) {
|
|
spin_unlock(&nm_i->free_nid_list_lock);
|
|
return;
|
|
}
|
|
fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
|
|
*nid = fnid->nid;
|
|
spin_unlock(&nm_i->free_nid_list_lock);
|
|
}
|
|
|
|
/*
|
|
* inline functions
|
|
*/
|
|
static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
|
|
}
|
|
|
|
static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
pgoff_t block_off;
|
|
pgoff_t block_addr;
|
|
int seg_off;
|
|
|
|
block_off = NAT_BLOCK_OFFSET(start);
|
|
seg_off = block_off >> sbi->log_blocks_per_seg;
|
|
|
|
block_addr = (pgoff_t)(nm_i->nat_blkaddr +
|
|
(seg_off << sbi->log_blocks_per_seg << 1) +
|
|
(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
|
|
|
|
if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
|
|
block_addr += sbi->blocks_per_seg;
|
|
|
|
return block_addr;
|
|
}
|
|
|
|
static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
|
|
pgoff_t block_addr)
|
|
{
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
|
|
block_addr -= nm_i->nat_blkaddr;
|
|
if ((block_addr >> sbi->log_blocks_per_seg) % 2)
|
|
block_addr -= sbi->blocks_per_seg;
|
|
else
|
|
block_addr += sbi->blocks_per_seg;
|
|
|
|
return block_addr + nm_i->nat_blkaddr;
|
|
}
|
|
|
|
static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
|
|
{
|
|
unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
|
|
|
|
f2fs_change_bit(block_off, nm_i->nat_bitmap);
|
|
}
|
|
|
|
static inline void fill_node_footer(struct page *page, nid_t nid,
|
|
nid_t ino, unsigned int ofs, bool reset)
|
|
{
|
|
struct f2fs_node *rn = F2FS_NODE(page);
|
|
unsigned int old_flag = 0;
|
|
|
|
if (reset)
|
|
memset(rn, 0, sizeof(*rn));
|
|
else
|
|
old_flag = le32_to_cpu(rn->footer.flag);
|
|
|
|
rn->footer.nid = cpu_to_le32(nid);
|
|
rn->footer.ino = cpu_to_le32(ino);
|
|
|
|
/* should remain old flag bits such as COLD_BIT_SHIFT */
|
|
rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
|
|
(old_flag & OFFSET_BIT_MASK));
|
|
}
|
|
|
|
static inline void copy_node_footer(struct page *dst, struct page *src)
|
|
{
|
|
struct f2fs_node *src_rn = F2FS_NODE(src);
|
|
struct f2fs_node *dst_rn = F2FS_NODE(dst);
|
|
memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
|
|
}
|
|
|
|
static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
|
|
{
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
|
|
struct f2fs_node *rn = F2FS_NODE(page);
|
|
|
|
rn->footer.cp_ver = ckpt->checkpoint_ver;
|
|
rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
|
|
}
|
|
|
|
static inline nid_t ino_of_node(struct page *node_page)
|
|
{
|
|
struct f2fs_node *rn = F2FS_NODE(node_page);
|
|
return le32_to_cpu(rn->footer.ino);
|
|
}
|
|
|
|
static inline nid_t nid_of_node(struct page *node_page)
|
|
{
|
|
struct f2fs_node *rn = F2FS_NODE(node_page);
|
|
return le32_to_cpu(rn->footer.nid);
|
|
}
|
|
|
|
static inline unsigned int ofs_of_node(struct page *node_page)
|
|
{
|
|
struct f2fs_node *rn = F2FS_NODE(node_page);
|
|
unsigned flag = le32_to_cpu(rn->footer.flag);
|
|
return flag >> OFFSET_BIT_SHIFT;
|
|
}
|
|
|
|
static inline unsigned long long cpver_of_node(struct page *node_page)
|
|
{
|
|
struct f2fs_node *rn = F2FS_NODE(node_page);
|
|
return le64_to_cpu(rn->footer.cp_ver);
|
|
}
|
|
|
|
static inline block_t next_blkaddr_of_node(struct page *node_page)
|
|
{
|
|
struct f2fs_node *rn = F2FS_NODE(node_page);
|
|
return le32_to_cpu(rn->footer.next_blkaddr);
|
|
}
|
|
|
|
/*
|
|
* f2fs assigns the following node offsets described as (num).
|
|
* N = NIDS_PER_BLOCK
|
|
*
|
|
* Inode block (0)
|
|
* |- direct node (1)
|
|
* |- direct node (2)
|
|
* |- indirect node (3)
|
|
* | `- direct node (4 => 4 + N - 1)
|
|
* |- indirect node (4 + N)
|
|
* | `- direct node (5 + N => 5 + 2N - 1)
|
|
* `- double indirect node (5 + 2N)
|
|
* `- indirect node (6 + 2N)
|
|
* `- direct node
|
|
* ......
|
|
* `- indirect node ((6 + 2N) + x(N + 1))
|
|
* `- direct node
|
|
* ......
|
|
* `- indirect node ((6 + 2N) + (N - 1)(N + 1))
|
|
* `- direct node
|
|
*/
|
|
static inline bool IS_DNODE(struct page *node_page)
|
|
{
|
|
unsigned int ofs = ofs_of_node(node_page);
|
|
|
|
if (f2fs_has_xattr_block(ofs))
|
|
return false;
|
|
|
|
if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
|
|
ofs == 5 + 2 * NIDS_PER_BLOCK)
|
|
return false;
|
|
if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
|
|
ofs -= 6 + 2 * NIDS_PER_BLOCK;
|
|
if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
|
|
{
|
|
struct f2fs_node *rn = F2FS_NODE(p);
|
|
|
|
f2fs_wait_on_page_writeback(p, NODE);
|
|
|
|
if (i)
|
|
rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
|
|
else
|
|
rn->in.nid[off] = cpu_to_le32(nid);
|
|
set_page_dirty(p);
|
|
}
|
|
|
|
static inline nid_t get_nid(struct page *p, int off, bool i)
|
|
{
|
|
struct f2fs_node *rn = F2FS_NODE(p);
|
|
|
|
if (i)
|
|
return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
|
|
return le32_to_cpu(rn->in.nid[off]);
|
|
}
|
|
|
|
/*
|
|
* Coldness identification:
|
|
* - Mark cold files in f2fs_inode_info
|
|
* - Mark cold node blocks in their node footer
|
|
* - Mark cold data pages in page cache
|
|
*/
|
|
static inline int is_cold_data(struct page *page)
|
|
{
|
|
return PageChecked(page);
|
|
}
|
|
|
|
static inline void set_cold_data(struct page *page)
|
|
{
|
|
SetPageChecked(page);
|
|
}
|
|
|
|
static inline void clear_cold_data(struct page *page)
|
|
{
|
|
ClearPageChecked(page);
|
|
}
|
|
|
|
static inline int is_node(struct page *page, int type)
|
|
{
|
|
struct f2fs_node *rn = F2FS_NODE(page);
|
|
return le32_to_cpu(rn->footer.flag) & (1 << type);
|
|
}
|
|
|
|
#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
|
|
#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
|
|
#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
|
|
|
|
static inline void set_cold_node(struct inode *inode, struct page *page)
|
|
{
|
|
struct f2fs_node *rn = F2FS_NODE(page);
|
|
unsigned int flag = le32_to_cpu(rn->footer.flag);
|
|
|
|
if (S_ISDIR(inode->i_mode))
|
|
flag &= ~(0x1 << COLD_BIT_SHIFT);
|
|
else
|
|
flag |= (0x1 << COLD_BIT_SHIFT);
|
|
rn->footer.flag = cpu_to_le32(flag);
|
|
}
|
|
|
|
static inline void set_mark(struct page *page, int mark, int type)
|
|
{
|
|
struct f2fs_node *rn = F2FS_NODE(page);
|
|
unsigned int flag = le32_to_cpu(rn->footer.flag);
|
|
if (mark)
|
|
flag |= (0x1 << type);
|
|
else
|
|
flag &= ~(0x1 << type);
|
|
rn->footer.flag = cpu_to_le32(flag);
|
|
}
|
|
#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
|
|
#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
|