mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-01 09:24:22 +08:00
24d990e237
Some drivers are including linux/of_mtd.h even if they don't use any of the of_get_nand_xxx() helpers. Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com> Acked-by: Harvey Hunt <harvey.hunt@imgtec.com>
873 lines
22 KiB
C
873 lines
22 KiB
C
/*
|
|
* Copyright 2009-2015 Freescale Semiconductor, Inc. and others
|
|
*
|
|
* Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
|
|
* Jason ported to M54418TWR and MVFA5 (VF610).
|
|
* Authors: Stefan Agner <stefan.agner@toradex.com>
|
|
* Bill Pringlemeir <bpringlemeir@nbsps.com>
|
|
* Shaohui Xie <b21989@freescale.com>
|
|
* Jason Jin <Jason.jin@freescale.com>
|
|
*
|
|
* Based on original driver mpc5121_nfc.c.
|
|
*
|
|
* This is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Limitations:
|
|
* - Untested on MPC5125 and M54418.
|
|
* - DMA and pipelining not used.
|
|
* - 2K pages or less.
|
|
* - HW ECC: Only 2K page with 64+ OOB.
|
|
* - HW ECC: Only 24 and 32-bit error correction implemented.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/pinctrl/consumer.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
|
|
#define DRV_NAME "vf610_nfc"
|
|
|
|
/* Register Offsets */
|
|
#define NFC_FLASH_CMD1 0x3F00
|
|
#define NFC_FLASH_CMD2 0x3F04
|
|
#define NFC_COL_ADDR 0x3F08
|
|
#define NFC_ROW_ADDR 0x3F0c
|
|
#define NFC_ROW_ADDR_INC 0x3F14
|
|
#define NFC_FLASH_STATUS1 0x3F18
|
|
#define NFC_FLASH_STATUS2 0x3F1c
|
|
#define NFC_CACHE_SWAP 0x3F28
|
|
#define NFC_SECTOR_SIZE 0x3F2c
|
|
#define NFC_FLASH_CONFIG 0x3F30
|
|
#define NFC_IRQ_STATUS 0x3F38
|
|
|
|
/* Addresses for NFC MAIN RAM BUFFER areas */
|
|
#define NFC_MAIN_AREA(n) ((n) * 0x1000)
|
|
|
|
#define PAGE_2K 0x0800
|
|
#define OOB_64 0x0040
|
|
#define OOB_MAX 0x0100
|
|
|
|
/*
|
|
* NFC_CMD2[CODE] values. See section:
|
|
* - 31.4.7 Flash Command Code Description, Vybrid manual
|
|
* - 23.8.6 Flash Command Sequencer, MPC5125 manual
|
|
*
|
|
* Briefly these are bitmasks of controller cycles.
|
|
*/
|
|
#define READ_PAGE_CMD_CODE 0x7EE0
|
|
#define READ_ONFI_PARAM_CMD_CODE 0x4860
|
|
#define PROGRAM_PAGE_CMD_CODE 0x7FC0
|
|
#define ERASE_CMD_CODE 0x4EC0
|
|
#define READ_ID_CMD_CODE 0x4804
|
|
#define RESET_CMD_CODE 0x4040
|
|
#define STATUS_READ_CMD_CODE 0x4068
|
|
|
|
/* NFC ECC mode define */
|
|
#define ECC_BYPASS 0
|
|
#define ECC_45_BYTE 6
|
|
#define ECC_60_BYTE 7
|
|
|
|
/*** Register Mask and bit definitions */
|
|
|
|
/* NFC_FLASH_CMD1 Field */
|
|
#define CMD_BYTE2_MASK 0xFF000000
|
|
#define CMD_BYTE2_SHIFT 24
|
|
|
|
/* NFC_FLASH_CM2 Field */
|
|
#define CMD_BYTE1_MASK 0xFF000000
|
|
#define CMD_BYTE1_SHIFT 24
|
|
#define CMD_CODE_MASK 0x00FFFF00
|
|
#define CMD_CODE_SHIFT 8
|
|
#define BUFNO_MASK 0x00000006
|
|
#define BUFNO_SHIFT 1
|
|
#define START_BIT BIT(0)
|
|
|
|
/* NFC_COL_ADDR Field */
|
|
#define COL_ADDR_MASK 0x0000FFFF
|
|
#define COL_ADDR_SHIFT 0
|
|
|
|
/* NFC_ROW_ADDR Field */
|
|
#define ROW_ADDR_MASK 0x00FFFFFF
|
|
#define ROW_ADDR_SHIFT 0
|
|
#define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
|
|
#define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
|
|
#define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
|
|
#define ROW_ADDR_CHIP_SEL_SHIFT 24
|
|
|
|
/* NFC_FLASH_STATUS2 Field */
|
|
#define STATUS_BYTE1_MASK 0x000000FF
|
|
|
|
/* NFC_FLASH_CONFIG Field */
|
|
#define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000
|
|
#define CONFIG_ECC_SRAM_ADDR_SHIFT 22
|
|
#define CONFIG_ECC_SRAM_REQ_BIT BIT(21)
|
|
#define CONFIG_DMA_REQ_BIT BIT(20)
|
|
#define CONFIG_ECC_MODE_MASK 0x000E0000
|
|
#define CONFIG_ECC_MODE_SHIFT 17
|
|
#define CONFIG_FAST_FLASH_BIT BIT(16)
|
|
#define CONFIG_16BIT BIT(7)
|
|
#define CONFIG_BOOT_MODE_BIT BIT(6)
|
|
#define CONFIG_ADDR_AUTO_INCR_BIT BIT(5)
|
|
#define CONFIG_BUFNO_AUTO_INCR_BIT BIT(4)
|
|
#define CONFIG_PAGE_CNT_MASK 0xF
|
|
#define CONFIG_PAGE_CNT_SHIFT 0
|
|
|
|
/* NFC_IRQ_STATUS Field */
|
|
#define IDLE_IRQ_BIT BIT(29)
|
|
#define IDLE_EN_BIT BIT(20)
|
|
#define CMD_DONE_CLEAR_BIT BIT(18)
|
|
#define IDLE_CLEAR_BIT BIT(17)
|
|
|
|
/*
|
|
* ECC status - seems to consume 8 bytes (double word). The documented
|
|
* status byte is located in the lowest byte of the second word (which is
|
|
* the 4th or 7th byte depending on endianness).
|
|
* Calculate an offset to store the ECC status at the end of the buffer.
|
|
*/
|
|
#define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8)
|
|
|
|
#define ECC_STATUS 0x4
|
|
#define ECC_STATUS_MASK 0x80
|
|
#define ECC_STATUS_ERR_COUNT 0x3F
|
|
|
|
enum vf610_nfc_alt_buf {
|
|
ALT_BUF_DATA = 0,
|
|
ALT_BUF_ID = 1,
|
|
ALT_BUF_STAT = 2,
|
|
ALT_BUF_ONFI = 3,
|
|
};
|
|
|
|
enum vf610_nfc_variant {
|
|
NFC_VFC610 = 1,
|
|
};
|
|
|
|
struct vf610_nfc {
|
|
struct nand_chip chip;
|
|
struct device *dev;
|
|
void __iomem *regs;
|
|
struct completion cmd_done;
|
|
uint buf_offset;
|
|
int write_sz;
|
|
/* Status and ID are in alternate locations. */
|
|
enum vf610_nfc_alt_buf alt_buf;
|
|
enum vf610_nfc_variant variant;
|
|
struct clk *clk;
|
|
bool use_hw_ecc;
|
|
u32 ecc_mode;
|
|
};
|
|
|
|
static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd)
|
|
{
|
|
return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip);
|
|
}
|
|
|
|
static struct nand_ecclayout vf610_nfc_ecc45 = {
|
|
.eccbytes = 45,
|
|
.eccpos = {19, 20, 21, 22, 23,
|
|
24, 25, 26, 27, 28, 29, 30, 31,
|
|
32, 33, 34, 35, 36, 37, 38, 39,
|
|
40, 41, 42, 43, 44, 45, 46, 47,
|
|
48, 49, 50, 51, 52, 53, 54, 55,
|
|
56, 57, 58, 59, 60, 61, 62, 63},
|
|
.oobfree = {
|
|
{.offset = 2,
|
|
.length = 17} }
|
|
};
|
|
|
|
static struct nand_ecclayout vf610_nfc_ecc60 = {
|
|
.eccbytes = 60,
|
|
.eccpos = { 4, 5, 6, 7, 8, 9, 10, 11,
|
|
12, 13, 14, 15, 16, 17, 18, 19,
|
|
20, 21, 22, 23, 24, 25, 26, 27,
|
|
28, 29, 30, 31, 32, 33, 34, 35,
|
|
36, 37, 38, 39, 40, 41, 42, 43,
|
|
44, 45, 46, 47, 48, 49, 50, 51,
|
|
52, 53, 54, 55, 56, 57, 58, 59,
|
|
60, 61, 62, 63 },
|
|
.oobfree = {
|
|
{.offset = 2,
|
|
.length = 2} }
|
|
};
|
|
|
|
static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
|
|
{
|
|
return readl(nfc->regs + reg);
|
|
}
|
|
|
|
static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
|
|
{
|
|
writel(val, nfc->regs + reg);
|
|
}
|
|
|
|
static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
|
|
{
|
|
vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
|
|
}
|
|
|
|
static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
|
|
{
|
|
vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
|
|
}
|
|
|
|
static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
|
|
u32 mask, u32 shift, u32 val)
|
|
{
|
|
vf610_nfc_write(nfc, reg,
|
|
(vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
|
|
}
|
|
|
|
static inline void vf610_nfc_memcpy(void *dst, const void __iomem *src,
|
|
size_t n)
|
|
{
|
|
/*
|
|
* Use this accessor for the internal SRAM buffers. On the ARM
|
|
* Freescale Vybrid SoC it's known that the driver can treat
|
|
* the SRAM buffer as if it's memory. Other platform might need
|
|
* to treat the buffers differently.
|
|
*
|
|
* For the time being, use memcpy
|
|
*/
|
|
memcpy(dst, src, n);
|
|
}
|
|
|
|
/* Clear flags for upcoming command */
|
|
static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
|
|
{
|
|
u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
|
|
|
|
tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
|
|
vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
|
|
}
|
|
|
|
static void vf610_nfc_done(struct vf610_nfc *nfc)
|
|
{
|
|
unsigned long timeout = msecs_to_jiffies(100);
|
|
|
|
/*
|
|
* Barrier is needed after this write. This write need
|
|
* to be done before reading the next register the first
|
|
* time.
|
|
* vf610_nfc_set implicates such a barrier by using writel
|
|
* to write to the register.
|
|
*/
|
|
vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
|
|
vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
|
|
|
|
if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
|
|
dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
|
|
|
|
vf610_nfc_clear_status(nfc);
|
|
}
|
|
|
|
static u8 vf610_nfc_get_id(struct vf610_nfc *nfc, int col)
|
|
{
|
|
u32 flash_id;
|
|
|
|
if (col < 4) {
|
|
flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS1);
|
|
flash_id >>= (3 - col) * 8;
|
|
} else {
|
|
flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS2);
|
|
flash_id >>= 24;
|
|
}
|
|
|
|
return flash_id & 0xff;
|
|
}
|
|
|
|
static u8 vf610_nfc_get_status(struct vf610_nfc *nfc)
|
|
{
|
|
return vf610_nfc_read(nfc, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
|
|
}
|
|
|
|
static void vf610_nfc_send_command(struct vf610_nfc *nfc, u32 cmd_byte1,
|
|
u32 cmd_code)
|
|
{
|
|
u32 tmp;
|
|
|
|
vf610_nfc_clear_status(nfc);
|
|
|
|
tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD2);
|
|
tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
|
|
tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
|
|
tmp |= cmd_code << CMD_CODE_SHIFT;
|
|
vf610_nfc_write(nfc, NFC_FLASH_CMD2, tmp);
|
|
}
|
|
|
|
static void vf610_nfc_send_commands(struct vf610_nfc *nfc, u32 cmd_byte1,
|
|
u32 cmd_byte2, u32 cmd_code)
|
|
{
|
|
u32 tmp;
|
|
|
|
vf610_nfc_send_command(nfc, cmd_byte1, cmd_code);
|
|
|
|
tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD1);
|
|
tmp &= ~CMD_BYTE2_MASK;
|
|
tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
|
|
vf610_nfc_write(nfc, NFC_FLASH_CMD1, tmp);
|
|
}
|
|
|
|
static irqreturn_t vf610_nfc_irq(int irq, void *data)
|
|
{
|
|
struct mtd_info *mtd = data;
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
|
|
vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
|
|
complete(&nfc->cmd_done);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void vf610_nfc_addr_cycle(struct vf610_nfc *nfc, int column, int page)
|
|
{
|
|
if (column != -1) {
|
|
if (nfc->chip.options & NAND_BUSWIDTH_16)
|
|
column = column / 2;
|
|
vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
|
|
COL_ADDR_SHIFT, column);
|
|
}
|
|
if (page != -1)
|
|
vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
|
|
ROW_ADDR_SHIFT, page);
|
|
}
|
|
|
|
static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
|
|
{
|
|
vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
|
|
CONFIG_ECC_MODE_MASK,
|
|
CONFIG_ECC_MODE_SHIFT, ecc_mode);
|
|
}
|
|
|
|
static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
|
|
{
|
|
vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
|
|
}
|
|
|
|
static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
|
|
int column, int page)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
int trfr_sz = nfc->chip.options & NAND_BUSWIDTH_16 ? 1 : 0;
|
|
|
|
nfc->buf_offset = max(column, 0);
|
|
nfc->alt_buf = ALT_BUF_DATA;
|
|
|
|
switch (command) {
|
|
case NAND_CMD_SEQIN:
|
|
/* Use valid column/page from preread... */
|
|
vf610_nfc_addr_cycle(nfc, column, page);
|
|
nfc->buf_offset = 0;
|
|
|
|
/*
|
|
* SEQIN => data => PAGEPROG sequence is done by the controller
|
|
* hence we do not need to issue the command here...
|
|
*/
|
|
return;
|
|
case NAND_CMD_PAGEPROG:
|
|
trfr_sz += nfc->write_sz;
|
|
vf610_nfc_transfer_size(nfc, trfr_sz);
|
|
vf610_nfc_send_commands(nfc, NAND_CMD_SEQIN,
|
|
command, PROGRAM_PAGE_CMD_CODE);
|
|
if (nfc->use_hw_ecc)
|
|
vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
|
|
else
|
|
vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
|
|
break;
|
|
|
|
case NAND_CMD_RESET:
|
|
vf610_nfc_transfer_size(nfc, 0);
|
|
vf610_nfc_send_command(nfc, command, RESET_CMD_CODE);
|
|
break;
|
|
|
|
case NAND_CMD_READOOB:
|
|
trfr_sz += mtd->oobsize;
|
|
column = mtd->writesize;
|
|
vf610_nfc_transfer_size(nfc, trfr_sz);
|
|
vf610_nfc_send_commands(nfc, NAND_CMD_READ0,
|
|
NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
|
|
vf610_nfc_addr_cycle(nfc, column, page);
|
|
vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
|
|
break;
|
|
|
|
case NAND_CMD_READ0:
|
|
trfr_sz += mtd->writesize + mtd->oobsize;
|
|
vf610_nfc_transfer_size(nfc, trfr_sz);
|
|
vf610_nfc_send_commands(nfc, NAND_CMD_READ0,
|
|
NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
|
|
vf610_nfc_addr_cycle(nfc, column, page);
|
|
vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
|
|
break;
|
|
|
|
case NAND_CMD_PARAM:
|
|
nfc->alt_buf = ALT_BUF_ONFI;
|
|
trfr_sz = 3 * sizeof(struct nand_onfi_params);
|
|
vf610_nfc_transfer_size(nfc, trfr_sz);
|
|
vf610_nfc_send_command(nfc, command, READ_ONFI_PARAM_CMD_CODE);
|
|
vf610_nfc_addr_cycle(nfc, -1, column);
|
|
vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
|
|
break;
|
|
|
|
case NAND_CMD_ERASE1:
|
|
vf610_nfc_transfer_size(nfc, 0);
|
|
vf610_nfc_send_commands(nfc, command,
|
|
NAND_CMD_ERASE2, ERASE_CMD_CODE);
|
|
vf610_nfc_addr_cycle(nfc, column, page);
|
|
break;
|
|
|
|
case NAND_CMD_READID:
|
|
nfc->alt_buf = ALT_BUF_ID;
|
|
nfc->buf_offset = 0;
|
|
vf610_nfc_transfer_size(nfc, 0);
|
|
vf610_nfc_send_command(nfc, command, READ_ID_CMD_CODE);
|
|
vf610_nfc_addr_cycle(nfc, -1, column);
|
|
break;
|
|
|
|
case NAND_CMD_STATUS:
|
|
nfc->alt_buf = ALT_BUF_STAT;
|
|
vf610_nfc_transfer_size(nfc, 0);
|
|
vf610_nfc_send_command(nfc, command, STATUS_READ_CMD_CODE);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
vf610_nfc_done(nfc);
|
|
|
|
nfc->use_hw_ecc = false;
|
|
nfc->write_sz = 0;
|
|
}
|
|
|
|
static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
uint c = nfc->buf_offset;
|
|
|
|
/* Alternate buffers are only supported through read_byte */
|
|
WARN_ON(nfc->alt_buf);
|
|
|
|
vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, len);
|
|
|
|
nfc->buf_offset += len;
|
|
}
|
|
|
|
static void vf610_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
|
|
int len)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
uint c = nfc->buf_offset;
|
|
uint l;
|
|
|
|
l = min_t(uint, len, mtd->writesize + mtd->oobsize - c);
|
|
vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
|
|
|
|
nfc->write_sz += l;
|
|
nfc->buf_offset += l;
|
|
}
|
|
|
|
static uint8_t vf610_nfc_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
u8 tmp;
|
|
uint c = nfc->buf_offset;
|
|
|
|
switch (nfc->alt_buf) {
|
|
case ALT_BUF_ID:
|
|
tmp = vf610_nfc_get_id(nfc, c);
|
|
break;
|
|
case ALT_BUF_STAT:
|
|
tmp = vf610_nfc_get_status(nfc);
|
|
break;
|
|
#ifdef __LITTLE_ENDIAN
|
|
case ALT_BUF_ONFI:
|
|
/* Reverse byte since the controller uses big endianness */
|
|
c = nfc->buf_offset ^ 0x3;
|
|
/* fall-through */
|
|
#endif
|
|
default:
|
|
tmp = *((u8 *)(nfc->regs + NFC_MAIN_AREA(0) + c));
|
|
break;
|
|
}
|
|
nfc->buf_offset++;
|
|
return tmp;
|
|
}
|
|
|
|
static u16 vf610_nfc_read_word(struct mtd_info *mtd)
|
|
{
|
|
u16 tmp;
|
|
|
|
vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
|
|
return tmp;
|
|
}
|
|
|
|
/* If not provided, upper layers apply a fixed delay. */
|
|
static int vf610_nfc_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
/* NFC handles R/B internally; always ready. */
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This function supports Vybrid only (MPC5125 would have full RB and four CS)
|
|
*/
|
|
static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
u32 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
|
|
|
|
/* Vybrid only (MPC5125 would have full RB and four CS) */
|
|
if (nfc->variant != NFC_VFC610)
|
|
return;
|
|
|
|
tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
|
|
|
|
if (chip >= 0) {
|
|
tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
|
|
tmp |= BIT(chip) << ROW_ADDR_CHIP_SEL_SHIFT;
|
|
}
|
|
|
|
vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
|
|
}
|
|
|
|
/* Count the number of 0's in buff up to max_bits */
|
|
static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
|
|
{
|
|
uint32_t *buff32 = (uint32_t *)buff;
|
|
int k, written_bits = 0;
|
|
|
|
for (k = 0; k < (size / 4); k++) {
|
|
written_bits += hweight32(~buff32[k]);
|
|
if (unlikely(written_bits > max_bits))
|
|
break;
|
|
}
|
|
|
|
return written_bits;
|
|
}
|
|
|
|
static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
|
|
uint8_t *oob, int page)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
|
|
u8 ecc_status;
|
|
u8 ecc_count;
|
|
int flips_threshold = nfc->chip.ecc.strength / 2;
|
|
|
|
ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
|
|
ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
|
|
|
|
if (!(ecc_status & ECC_STATUS_MASK))
|
|
return ecc_count;
|
|
|
|
/* Read OOB without ECC unit enabled */
|
|
vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page);
|
|
vf610_nfc_read_buf(mtd, oob, mtd->oobsize);
|
|
|
|
/*
|
|
* On an erased page, bit count (including OOB) should be zero or
|
|
* at least less then half of the ECC strength.
|
|
*/
|
|
return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
|
|
mtd->oobsize, NULL, 0,
|
|
flips_threshold);
|
|
}
|
|
|
|
static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
int eccsize = chip->ecc.size;
|
|
int stat;
|
|
|
|
vf610_nfc_read_buf(mtd, buf, eccsize);
|
|
if (oob_required)
|
|
vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
|
|
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
return 0;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
return stat;
|
|
}
|
|
}
|
|
|
|
static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
|
|
vf610_nfc_write_buf(mtd, buf, mtd->writesize);
|
|
if (oob_required)
|
|
vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
/* Always write whole page including OOB due to HW ECC */
|
|
nfc->use_hw_ecc = true;
|
|
nfc->write_sz = mtd->writesize + mtd->oobsize;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id vf610_nfc_dt_ids[] = {
|
|
{ .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
|
|
|
|
static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
|
|
{
|
|
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
|
|
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
|
|
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
|
|
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
|
|
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
|
|
vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
|
|
|
|
/* Disable virtual pages, only one elementary transfer unit */
|
|
vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
|
|
CONFIG_PAGE_CNT_SHIFT, 1);
|
|
}
|
|
|
|
static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
|
|
{
|
|
if (nfc->chip.options & NAND_BUSWIDTH_16)
|
|
vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
|
|
else
|
|
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
|
|
|
|
if (nfc->chip.ecc.mode == NAND_ECC_HW) {
|
|
/* Set ECC status offset in SRAM */
|
|
vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
|
|
CONFIG_ECC_SRAM_ADDR_MASK,
|
|
CONFIG_ECC_SRAM_ADDR_SHIFT,
|
|
ECC_SRAM_ADDR >> 3);
|
|
|
|
/* Enable ECC status in SRAM */
|
|
vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
|
|
}
|
|
}
|
|
|
|
static int vf610_nfc_probe(struct platform_device *pdev)
|
|
{
|
|
struct vf610_nfc *nfc;
|
|
struct resource *res;
|
|
struct mtd_info *mtd;
|
|
struct nand_chip *chip;
|
|
struct device_node *child;
|
|
const struct of_device_id *of_id;
|
|
int err;
|
|
int irq;
|
|
|
|
nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
|
|
if (!nfc)
|
|
return -ENOMEM;
|
|
|
|
nfc->dev = &pdev->dev;
|
|
chip = &nfc->chip;
|
|
mtd = nand_to_mtd(chip);
|
|
|
|
mtd->owner = THIS_MODULE;
|
|
mtd->dev.parent = nfc->dev;
|
|
mtd->name = DRV_NAME;
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq <= 0)
|
|
return -EINVAL;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
nfc->regs = devm_ioremap_resource(nfc->dev, res);
|
|
if (IS_ERR(nfc->regs))
|
|
return PTR_ERR(nfc->regs);
|
|
|
|
nfc->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(nfc->clk))
|
|
return PTR_ERR(nfc->clk);
|
|
|
|
err = clk_prepare_enable(nfc->clk);
|
|
if (err) {
|
|
dev_err(nfc->dev, "Unable to enable clock!\n");
|
|
return err;
|
|
}
|
|
|
|
of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
|
|
nfc->variant = (enum vf610_nfc_variant)of_id->data;
|
|
|
|
for_each_available_child_of_node(nfc->dev->of_node, child) {
|
|
if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
|
|
|
|
if (nand_get_flash_node(chip)) {
|
|
dev_err(nfc->dev,
|
|
"Only one NAND chip supported!\n");
|
|
err = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
nand_set_flash_node(chip, child);
|
|
}
|
|
}
|
|
|
|
if (!nand_get_flash_node(chip)) {
|
|
dev_err(nfc->dev, "NAND chip sub-node missing!\n");
|
|
err = -ENODEV;
|
|
goto err_clk;
|
|
}
|
|
|
|
chip->dev_ready = vf610_nfc_dev_ready;
|
|
chip->cmdfunc = vf610_nfc_command;
|
|
chip->read_byte = vf610_nfc_read_byte;
|
|
chip->read_word = vf610_nfc_read_word;
|
|
chip->read_buf = vf610_nfc_read_buf;
|
|
chip->write_buf = vf610_nfc_write_buf;
|
|
chip->select_chip = vf610_nfc_select_chip;
|
|
|
|
chip->options |= NAND_NO_SUBPAGE_WRITE;
|
|
|
|
init_completion(&nfc->cmd_done);
|
|
|
|
err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd);
|
|
if (err) {
|
|
dev_err(nfc->dev, "Error requesting IRQ!\n");
|
|
goto error;
|
|
}
|
|
|
|
vf610_nfc_preinit_controller(nfc);
|
|
|
|
/* first scan to find the device and get the page size */
|
|
if (nand_scan_ident(mtd, 1, NULL)) {
|
|
err = -ENXIO;
|
|
goto error;
|
|
}
|
|
|
|
vf610_nfc_init_controller(nfc);
|
|
|
|
/* Bad block options. */
|
|
if (chip->bbt_options & NAND_BBT_USE_FLASH)
|
|
chip->bbt_options |= NAND_BBT_NO_OOB;
|
|
|
|
/* Single buffer only, max 256 OOB minus ECC status */
|
|
if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
|
|
dev_err(nfc->dev, "Unsupported flash page size\n");
|
|
err = -ENXIO;
|
|
goto error;
|
|
}
|
|
|
|
if (chip->ecc.mode == NAND_ECC_HW) {
|
|
if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
|
|
dev_err(nfc->dev, "Unsupported flash with hwecc\n");
|
|
err = -ENXIO;
|
|
goto error;
|
|
}
|
|
|
|
if (chip->ecc.size != mtd->writesize) {
|
|
dev_err(nfc->dev, "Step size needs to be page size\n");
|
|
err = -ENXIO;
|
|
goto error;
|
|
}
|
|
|
|
/* Only 64 byte ECC layouts known */
|
|
if (mtd->oobsize > 64)
|
|
mtd->oobsize = 64;
|
|
|
|
if (chip->ecc.strength == 32) {
|
|
nfc->ecc_mode = ECC_60_BYTE;
|
|
chip->ecc.bytes = 60;
|
|
chip->ecc.layout = &vf610_nfc_ecc60;
|
|
} else if (chip->ecc.strength == 24) {
|
|
nfc->ecc_mode = ECC_45_BYTE;
|
|
chip->ecc.bytes = 45;
|
|
chip->ecc.layout = &vf610_nfc_ecc45;
|
|
} else {
|
|
dev_err(nfc->dev, "Unsupported ECC strength\n");
|
|
err = -ENXIO;
|
|
goto error;
|
|
}
|
|
|
|
chip->ecc.read_page = vf610_nfc_read_page;
|
|
chip->ecc.write_page = vf610_nfc_write_page;
|
|
|
|
chip->ecc.size = PAGE_2K;
|
|
}
|
|
|
|
/* second phase scan */
|
|
if (nand_scan_tail(mtd)) {
|
|
err = -ENXIO;
|
|
goto error;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, mtd);
|
|
|
|
/* Register device in MTD */
|
|
return mtd_device_register(mtd, NULL, 0);
|
|
|
|
error:
|
|
of_node_put(nand_get_flash_node(chip));
|
|
err_clk:
|
|
clk_disable_unprepare(nfc->clk);
|
|
return err;
|
|
}
|
|
|
|
static int vf610_nfc_remove(struct platform_device *pdev)
|
|
{
|
|
struct mtd_info *mtd = platform_get_drvdata(pdev);
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
|
|
nand_release(mtd);
|
|
clk_disable_unprepare(nfc->clk);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int vf610_nfc_suspend(struct device *dev)
|
|
{
|
|
struct mtd_info *mtd = dev_get_drvdata(dev);
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
|
|
clk_disable_unprepare(nfc->clk);
|
|
return 0;
|
|
}
|
|
|
|
static int vf610_nfc_resume(struct device *dev)
|
|
{
|
|
struct mtd_info *mtd = dev_get_drvdata(dev);
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
|
|
pinctrl_pm_select_default_state(dev);
|
|
|
|
clk_prepare_enable(nfc->clk);
|
|
|
|
vf610_nfc_preinit_controller(nfc);
|
|
vf610_nfc_init_controller(nfc);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
|
|
|
|
static struct platform_driver vf610_nfc_driver = {
|
|
.driver = {
|
|
.name = DRV_NAME,
|
|
.of_match_table = vf610_nfc_dt_ids,
|
|
.pm = &vf610_nfc_pm_ops,
|
|
},
|
|
.probe = vf610_nfc_probe,
|
|
.remove = vf610_nfc_remove,
|
|
};
|
|
|
|
module_platform_driver(vf610_nfc_driver);
|
|
|
|
MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
|
|
MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
|
|
MODULE_LICENSE("GPL");
|