linux/arch/s390/kvm/gaccess.c
Janis Schoetterl-Glausch 3fd49805d1 KVM: s390: Extend MEM_OP ioctl by storage key checked cmpxchg
User space can use the MEM_OP ioctl to make storage key checked reads
and writes to the guest, however, it has no way of performing atomic,
key checked, accesses to the guest.
Extend the MEM_OP ioctl in order to allow for this, by adding a cmpxchg
op. For now, support this op for absolute accesses only.

This op can be used, for example, to set the device-state-change
indicator and the adapter-local-summary indicator atomically.

Signed-off-by: Janis Schoetterl-Glausch <scgl@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Link: https://lore.kernel.org/r/20230206164602.138068-13-scgl@linux.ibm.com
Message-Id: <20230206164602.138068-13-scgl@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
2023-02-07 18:06:00 +01:00

1625 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* guest access functions
*
* Copyright IBM Corp. 2014
*
*/
#include <linux/vmalloc.h>
#include <linux/mm_types.h>
#include <linux/err.h>
#include <linux/pgtable.h>
#include <linux/bitfield.h>
#include <asm/gmap.h>
#include "kvm-s390.h"
#include "gaccess.h"
#include <asm/switch_to.h>
union asce {
unsigned long val;
struct {
unsigned long origin : 52; /* Region- or Segment-Table Origin */
unsigned long : 2;
unsigned long g : 1; /* Subspace Group Control */
unsigned long p : 1; /* Private Space Control */
unsigned long s : 1; /* Storage-Alteration-Event Control */
unsigned long x : 1; /* Space-Switch-Event Control */
unsigned long r : 1; /* Real-Space Control */
unsigned long : 1;
unsigned long dt : 2; /* Designation-Type Control */
unsigned long tl : 2; /* Region- or Segment-Table Length */
};
};
enum {
ASCE_TYPE_SEGMENT = 0,
ASCE_TYPE_REGION3 = 1,
ASCE_TYPE_REGION2 = 2,
ASCE_TYPE_REGION1 = 3
};
union region1_table_entry {
unsigned long val;
struct {
unsigned long rto: 52;/* Region-Table Origin */
unsigned long : 2;
unsigned long p : 1; /* DAT-Protection Bit */
unsigned long : 1;
unsigned long tf : 2; /* Region-Second-Table Offset */
unsigned long i : 1; /* Region-Invalid Bit */
unsigned long : 1;
unsigned long tt : 2; /* Table-Type Bits */
unsigned long tl : 2; /* Region-Second-Table Length */
};
};
union region2_table_entry {
unsigned long val;
struct {
unsigned long rto: 52;/* Region-Table Origin */
unsigned long : 2;
unsigned long p : 1; /* DAT-Protection Bit */
unsigned long : 1;
unsigned long tf : 2; /* Region-Third-Table Offset */
unsigned long i : 1; /* Region-Invalid Bit */
unsigned long : 1;
unsigned long tt : 2; /* Table-Type Bits */
unsigned long tl : 2; /* Region-Third-Table Length */
};
};
struct region3_table_entry_fc0 {
unsigned long sto: 52;/* Segment-Table Origin */
unsigned long : 1;
unsigned long fc : 1; /* Format-Control */
unsigned long p : 1; /* DAT-Protection Bit */
unsigned long : 1;
unsigned long tf : 2; /* Segment-Table Offset */
unsigned long i : 1; /* Region-Invalid Bit */
unsigned long cr : 1; /* Common-Region Bit */
unsigned long tt : 2; /* Table-Type Bits */
unsigned long tl : 2; /* Segment-Table Length */
};
struct region3_table_entry_fc1 {
unsigned long rfaa : 33; /* Region-Frame Absolute Address */
unsigned long : 14;
unsigned long av : 1; /* ACCF-Validity Control */
unsigned long acc: 4; /* Access-Control Bits */
unsigned long f : 1; /* Fetch-Protection Bit */
unsigned long fc : 1; /* Format-Control */
unsigned long p : 1; /* DAT-Protection Bit */
unsigned long iep: 1; /* Instruction-Execution-Protection */
unsigned long : 2;
unsigned long i : 1; /* Region-Invalid Bit */
unsigned long cr : 1; /* Common-Region Bit */
unsigned long tt : 2; /* Table-Type Bits */
unsigned long : 2;
};
union region3_table_entry {
unsigned long val;
struct region3_table_entry_fc0 fc0;
struct region3_table_entry_fc1 fc1;
struct {
unsigned long : 53;
unsigned long fc : 1; /* Format-Control */
unsigned long : 4;
unsigned long i : 1; /* Region-Invalid Bit */
unsigned long cr : 1; /* Common-Region Bit */
unsigned long tt : 2; /* Table-Type Bits */
unsigned long : 2;
};
};
struct segment_entry_fc0 {
unsigned long pto: 53;/* Page-Table Origin */
unsigned long fc : 1; /* Format-Control */
unsigned long p : 1; /* DAT-Protection Bit */
unsigned long : 3;
unsigned long i : 1; /* Segment-Invalid Bit */
unsigned long cs : 1; /* Common-Segment Bit */
unsigned long tt : 2; /* Table-Type Bits */
unsigned long : 2;
};
struct segment_entry_fc1 {
unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
unsigned long : 3;
unsigned long av : 1; /* ACCF-Validity Control */
unsigned long acc: 4; /* Access-Control Bits */
unsigned long f : 1; /* Fetch-Protection Bit */
unsigned long fc : 1; /* Format-Control */
unsigned long p : 1; /* DAT-Protection Bit */
unsigned long iep: 1; /* Instruction-Execution-Protection */
unsigned long : 2;
unsigned long i : 1; /* Segment-Invalid Bit */
unsigned long cs : 1; /* Common-Segment Bit */
unsigned long tt : 2; /* Table-Type Bits */
unsigned long : 2;
};
union segment_table_entry {
unsigned long val;
struct segment_entry_fc0 fc0;
struct segment_entry_fc1 fc1;
struct {
unsigned long : 53;
unsigned long fc : 1; /* Format-Control */
unsigned long : 4;
unsigned long i : 1; /* Segment-Invalid Bit */
unsigned long cs : 1; /* Common-Segment Bit */
unsigned long tt : 2; /* Table-Type Bits */
unsigned long : 2;
};
};
enum {
TABLE_TYPE_SEGMENT = 0,
TABLE_TYPE_REGION3 = 1,
TABLE_TYPE_REGION2 = 2,
TABLE_TYPE_REGION1 = 3
};
union page_table_entry {
unsigned long val;
struct {
unsigned long pfra : 52; /* Page-Frame Real Address */
unsigned long z : 1; /* Zero Bit */
unsigned long i : 1; /* Page-Invalid Bit */
unsigned long p : 1; /* DAT-Protection Bit */
unsigned long iep: 1; /* Instruction-Execution-Protection */
unsigned long : 8;
};
};
/*
* vaddress union in order to easily decode a virtual address into its
* region first index, region second index etc. parts.
*/
union vaddress {
unsigned long addr;
struct {
unsigned long rfx : 11;
unsigned long rsx : 11;
unsigned long rtx : 11;
unsigned long sx : 11;
unsigned long px : 8;
unsigned long bx : 12;
};
struct {
unsigned long rfx01 : 2;
unsigned long : 9;
unsigned long rsx01 : 2;
unsigned long : 9;
unsigned long rtx01 : 2;
unsigned long : 9;
unsigned long sx01 : 2;
unsigned long : 29;
};
};
/*
* raddress union which will contain the result (real or absolute address)
* after a page table walk. The rfaa, sfaa and pfra members are used to
* simply assign them the value of a region, segment or page table entry.
*/
union raddress {
unsigned long addr;
unsigned long rfaa : 33; /* Region-Frame Absolute Address */
unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
unsigned long pfra : 52; /* Page-Frame Real Address */
};
union alet {
u32 val;
struct {
u32 reserved : 7;
u32 p : 1;
u32 alesn : 8;
u32 alen : 16;
};
};
union ald {
u32 val;
struct {
u32 : 1;
u32 alo : 24;
u32 all : 7;
};
};
struct ale {
unsigned long i : 1; /* ALEN-Invalid Bit */
unsigned long : 5;
unsigned long fo : 1; /* Fetch-Only Bit */
unsigned long p : 1; /* Private Bit */
unsigned long alesn : 8; /* Access-List-Entry Sequence Number */
unsigned long aleax : 16; /* Access-List-Entry Authorization Index */
unsigned long : 32;
unsigned long : 1;
unsigned long asteo : 25; /* ASN-Second-Table-Entry Origin */
unsigned long : 6;
unsigned long astesn : 32; /* ASTE Sequence Number */
};
struct aste {
unsigned long i : 1; /* ASX-Invalid Bit */
unsigned long ato : 29; /* Authority-Table Origin */
unsigned long : 1;
unsigned long b : 1; /* Base-Space Bit */
unsigned long ax : 16; /* Authorization Index */
unsigned long atl : 12; /* Authority-Table Length */
unsigned long : 2;
unsigned long ca : 1; /* Controlled-ASN Bit */
unsigned long ra : 1; /* Reusable-ASN Bit */
unsigned long asce : 64; /* Address-Space-Control Element */
unsigned long ald : 32;
unsigned long astesn : 32;
/* .. more fields there */
};
int ipte_lock_held(struct kvm *kvm)
{
if (sclp.has_siif) {
int rc;
read_lock(&kvm->arch.sca_lock);
rc = kvm_s390_get_ipte_control(kvm)->kh != 0;
read_unlock(&kvm->arch.sca_lock);
return rc;
}
return kvm->arch.ipte_lock_count != 0;
}
static void ipte_lock_simple(struct kvm *kvm)
{
union ipte_control old, new, *ic;
mutex_lock(&kvm->arch.ipte_mutex);
kvm->arch.ipte_lock_count++;
if (kvm->arch.ipte_lock_count > 1)
goto out;
retry:
read_lock(&kvm->arch.sca_lock);
ic = kvm_s390_get_ipte_control(kvm);
do {
old = READ_ONCE(*ic);
if (old.k) {
read_unlock(&kvm->arch.sca_lock);
cond_resched();
goto retry;
}
new = old;
new.k = 1;
} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
read_unlock(&kvm->arch.sca_lock);
out:
mutex_unlock(&kvm->arch.ipte_mutex);
}
static void ipte_unlock_simple(struct kvm *kvm)
{
union ipte_control old, new, *ic;
mutex_lock(&kvm->arch.ipte_mutex);
kvm->arch.ipte_lock_count--;
if (kvm->arch.ipte_lock_count)
goto out;
read_lock(&kvm->arch.sca_lock);
ic = kvm_s390_get_ipte_control(kvm);
do {
old = READ_ONCE(*ic);
new = old;
new.k = 0;
} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
read_unlock(&kvm->arch.sca_lock);
wake_up(&kvm->arch.ipte_wq);
out:
mutex_unlock(&kvm->arch.ipte_mutex);
}
static void ipte_lock_siif(struct kvm *kvm)
{
union ipte_control old, new, *ic;
retry:
read_lock(&kvm->arch.sca_lock);
ic = kvm_s390_get_ipte_control(kvm);
do {
old = READ_ONCE(*ic);
if (old.kg) {
read_unlock(&kvm->arch.sca_lock);
cond_resched();
goto retry;
}
new = old;
new.k = 1;
new.kh++;
} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
read_unlock(&kvm->arch.sca_lock);
}
static void ipte_unlock_siif(struct kvm *kvm)
{
union ipte_control old, new, *ic;
read_lock(&kvm->arch.sca_lock);
ic = kvm_s390_get_ipte_control(kvm);
do {
old = READ_ONCE(*ic);
new = old;
new.kh--;
if (!new.kh)
new.k = 0;
} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
read_unlock(&kvm->arch.sca_lock);
if (!new.kh)
wake_up(&kvm->arch.ipte_wq);
}
void ipte_lock(struct kvm *kvm)
{
if (sclp.has_siif)
ipte_lock_siif(kvm);
else
ipte_lock_simple(kvm);
}
void ipte_unlock(struct kvm *kvm)
{
if (sclp.has_siif)
ipte_unlock_siif(kvm);
else
ipte_unlock_simple(kvm);
}
static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar,
enum gacc_mode mode)
{
union alet alet;
struct ale ale;
struct aste aste;
unsigned long ald_addr, authority_table_addr;
union ald ald;
int eax, rc;
u8 authority_table;
if (ar >= NUM_ACRS)
return -EINVAL;
save_access_regs(vcpu->run->s.regs.acrs);
alet.val = vcpu->run->s.regs.acrs[ar];
if (ar == 0 || alet.val == 0) {
asce->val = vcpu->arch.sie_block->gcr[1];
return 0;
} else if (alet.val == 1) {
asce->val = vcpu->arch.sie_block->gcr[7];
return 0;
}
if (alet.reserved)
return PGM_ALET_SPECIFICATION;
if (alet.p)
ald_addr = vcpu->arch.sie_block->gcr[5];
else
ald_addr = vcpu->arch.sie_block->gcr[2];
ald_addr &= 0x7fffffc0;
rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
if (rc)
return rc;
if (alet.alen / 8 > ald.all)
return PGM_ALEN_TRANSLATION;
if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
return PGM_ADDRESSING;
rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
sizeof(struct ale));
if (rc)
return rc;
if (ale.i == 1)
return PGM_ALEN_TRANSLATION;
if (ale.alesn != alet.alesn)
return PGM_ALE_SEQUENCE;
rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
if (rc)
return rc;
if (aste.i)
return PGM_ASTE_VALIDITY;
if (aste.astesn != ale.astesn)
return PGM_ASTE_SEQUENCE;
if (ale.p == 1) {
eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
if (ale.aleax != eax) {
if (eax / 16 > aste.atl)
return PGM_EXTENDED_AUTHORITY;
authority_table_addr = aste.ato * 4 + eax / 4;
rc = read_guest_real(vcpu, authority_table_addr,
&authority_table,
sizeof(u8));
if (rc)
return rc;
if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
return PGM_EXTENDED_AUTHORITY;
}
}
if (ale.fo == 1 && mode == GACC_STORE)
return PGM_PROTECTION;
asce->val = aste.asce;
return 0;
}
struct trans_exc_code_bits {
unsigned long addr : 52; /* Translation-exception Address */
unsigned long fsi : 2; /* Access Exception Fetch/Store Indication */
unsigned long : 2;
unsigned long b56 : 1;
unsigned long : 3;
unsigned long b60 : 1;
unsigned long b61 : 1;
unsigned long as : 2; /* ASCE Identifier */
};
enum {
FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
FSI_STORE = 1, /* Exception was due to store operation */
FSI_FETCH = 2 /* Exception was due to fetch operation */
};
enum prot_type {
PROT_TYPE_LA = 0,
PROT_TYPE_KEYC = 1,
PROT_TYPE_ALC = 2,
PROT_TYPE_DAT = 3,
PROT_TYPE_IEP = 4,
/* Dummy value for passing an initialized value when code != PGM_PROTECTION */
PROT_NONE,
};
static int trans_exc_ending(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
enum gacc_mode mode, enum prot_type prot, bool terminate)
{
struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
struct trans_exc_code_bits *tec;
memset(pgm, 0, sizeof(*pgm));
pgm->code = code;
tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
switch (code) {
case PGM_PROTECTION:
switch (prot) {
case PROT_NONE:
/* We should never get here, acts like termination */
WARN_ON_ONCE(1);
break;
case PROT_TYPE_IEP:
tec->b61 = 1;
fallthrough;
case PROT_TYPE_LA:
tec->b56 = 1;
break;
case PROT_TYPE_KEYC:
tec->b60 = 1;
break;
case PROT_TYPE_ALC:
tec->b60 = 1;
fallthrough;
case PROT_TYPE_DAT:
tec->b61 = 1;
break;
}
if (terminate) {
tec->b56 = 0;
tec->b60 = 0;
tec->b61 = 0;
}
fallthrough;
case PGM_ASCE_TYPE:
case PGM_PAGE_TRANSLATION:
case PGM_REGION_FIRST_TRANS:
case PGM_REGION_SECOND_TRANS:
case PGM_REGION_THIRD_TRANS:
case PGM_SEGMENT_TRANSLATION:
/*
* op_access_id only applies to MOVE_PAGE -> set bit 61
* exc_access_id has to be set to 0 for some instructions. Both
* cases have to be handled by the caller.
*/
tec->addr = gva >> PAGE_SHIFT;
tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
fallthrough;
case PGM_ALEN_TRANSLATION:
case PGM_ALE_SEQUENCE:
case PGM_ASTE_VALIDITY:
case PGM_ASTE_SEQUENCE:
case PGM_EXTENDED_AUTHORITY:
/*
* We can always store exc_access_id, as it is
* undefined for non-ar cases. It is undefined for
* most DAT protection exceptions.
*/
pgm->exc_access_id = ar;
break;
}
return code;
}
static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
enum gacc_mode mode, enum prot_type prot)
{
return trans_exc_ending(vcpu, code, gva, ar, mode, prot, false);
}
static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
unsigned long ga, u8 ar, enum gacc_mode mode)
{
int rc;
struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
if (!psw.dat) {
asce->val = 0;
asce->r = 1;
return 0;
}
if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME))
psw.as = PSW_BITS_AS_PRIMARY;
switch (psw.as) {
case PSW_BITS_AS_PRIMARY:
asce->val = vcpu->arch.sie_block->gcr[1];
return 0;
case PSW_BITS_AS_SECONDARY:
asce->val = vcpu->arch.sie_block->gcr[7];
return 0;
case PSW_BITS_AS_HOME:
asce->val = vcpu->arch.sie_block->gcr[13];
return 0;
case PSW_BITS_AS_ACCREG:
rc = ar_translation(vcpu, asce, ar, mode);
if (rc > 0)
return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
return rc;
}
return 0;
}
static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
{
return kvm_read_guest(kvm, gpa, val, sizeof(*val));
}
/**
* guest_translate - translate a guest virtual into a guest absolute address
* @vcpu: virtual cpu
* @gva: guest virtual address
* @gpa: points to where guest physical (absolute) address should be stored
* @asce: effective asce
* @mode: indicates the access mode to be used
* @prot: returns the type for protection exceptions
*
* Translate a guest virtual address into a guest absolute address by means
* of dynamic address translation as specified by the architecture.
* If the resulting absolute address is not available in the configuration
* an addressing exception is indicated and @gpa will not be changed.
*
* Returns: - zero on success; @gpa contains the resulting absolute address
* - a negative value if guest access failed due to e.g. broken
* guest mapping
* - a positve value if an access exception happened. In this case
* the returned value is the program interruption code as defined
* by the architecture
*/
static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
unsigned long *gpa, const union asce asce,
enum gacc_mode mode, enum prot_type *prot)
{
union vaddress vaddr = {.addr = gva};
union raddress raddr = {.addr = gva};
union page_table_entry pte;
int dat_protection = 0;
int iep_protection = 0;
union ctlreg0 ctlreg0;
unsigned long ptr;
int edat1, edat2, iep;
ctlreg0.val = vcpu->arch.sie_block->gcr[0];
edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130);
if (asce.r)
goto real_address;
ptr = asce.origin * PAGE_SIZE;
switch (asce.dt) {
case ASCE_TYPE_REGION1:
if (vaddr.rfx01 > asce.tl)
return PGM_REGION_FIRST_TRANS;
ptr += vaddr.rfx * 8;
break;
case ASCE_TYPE_REGION2:
if (vaddr.rfx)
return PGM_ASCE_TYPE;
if (vaddr.rsx01 > asce.tl)
return PGM_REGION_SECOND_TRANS;
ptr += vaddr.rsx * 8;
break;
case ASCE_TYPE_REGION3:
if (vaddr.rfx || vaddr.rsx)
return PGM_ASCE_TYPE;
if (vaddr.rtx01 > asce.tl)
return PGM_REGION_THIRD_TRANS;
ptr += vaddr.rtx * 8;
break;
case ASCE_TYPE_SEGMENT:
if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
return PGM_ASCE_TYPE;
if (vaddr.sx01 > asce.tl)
return PGM_SEGMENT_TRANSLATION;
ptr += vaddr.sx * 8;
break;
}
switch (asce.dt) {
case ASCE_TYPE_REGION1: {
union region1_table_entry rfte;
if (kvm_is_error_gpa(vcpu->kvm, ptr))
return PGM_ADDRESSING;
if (deref_table(vcpu->kvm, ptr, &rfte.val))
return -EFAULT;
if (rfte.i)
return PGM_REGION_FIRST_TRANS;
if (rfte.tt != TABLE_TYPE_REGION1)
return PGM_TRANSLATION_SPEC;
if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
return PGM_REGION_SECOND_TRANS;
if (edat1)
dat_protection |= rfte.p;
ptr = rfte.rto * PAGE_SIZE + vaddr.rsx * 8;
}
fallthrough;
case ASCE_TYPE_REGION2: {
union region2_table_entry rste;
if (kvm_is_error_gpa(vcpu->kvm, ptr))
return PGM_ADDRESSING;
if (deref_table(vcpu->kvm, ptr, &rste.val))
return -EFAULT;
if (rste.i)
return PGM_REGION_SECOND_TRANS;
if (rste.tt != TABLE_TYPE_REGION2)
return PGM_TRANSLATION_SPEC;
if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
return PGM_REGION_THIRD_TRANS;
if (edat1)
dat_protection |= rste.p;
ptr = rste.rto * PAGE_SIZE + vaddr.rtx * 8;
}
fallthrough;
case ASCE_TYPE_REGION3: {
union region3_table_entry rtte;
if (kvm_is_error_gpa(vcpu->kvm, ptr))
return PGM_ADDRESSING;
if (deref_table(vcpu->kvm, ptr, &rtte.val))
return -EFAULT;
if (rtte.i)
return PGM_REGION_THIRD_TRANS;
if (rtte.tt != TABLE_TYPE_REGION3)
return PGM_TRANSLATION_SPEC;
if (rtte.cr && asce.p && edat2)
return PGM_TRANSLATION_SPEC;
if (rtte.fc && edat2) {
dat_protection |= rtte.fc1.p;
iep_protection = rtte.fc1.iep;
raddr.rfaa = rtte.fc1.rfaa;
goto absolute_address;
}
if (vaddr.sx01 < rtte.fc0.tf)
return PGM_SEGMENT_TRANSLATION;
if (vaddr.sx01 > rtte.fc0.tl)
return PGM_SEGMENT_TRANSLATION;
if (edat1)
dat_protection |= rtte.fc0.p;
ptr = rtte.fc0.sto * PAGE_SIZE + vaddr.sx * 8;
}
fallthrough;
case ASCE_TYPE_SEGMENT: {
union segment_table_entry ste;
if (kvm_is_error_gpa(vcpu->kvm, ptr))
return PGM_ADDRESSING;
if (deref_table(vcpu->kvm, ptr, &ste.val))
return -EFAULT;
if (ste.i)
return PGM_SEGMENT_TRANSLATION;
if (ste.tt != TABLE_TYPE_SEGMENT)
return PGM_TRANSLATION_SPEC;
if (ste.cs && asce.p)
return PGM_TRANSLATION_SPEC;
if (ste.fc && edat1) {
dat_protection |= ste.fc1.p;
iep_protection = ste.fc1.iep;
raddr.sfaa = ste.fc1.sfaa;
goto absolute_address;
}
dat_protection |= ste.fc0.p;
ptr = ste.fc0.pto * (PAGE_SIZE / 2) + vaddr.px * 8;
}
}
if (kvm_is_error_gpa(vcpu->kvm, ptr))
return PGM_ADDRESSING;
if (deref_table(vcpu->kvm, ptr, &pte.val))
return -EFAULT;
if (pte.i)
return PGM_PAGE_TRANSLATION;
if (pte.z)
return PGM_TRANSLATION_SPEC;
dat_protection |= pte.p;
iep_protection = pte.iep;
raddr.pfra = pte.pfra;
real_address:
raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
absolute_address:
if (mode == GACC_STORE && dat_protection) {
*prot = PROT_TYPE_DAT;
return PGM_PROTECTION;
}
if (mode == GACC_IFETCH && iep_protection && iep) {
*prot = PROT_TYPE_IEP;
return PGM_PROTECTION;
}
if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
return PGM_ADDRESSING;
*gpa = raddr.addr;
return 0;
}
static inline int is_low_address(unsigned long ga)
{
/* Check for address ranges 0..511 and 4096..4607 */
return (ga & ~0x11fful) == 0;
}
static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
const union asce asce)
{
union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
psw_t *psw = &vcpu->arch.sie_block->gpsw;
if (!ctlreg0.lap)
return 0;
if (psw_bits(*psw).dat && asce.p)
return 0;
return 1;
}
static int vm_check_access_key(struct kvm *kvm, u8 access_key,
enum gacc_mode mode, gpa_t gpa)
{
u8 storage_key, access_control;
bool fetch_protected;
unsigned long hva;
int r;
if (access_key == 0)
return 0;
hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
if (kvm_is_error_hva(hva))
return PGM_ADDRESSING;
mmap_read_lock(current->mm);
r = get_guest_storage_key(current->mm, hva, &storage_key);
mmap_read_unlock(current->mm);
if (r)
return r;
access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
if (access_control == access_key)
return 0;
fetch_protected = storage_key & _PAGE_FP_BIT;
if ((mode == GACC_FETCH || mode == GACC_IFETCH) && !fetch_protected)
return 0;
return PGM_PROTECTION;
}
static bool fetch_prot_override_applicable(struct kvm_vcpu *vcpu, enum gacc_mode mode,
union asce asce)
{
psw_t *psw = &vcpu->arch.sie_block->gpsw;
unsigned long override;
if (mode == GACC_FETCH || mode == GACC_IFETCH) {
/* check if fetch protection override enabled */
override = vcpu->arch.sie_block->gcr[0];
override &= CR0_FETCH_PROTECTION_OVERRIDE;
/* not applicable if subject to DAT && private space */
override = override && !(psw_bits(*psw).dat && asce.p);
return override;
}
return false;
}
static bool fetch_prot_override_applies(unsigned long ga, unsigned int len)
{
return ga < 2048 && ga + len <= 2048;
}
static bool storage_prot_override_applicable(struct kvm_vcpu *vcpu)
{
/* check if storage protection override enabled */
return vcpu->arch.sie_block->gcr[0] & CR0_STORAGE_PROTECTION_OVERRIDE;
}
static bool storage_prot_override_applies(u8 access_control)
{
/* matches special storage protection override key (9) -> allow */
return access_control == PAGE_SPO_ACC;
}
static int vcpu_check_access_key(struct kvm_vcpu *vcpu, u8 access_key,
enum gacc_mode mode, union asce asce, gpa_t gpa,
unsigned long ga, unsigned int len)
{
u8 storage_key, access_control;
unsigned long hva;
int r;
/* access key 0 matches any storage key -> allow */
if (access_key == 0)
return 0;
/*
* caller needs to ensure that gfn is accessible, so we can
* assume that this cannot fail
*/
hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(gpa));
mmap_read_lock(current->mm);
r = get_guest_storage_key(current->mm, hva, &storage_key);
mmap_read_unlock(current->mm);
if (r)
return r;
access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
/* access key matches storage key -> allow */
if (access_control == access_key)
return 0;
if (mode == GACC_FETCH || mode == GACC_IFETCH) {
/* it is a fetch and fetch protection is off -> allow */
if (!(storage_key & _PAGE_FP_BIT))
return 0;
if (fetch_prot_override_applicable(vcpu, mode, asce) &&
fetch_prot_override_applies(ga, len))
return 0;
}
if (storage_prot_override_applicable(vcpu) &&
storage_prot_override_applies(access_control))
return 0;
return PGM_PROTECTION;
}
/**
* guest_range_to_gpas() - Calculate guest physical addresses of page fragments
* covering a logical range
* @vcpu: virtual cpu
* @ga: guest address, start of range
* @ar: access register
* @gpas: output argument, may be NULL
* @len: length of range in bytes
* @asce: address-space-control element to use for translation
* @mode: access mode
* @access_key: access key to mach the range's storage keys against
*
* Translate a logical range to a series of guest absolute addresses,
* such that the concatenation of page fragments starting at each gpa make up
* the whole range.
* The translation is performed as if done by the cpu for the given @asce, @ar,
* @mode and state of the @vcpu.
* If the translation causes an exception, its program interruption code is
* returned and the &struct kvm_s390_pgm_info pgm member of @vcpu is modified
* such that a subsequent call to kvm_s390_inject_prog_vcpu() will inject
* a correct exception into the guest.
* The resulting gpas are stored into @gpas, unless it is NULL.
*
* Note: All fragments except the first one start at the beginning of a page.
* When deriving the boundaries of a fragment from a gpa, all but the last
* fragment end at the end of the page.
*
* Return:
* * 0 - success
* * <0 - translation could not be performed, for example if guest
* memory could not be accessed
* * >0 - an access exception occurred. In this case the returned value
* is the program interruption code and the contents of pgm may
* be used to inject an exception into the guest.
*/
static int guest_range_to_gpas(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
unsigned long *gpas, unsigned long len,
const union asce asce, enum gacc_mode mode,
u8 access_key)
{
psw_t *psw = &vcpu->arch.sie_block->gpsw;
unsigned int offset = offset_in_page(ga);
unsigned int fragment_len;
int lap_enabled, rc = 0;
enum prot_type prot;
unsigned long gpa;
lap_enabled = low_address_protection_enabled(vcpu, asce);
while (min(PAGE_SIZE - offset, len) > 0) {
fragment_len = min(PAGE_SIZE - offset, len);
ga = kvm_s390_logical_to_effective(vcpu, ga);
if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
PROT_TYPE_LA);
if (psw_bits(*psw).dat) {
rc = guest_translate(vcpu, ga, &gpa, asce, mode, &prot);
if (rc < 0)
return rc;
} else {
gpa = kvm_s390_real_to_abs(vcpu, ga);
if (kvm_is_error_gpa(vcpu->kvm, gpa)) {
rc = PGM_ADDRESSING;
prot = PROT_NONE;
}
}
if (rc)
return trans_exc(vcpu, rc, ga, ar, mode, prot);
rc = vcpu_check_access_key(vcpu, access_key, mode, asce, gpa, ga,
fragment_len);
if (rc)
return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_KEYC);
if (gpas)
*gpas++ = gpa;
offset = 0;
ga += fragment_len;
len -= fragment_len;
}
return 0;
}
static int access_guest_page(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
void *data, unsigned int len)
{
const unsigned int offset = offset_in_page(gpa);
const gfn_t gfn = gpa_to_gfn(gpa);
int rc;
if (mode == GACC_STORE)
rc = kvm_write_guest_page(kvm, gfn, data, offset, len);
else
rc = kvm_read_guest_page(kvm, gfn, data, offset, len);
return rc;
}
static int
access_guest_page_with_key(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
void *data, unsigned int len, u8 access_key)
{
struct kvm_memory_slot *slot;
bool writable;
gfn_t gfn;
hva_t hva;
int rc;
gfn = gpa >> PAGE_SHIFT;
slot = gfn_to_memslot(kvm, gfn);
hva = gfn_to_hva_memslot_prot(slot, gfn, &writable);
if (kvm_is_error_hva(hva))
return PGM_ADDRESSING;
/*
* Check if it's a ro memslot, even tho that can't occur (they're unsupported).
* Don't try to actually handle that case.
*/
if (!writable && mode == GACC_STORE)
return -EOPNOTSUPP;
hva += offset_in_page(gpa);
if (mode == GACC_STORE)
rc = copy_to_user_key((void __user *)hva, data, len, access_key);
else
rc = copy_from_user_key(data, (void __user *)hva, len, access_key);
if (rc)
return PGM_PROTECTION;
if (mode == GACC_STORE)
mark_page_dirty_in_slot(kvm, slot, gfn);
return 0;
}
int access_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, void *data,
unsigned long len, enum gacc_mode mode, u8 access_key)
{
int offset = offset_in_page(gpa);
int fragment_len;
int rc;
while (min(PAGE_SIZE - offset, len) > 0) {
fragment_len = min(PAGE_SIZE - offset, len);
rc = access_guest_page_with_key(kvm, mode, gpa, data, fragment_len, access_key);
if (rc)
return rc;
offset = 0;
len -= fragment_len;
data += fragment_len;
gpa += fragment_len;
}
return 0;
}
int access_guest_with_key(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
void *data, unsigned long len, enum gacc_mode mode,
u8 access_key)
{
psw_t *psw = &vcpu->arch.sie_block->gpsw;
unsigned long nr_pages, idx;
unsigned long gpa_array[2];
unsigned int fragment_len;
unsigned long *gpas;
enum prot_type prot;
int need_ipte_lock;
union asce asce;
bool try_storage_prot_override;
bool try_fetch_prot_override;
int rc;
if (!len)
return 0;
ga = kvm_s390_logical_to_effective(vcpu, ga);
rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
if (rc)
return rc;
nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
gpas = gpa_array;
if (nr_pages > ARRAY_SIZE(gpa_array))
gpas = vmalloc(array_size(nr_pages, sizeof(unsigned long)));
if (!gpas)
return -ENOMEM;
try_fetch_prot_override = fetch_prot_override_applicable(vcpu, mode, asce);
try_storage_prot_override = storage_prot_override_applicable(vcpu);
need_ipte_lock = psw_bits(*psw).dat && !asce.r;
if (need_ipte_lock)
ipte_lock(vcpu->kvm);
/*
* Since we do the access further down ultimately via a move instruction
* that does key checking and returns an error in case of a protection
* violation, we don't need to do the check during address translation.
* Skip it by passing access key 0, which matches any storage key,
* obviating the need for any further checks. As a result the check is
* handled entirely in hardware on access, we only need to take care to
* forego key protection checking if fetch protection override applies or
* retry with the special key 9 in case of storage protection override.
*/
rc = guest_range_to_gpas(vcpu, ga, ar, gpas, len, asce, mode, 0);
if (rc)
goto out_unlock;
for (idx = 0; idx < nr_pages; idx++) {
fragment_len = min(PAGE_SIZE - offset_in_page(gpas[idx]), len);
if (try_fetch_prot_override && fetch_prot_override_applies(ga, fragment_len)) {
rc = access_guest_page(vcpu->kvm, mode, gpas[idx],
data, fragment_len);
} else {
rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
data, fragment_len, access_key);
}
if (rc == PGM_PROTECTION && try_storage_prot_override)
rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
data, fragment_len, PAGE_SPO_ACC);
if (rc)
break;
len -= fragment_len;
data += fragment_len;
ga = kvm_s390_logical_to_effective(vcpu, ga + fragment_len);
}
if (rc > 0) {
bool terminate = (mode == GACC_STORE) && (idx > 0);
if (rc == PGM_PROTECTION)
prot = PROT_TYPE_KEYC;
else
prot = PROT_NONE;
rc = trans_exc_ending(vcpu, rc, ga, ar, mode, prot, terminate);
}
out_unlock:
if (need_ipte_lock)
ipte_unlock(vcpu->kvm);
if (nr_pages > ARRAY_SIZE(gpa_array))
vfree(gpas);
return rc;
}
int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
void *data, unsigned long len, enum gacc_mode mode)
{
unsigned int fragment_len;
unsigned long gpa;
int rc = 0;
while (len && !rc) {
gpa = kvm_s390_real_to_abs(vcpu, gra);
fragment_len = min(PAGE_SIZE - offset_in_page(gpa), len);
rc = access_guest_page(vcpu->kvm, mode, gpa, data, fragment_len);
len -= fragment_len;
gra += fragment_len;
data += fragment_len;
}
return rc;
}
/**
* cmpxchg_guest_abs_with_key() - Perform cmpxchg on guest absolute address.
* @kvm: Virtual machine instance.
* @gpa: Absolute guest address of the location to be changed.
* @len: Operand length of the cmpxchg, required: 1 <= len <= 16. Providing a
* non power of two will result in failure.
* @old_addr: Pointer to old value. If the location at @gpa contains this value,
* the exchange will succeed. After calling cmpxchg_guest_abs_with_key()
* *@old_addr contains the value at @gpa before the attempt to
* exchange the value.
* @new: The value to place at @gpa.
* @access_key: The access key to use for the guest access.
* @success: output value indicating if an exchange occurred.
*
* Atomically exchange the value at @gpa by @new, if it contains *@old.
* Honors storage keys.
*
* Return: * 0: successful exchange
* * >0: a program interruption code indicating the reason cmpxchg could
* not be attempted
* * -EINVAL: address misaligned or len not power of two
* * -EAGAIN: transient failure (len 1 or 2)
* * -EOPNOTSUPP: read-only memslot (should never occur)
*/
int cmpxchg_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, int len,
__uint128_t *old_addr, __uint128_t new,
u8 access_key, bool *success)
{
gfn_t gfn = gpa_to_gfn(gpa);
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
bool writable;
hva_t hva;
int ret;
if (!IS_ALIGNED(gpa, len))
return -EINVAL;
hva = gfn_to_hva_memslot_prot(slot, gfn, &writable);
if (kvm_is_error_hva(hva))
return PGM_ADDRESSING;
/*
* Check if it's a read-only memslot, even though that cannot occur
* since those are unsupported.
* Don't try to actually handle that case.
*/
if (!writable)
return -EOPNOTSUPP;
hva += offset_in_page(gpa);
/*
* The cmpxchg_user_key macro depends on the type of "old", so we need
* a case for each valid length and get some code duplication as long
* as we don't introduce a new macro.
*/
switch (len) {
case 1: {
u8 old;
ret = cmpxchg_user_key((u8 __user *)hva, &old, *old_addr, new, access_key);
*success = !ret && old == *old_addr;
*old_addr = old;
break;
}
case 2: {
u16 old;
ret = cmpxchg_user_key((u16 __user *)hva, &old, *old_addr, new, access_key);
*success = !ret && old == *old_addr;
*old_addr = old;
break;
}
case 4: {
u32 old;
ret = cmpxchg_user_key((u32 __user *)hva, &old, *old_addr, new, access_key);
*success = !ret && old == *old_addr;
*old_addr = old;
break;
}
case 8: {
u64 old;
ret = cmpxchg_user_key((u64 __user *)hva, &old, *old_addr, new, access_key);
*success = !ret && old == *old_addr;
*old_addr = old;
break;
}
case 16: {
__uint128_t old;
ret = cmpxchg_user_key((__uint128_t __user *)hva, &old, *old_addr, new, access_key);
*success = !ret && old == *old_addr;
*old_addr = old;
break;
}
default:
return -EINVAL;
}
if (*success)
mark_page_dirty_in_slot(kvm, slot, gfn);
/*
* Assume that the fault is caused by protection, either key protection
* or user page write protection.
*/
if (ret == -EFAULT)
ret = PGM_PROTECTION;
return ret;
}
/**
* guest_translate_address_with_key - translate guest logical into guest absolute address
* @vcpu: virtual cpu
* @gva: Guest virtual address
* @ar: Access register
* @gpa: Guest physical address
* @mode: Translation access mode
* @access_key: access key to mach the storage key with
*
* Parameter semantics are the same as the ones from guest_translate.
* The memory contents at the guest address are not changed.
*
* Note: The IPTE lock is not taken during this function, so the caller
* has to take care of this.
*/
int guest_translate_address_with_key(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
unsigned long *gpa, enum gacc_mode mode,
u8 access_key)
{
union asce asce;
int rc;
gva = kvm_s390_logical_to_effective(vcpu, gva);
rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
if (rc)
return rc;
return guest_range_to_gpas(vcpu, gva, ar, gpa, 1, asce, mode,
access_key);
}
/**
* check_gva_range - test a range of guest virtual addresses for accessibility
* @vcpu: virtual cpu
* @gva: Guest virtual address
* @ar: Access register
* @length: Length of test range
* @mode: Translation access mode
* @access_key: access key to mach the storage keys with
*/
int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
unsigned long length, enum gacc_mode mode, u8 access_key)
{
union asce asce;
int rc = 0;
rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
if (rc)
return rc;
ipte_lock(vcpu->kvm);
rc = guest_range_to_gpas(vcpu, gva, ar, NULL, length, asce, mode,
access_key);
ipte_unlock(vcpu->kvm);
return rc;
}
/**
* check_gpa_range - test a range of guest physical addresses for accessibility
* @kvm: virtual machine instance
* @gpa: guest physical address
* @length: length of test range
* @mode: access mode to test, relevant for storage keys
* @access_key: access key to mach the storage keys with
*/
int check_gpa_range(struct kvm *kvm, unsigned long gpa, unsigned long length,
enum gacc_mode mode, u8 access_key)
{
unsigned int fragment_len;
int rc = 0;
while (length && !rc) {
fragment_len = min(PAGE_SIZE - offset_in_page(gpa), length);
rc = vm_check_access_key(kvm, access_key, mode, gpa);
length -= fragment_len;
gpa += fragment_len;
}
return rc;
}
/**
* kvm_s390_check_low_addr_prot_real - check for low-address protection
* @vcpu: virtual cpu
* @gra: Guest real address
*
* Checks whether an address is subject to low-address protection and set
* up vcpu->arch.pgm accordingly if necessary.
*
* Return: 0 if no protection exception, or PGM_PROTECTION if protected.
*/
int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
{
union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
if (!ctlreg0.lap || !is_low_address(gra))
return 0;
return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
}
/**
* kvm_s390_shadow_tables - walk the guest page table and create shadow tables
* @sg: pointer to the shadow guest address space structure
* @saddr: faulting address in the shadow gmap
* @pgt: pointer to the beginning of the page table for the given address if
* successful (return value 0), or to the first invalid DAT entry in
* case of exceptions (return value > 0)
* @dat_protection: referenced memory is write protected
* @fake: pgt references contiguous guest memory block, not a pgtable
*/
static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
unsigned long *pgt, int *dat_protection,
int *fake)
{
struct gmap *parent;
union asce asce;
union vaddress vaddr;
unsigned long ptr;
int rc;
*fake = 0;
*dat_protection = 0;
parent = sg->parent;
vaddr.addr = saddr;
asce.val = sg->orig_asce;
ptr = asce.origin * PAGE_SIZE;
if (asce.r) {
*fake = 1;
ptr = 0;
asce.dt = ASCE_TYPE_REGION1;
}
switch (asce.dt) {
case ASCE_TYPE_REGION1:
if (vaddr.rfx01 > asce.tl && !*fake)
return PGM_REGION_FIRST_TRANS;
break;
case ASCE_TYPE_REGION2:
if (vaddr.rfx)
return PGM_ASCE_TYPE;
if (vaddr.rsx01 > asce.tl)
return PGM_REGION_SECOND_TRANS;
break;
case ASCE_TYPE_REGION3:
if (vaddr.rfx || vaddr.rsx)
return PGM_ASCE_TYPE;
if (vaddr.rtx01 > asce.tl)
return PGM_REGION_THIRD_TRANS;
break;
case ASCE_TYPE_SEGMENT:
if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
return PGM_ASCE_TYPE;
if (vaddr.sx01 > asce.tl)
return PGM_SEGMENT_TRANSLATION;
break;
}
switch (asce.dt) {
case ASCE_TYPE_REGION1: {
union region1_table_entry rfte;
if (*fake) {
ptr += vaddr.rfx * _REGION1_SIZE;
rfte.val = ptr;
goto shadow_r2t;
}
*pgt = ptr + vaddr.rfx * 8;
rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
if (rc)
return rc;
if (rfte.i)
return PGM_REGION_FIRST_TRANS;
if (rfte.tt != TABLE_TYPE_REGION1)
return PGM_TRANSLATION_SPEC;
if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
return PGM_REGION_SECOND_TRANS;
if (sg->edat_level >= 1)
*dat_protection |= rfte.p;
ptr = rfte.rto * PAGE_SIZE;
shadow_r2t:
rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
if (rc)
return rc;
}
fallthrough;
case ASCE_TYPE_REGION2: {
union region2_table_entry rste;
if (*fake) {
ptr += vaddr.rsx * _REGION2_SIZE;
rste.val = ptr;
goto shadow_r3t;
}
*pgt = ptr + vaddr.rsx * 8;
rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
if (rc)
return rc;
if (rste.i)
return PGM_REGION_SECOND_TRANS;
if (rste.tt != TABLE_TYPE_REGION2)
return PGM_TRANSLATION_SPEC;
if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
return PGM_REGION_THIRD_TRANS;
if (sg->edat_level >= 1)
*dat_protection |= rste.p;
ptr = rste.rto * PAGE_SIZE;
shadow_r3t:
rste.p |= *dat_protection;
rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
if (rc)
return rc;
}
fallthrough;
case ASCE_TYPE_REGION3: {
union region3_table_entry rtte;
if (*fake) {
ptr += vaddr.rtx * _REGION3_SIZE;
rtte.val = ptr;
goto shadow_sgt;
}
*pgt = ptr + vaddr.rtx * 8;
rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
if (rc)
return rc;
if (rtte.i)
return PGM_REGION_THIRD_TRANS;
if (rtte.tt != TABLE_TYPE_REGION3)
return PGM_TRANSLATION_SPEC;
if (rtte.cr && asce.p && sg->edat_level >= 2)
return PGM_TRANSLATION_SPEC;
if (rtte.fc && sg->edat_level >= 2) {
*dat_protection |= rtte.fc0.p;
*fake = 1;
ptr = rtte.fc1.rfaa * _REGION3_SIZE;
rtte.val = ptr;
goto shadow_sgt;
}
if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
return PGM_SEGMENT_TRANSLATION;
if (sg->edat_level >= 1)
*dat_protection |= rtte.fc0.p;
ptr = rtte.fc0.sto * PAGE_SIZE;
shadow_sgt:
rtte.fc0.p |= *dat_protection;
rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
if (rc)
return rc;
}
fallthrough;
case ASCE_TYPE_SEGMENT: {
union segment_table_entry ste;
if (*fake) {
ptr += vaddr.sx * _SEGMENT_SIZE;
ste.val = ptr;
goto shadow_pgt;
}
*pgt = ptr + vaddr.sx * 8;
rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
if (rc)
return rc;
if (ste.i)
return PGM_SEGMENT_TRANSLATION;
if (ste.tt != TABLE_TYPE_SEGMENT)
return PGM_TRANSLATION_SPEC;
if (ste.cs && asce.p)
return PGM_TRANSLATION_SPEC;
*dat_protection |= ste.fc0.p;
if (ste.fc && sg->edat_level >= 1) {
*fake = 1;
ptr = ste.fc1.sfaa * _SEGMENT_SIZE;
ste.val = ptr;
goto shadow_pgt;
}
ptr = ste.fc0.pto * (PAGE_SIZE / 2);
shadow_pgt:
ste.fc0.p |= *dat_protection;
rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
if (rc)
return rc;
}
}
/* Return the parent address of the page table */
*pgt = ptr;
return 0;
}
/**
* kvm_s390_shadow_fault - handle fault on a shadow page table
* @vcpu: virtual cpu
* @sg: pointer to the shadow guest address space structure
* @saddr: faulting address in the shadow gmap
* @datptr: will contain the address of the faulting DAT table entry, or of
* the valid leaf, plus some flags
*
* Returns: - 0 if the shadow fault was successfully resolved
* - > 0 (pgm exception code) on exceptions while faulting
* - -EAGAIN if the caller can retry immediately
* - -EFAULT when accessing invalid guest addresses
* - -ENOMEM if out of memory
*/
int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
unsigned long saddr, unsigned long *datptr)
{
union vaddress vaddr;
union page_table_entry pte;
unsigned long pgt = 0;
int dat_protection, fake;
int rc;
mmap_read_lock(sg->mm);
/*
* We don't want any guest-2 tables to change - so the parent
* tables/pointers we read stay valid - unshadowing is however
* always possible - only guest_table_lock protects us.
*/
ipte_lock(vcpu->kvm);
rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
if (rc)
rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
&fake);
vaddr.addr = saddr;
if (fake) {
pte.val = pgt + vaddr.px * PAGE_SIZE;
goto shadow_page;
}
switch (rc) {
case PGM_SEGMENT_TRANSLATION:
case PGM_REGION_THIRD_TRANS:
case PGM_REGION_SECOND_TRANS:
case PGM_REGION_FIRST_TRANS:
pgt |= PEI_NOT_PTE;
break;
case 0:
pgt += vaddr.px * 8;
rc = gmap_read_table(sg->parent, pgt, &pte.val);
}
if (datptr)
*datptr = pgt | dat_protection * PEI_DAT_PROT;
if (!rc && pte.i)
rc = PGM_PAGE_TRANSLATION;
if (!rc && pte.z)
rc = PGM_TRANSLATION_SPEC;
shadow_page:
pte.p |= dat_protection;
if (!rc)
rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
ipte_unlock(vcpu->kvm);
mmap_read_unlock(sg->mm);
return rc;
}