linux/drivers/hwmon/mr75203.c
Rahul Tanwar 9d823351a3 hwmon: Add hardware monitoring driver for Moortec MR75203 PVT controller
PVT controller (MR75203) is used to configure & control
Moortec embedded analog IP which contains temprature
sensor(TS), voltage monitor(VM) & process detector(PD)
modules. Add hardware monitoring driver to support
MR75203 PVT controller.

Signed-off-by: Rahul Tanwar <rahul.tanwar@linux.intel.com>
Reviewed-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@intel.com>
Link: https://lore.kernel.org/r/05b59cd860d2a1aa0a68ab300829efe709645184.1601889876.git.rahul.tanwar@linux.intel.com
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2020-10-06 14:51:18 -07:00

657 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 MaxLinear, Inc.
*
* This driver is a hardware monitoring driver for PVT controller
* (MR75203) which is used to configure & control Moortec embedded
* analog IP to enable multiple embedded temperature sensor(TS),
* voltage monitor(VM) & process detector(PD) modules.
*/
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/hwmon.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/reset.h>
/* PVT Common register */
#define PVT_IP_CONFIG 0x04
#define TS_NUM_MSK GENMASK(4, 0)
#define TS_NUM_SFT 0
#define PD_NUM_MSK GENMASK(12, 8)
#define PD_NUM_SFT 8
#define VM_NUM_MSK GENMASK(20, 16)
#define VM_NUM_SFT 16
#define CH_NUM_MSK GENMASK(31, 24)
#define CH_NUM_SFT 24
/* Macro Common Register */
#define CLK_SYNTH 0x00
#define CLK_SYNTH_LO_SFT 0
#define CLK_SYNTH_HI_SFT 8
#define CLK_SYNTH_HOLD_SFT 16
#define CLK_SYNTH_EN BIT(24)
#define CLK_SYS_CYCLES_MAX 514
#define CLK_SYS_CYCLES_MIN 2
#define HZ_PER_MHZ 1000000L
#define SDIF_DISABLE 0x04
#define SDIF_STAT 0x08
#define SDIF_BUSY BIT(0)
#define SDIF_LOCK BIT(1)
#define SDIF_W 0x0c
#define SDIF_PROG BIT(31)
#define SDIF_WRN_W BIT(27)
#define SDIF_WRN_R 0x00
#define SDIF_ADDR_SFT 24
#define SDIF_HALT 0x10
#define SDIF_CTRL 0x14
#define SDIF_SMPL_CTRL 0x20
/* TS & PD Individual Macro Register */
#define COM_REG_SIZE 0x40
#define SDIF_DONE(n) (COM_REG_SIZE + 0x14 + 0x40 * (n))
#define SDIF_SMPL_DONE BIT(0)
#define SDIF_DATA(n) (COM_REG_SIZE + 0x18 + 0x40 * (n))
#define SAMPLE_DATA_MSK GENMASK(15, 0)
#define HILO_RESET(n) (COM_REG_SIZE + 0x2c + 0x40 * (n))
/* VM Individual Macro Register */
#define VM_COM_REG_SIZE 0x200
#define VM_SDIF_DONE(n) (VM_COM_REG_SIZE + 0x34 + 0x200 * (n))
#define VM_SDIF_DATA(n) (VM_COM_REG_SIZE + 0x40 + 0x200 * (n))
/* SDA Slave Register */
#define IP_CTRL 0x00
#define IP_RST_REL BIT(1)
#define IP_RUN_CONT BIT(3)
#define IP_AUTO BIT(8)
#define IP_VM_MODE BIT(10)
#define IP_CFG 0x01
#define CFG0_MODE_2 BIT(0)
#define CFG0_PARALLEL_OUT 0
#define CFG0_12_BIT 0
#define CFG1_VOL_MEAS_MODE 0
#define CFG1_PARALLEL_OUT 0
#define CFG1_14_BIT 0
#define IP_DATA 0x03
#define IP_POLL 0x04
#define VM_CH_INIT BIT(20)
#define VM_CH_REQ BIT(21)
#define IP_TMR 0x05
#define POWER_DELAY_CYCLE_256 0x80
#define POWER_DELAY_CYCLE_64 0x40
#define PVT_POLL_DELAY_US 20
#define PVT_POLL_TIMEOUT_US 20000
#define PVT_H_CONST 100000
#define PVT_CAL5_CONST 2047
#define PVT_G_CONST 40000
#define PVT_CONV_BITS 10
#define PVT_N_CONST 90
#define PVT_R_CONST 245805
struct pvt_device {
struct regmap *c_map;
struct regmap *t_map;
struct regmap *p_map;
struct regmap *v_map;
struct clk *clk;
struct reset_control *rst;
u32 t_num;
u32 p_num;
u32 v_num;
u32 ip_freq;
u8 *vm_idx;
};
static umode_t pvt_is_visible(const void *data, enum hwmon_sensor_types type,
u32 attr, int channel)
{
switch (type) {
case hwmon_temp:
if (attr == hwmon_temp_input)
return 0444;
break;
case hwmon_in:
if (attr == hwmon_in_input)
return 0444;
break;
default:
break;
}
return 0;
}
static int pvt_read_temp(struct device *dev, u32 attr, int channel, long *val)
{
struct pvt_device *pvt = dev_get_drvdata(dev);
struct regmap *t_map = pvt->t_map;
u32 stat, nbs;
int ret;
u64 tmp;
switch (attr) {
case hwmon_temp_input:
ret = regmap_read_poll_timeout(t_map, SDIF_DONE(channel),
stat, stat & SDIF_SMPL_DONE,
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
ret = regmap_read(t_map, SDIF_DATA(channel), &nbs);
if(ret < 0)
return ret;
nbs &= SAMPLE_DATA_MSK;
/*
* Convert the register value to
* degrees centigrade temperature
*/
tmp = nbs * PVT_H_CONST;
do_div(tmp, PVT_CAL5_CONST);
*val = tmp - PVT_G_CONST - pvt->ip_freq;
return 0;
default:
return -EOPNOTSUPP;
}
}
static int pvt_read_in(struct device *dev, u32 attr, int channel, long *val)
{
struct pvt_device *pvt = dev_get_drvdata(dev);
struct regmap *v_map = pvt->v_map;
u32 n, stat;
u8 vm_idx;
int ret;
if (channel >= pvt->v_num)
return -EINVAL;
vm_idx = pvt->vm_idx[channel];
switch (attr) {
case hwmon_in_input:
ret = regmap_read_poll_timeout(v_map, VM_SDIF_DONE(vm_idx),
stat, stat & SDIF_SMPL_DONE,
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
ret = regmap_read(v_map, VM_SDIF_DATA(vm_idx), &n);
if(ret < 0)
return ret;
n &= SAMPLE_DATA_MSK;
/* Convert the N bitstream count into voltage */
*val = (PVT_N_CONST * n - PVT_R_CONST) >> PVT_CONV_BITS;
return 0;
default:
return -EOPNOTSUPP;
}
}
static int pvt_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
switch (type) {
case hwmon_temp:
return pvt_read_temp(dev, attr, channel, val);
case hwmon_in:
return pvt_read_in(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static const u32 pvt_chip_config[] = {
HWMON_C_REGISTER_TZ,
0
};
static const struct hwmon_channel_info pvt_chip = {
.type = hwmon_chip,
.config = pvt_chip_config,
};
static struct hwmon_channel_info pvt_temp = {
.type = hwmon_temp,
};
static struct hwmon_channel_info pvt_in = {
.type = hwmon_in,
};
static const struct hwmon_ops pvt_hwmon_ops = {
.is_visible = pvt_is_visible,
.read = pvt_read,
};
static struct hwmon_chip_info pvt_chip_info = {
.ops = &pvt_hwmon_ops,
};
static int pvt_init(struct pvt_device *pvt)
{
u16 sys_freq, key, middle, low = 4, high = 8;
struct regmap *t_map = pvt->t_map;
struct regmap *p_map = pvt->p_map;
struct regmap *v_map = pvt->v_map;
u32 t_num = pvt->t_num;
u32 p_num = pvt->p_num;
u32 v_num = pvt->v_num;
u32 clk_synth, val;
int ret;
sys_freq = clk_get_rate(pvt->clk) / HZ_PER_MHZ;
while (high >= low) {
middle = (low + high + 1) / 2;
key = DIV_ROUND_CLOSEST(sys_freq, middle);
if (key > CLK_SYS_CYCLES_MAX) {
low = middle + 1;
continue;
} else if (key < CLK_SYS_CYCLES_MIN) {
high = middle - 1;
continue;
} else {
break;
}
}
/*
* The system supports 'clk_sys' to 'clk_ip' frequency ratios
* from 2:1 to 512:1
*/
key = clamp_val(key, CLK_SYS_CYCLES_MIN, CLK_SYS_CYCLES_MAX) - 2;
clk_synth = ((key + 1) >> 1) << CLK_SYNTH_LO_SFT |
(key >> 1) << CLK_SYNTH_HI_SFT |
(key >> 1) << CLK_SYNTH_HOLD_SFT | CLK_SYNTH_EN;
pvt->ip_freq = sys_freq * 100 / (key + 2);
if (t_num) {
ret = regmap_write(t_map, SDIF_SMPL_CTRL, 0x0);
if(ret < 0)
return ret;
ret = regmap_write(t_map, SDIF_HALT, 0x0);
if(ret < 0)
return ret;
ret = regmap_write(t_map, CLK_SYNTH, clk_synth);
if(ret < 0)
return ret;
ret = regmap_write(t_map, SDIF_DISABLE, 0x0);
if(ret < 0)
return ret;
ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = CFG0_MODE_2 | CFG0_PARALLEL_OUT | CFG0_12_BIT |
IP_CFG << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(t_map, SDIF_W, val);
if(ret < 0)
return ret;
ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = POWER_DELAY_CYCLE_256 | IP_TMR << SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(t_map, SDIF_W, val);
if(ret < 0)
return ret;
ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = IP_RST_REL | IP_RUN_CONT | IP_AUTO |
IP_CTRL << SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(t_map, SDIF_W, val);
if(ret < 0)
return ret;
}
if (p_num) {
ret = regmap_write(p_map, SDIF_HALT, 0x0);
if(ret < 0)
return ret;
ret = regmap_write(p_map, SDIF_DISABLE, BIT(p_num) - 1);
if(ret < 0)
return ret;
ret = regmap_write(p_map, CLK_SYNTH, clk_synth);
if(ret < 0)
return ret;
}
if (v_num) {
ret = regmap_write(v_map, SDIF_SMPL_CTRL, 0x0);
if(ret < 0)
return ret;
ret = regmap_write(v_map, SDIF_HALT, 0x0);
if(ret < 0)
return ret;
ret = regmap_write(v_map, CLK_SYNTH, clk_synth);
if(ret < 0)
return ret;
ret = regmap_write(v_map, SDIF_DISABLE, 0x0);
if(ret < 0)
return ret;
ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = CFG1_VOL_MEAS_MODE | CFG1_PARALLEL_OUT |
CFG1_14_BIT | IP_CFG << SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(v_map, SDIF_W, val);
if(ret < 0)
return ret;
ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = POWER_DELAY_CYCLE_64 | IP_TMR << SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(v_map, SDIF_W, val);
if(ret < 0)
return ret;
ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = IP_RST_REL | IP_RUN_CONT | IP_AUTO | IP_VM_MODE |
IP_CTRL << SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(v_map, SDIF_W, val);
if(ret < 0)
return ret;
}
return 0;
}
static struct regmap_config pvt_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
};
static int pvt_get_regmap(struct platform_device *pdev, char *reg_name,
struct pvt_device *pvt)
{
struct device *dev = &pdev->dev;
struct regmap **reg_map;
void __iomem *io_base;
if (!strcmp(reg_name, "common"))
reg_map = &pvt->c_map;
else if (!strcmp(reg_name, "ts"))
reg_map = &pvt->t_map;
else if (!strcmp(reg_name, "pd"))
reg_map = &pvt->p_map;
else if (!strcmp(reg_name, "vm"))
reg_map = &pvt->v_map;
else
return -EINVAL;
io_base = devm_platform_ioremap_resource_byname(pdev, reg_name);
if (IS_ERR(io_base))
return PTR_ERR(io_base);
pvt_regmap_config.name = reg_name;
*reg_map = devm_regmap_init_mmio(dev, io_base, &pvt_regmap_config);
if (IS_ERR(*reg_map)) {
dev_err(dev, "failed to init register map\n");
return PTR_ERR(*reg_map);
}
return 0;
}
static void pvt_clk_disable(void *data)
{
struct pvt_device *pvt = data;
clk_disable_unprepare(pvt->clk);
}
static int pvt_clk_enable(struct device *dev, struct pvt_device *pvt)
{
int ret;
ret = clk_prepare_enable(pvt->clk);
if (ret)
return ret;
return devm_add_action_or_reset(dev, pvt_clk_disable, pvt);
}
static void pvt_reset_control_assert(void *data)
{
struct pvt_device *pvt = data;
reset_control_assert(pvt->rst);
}
static int pvt_reset_control_deassert(struct device *dev, struct pvt_device *pvt)
{
int ret;
ret = reset_control_deassert(pvt->rst);
if (ret)
return ret;
return devm_add_action_or_reset(dev, pvt_reset_control_assert, pvt);
}
static int mr75203_probe(struct platform_device *pdev)
{
const struct hwmon_channel_info **pvt_info;
u32 ts_num, vm_num, pd_num, val, index, i;
struct device *dev = &pdev->dev;
u32 *temp_config, *in_config;
struct device *hwmon_dev;
struct pvt_device *pvt;
int ret;
pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
if (!pvt)
return -ENOMEM;
ret = pvt_get_regmap(pdev, "common", pvt);
if (ret)
return ret;
pvt->clk = devm_clk_get(dev, NULL);
if (IS_ERR(pvt->clk))
return dev_err_probe(dev, PTR_ERR(pvt->clk), "failed to get clock\n");
ret = pvt_clk_enable(dev, pvt);
if (ret) {
dev_err(dev, "failed to enable clock\n");
return ret;
}
pvt->rst = devm_reset_control_get_exclusive(dev, NULL);
if (IS_ERR(pvt->rst))
return dev_err_probe(dev, PTR_ERR(pvt->rst),
"failed to get reset control\n");
ret = pvt_reset_control_deassert(dev, pvt);
if (ret)
return dev_err_probe(dev, ret, "cannot deassert reset control\n");
ret = regmap_read(pvt->c_map, PVT_IP_CONFIG, &val);
if(ret < 0)
return ret;
ts_num = (val & TS_NUM_MSK) >> TS_NUM_SFT;
pd_num = (val & PD_NUM_MSK) >> PD_NUM_SFT;
vm_num = (val & VM_NUM_MSK) >> VM_NUM_SFT;
pvt->t_num = ts_num;
pvt->p_num = pd_num;
pvt->v_num = vm_num;
val = 0;
if (ts_num)
val++;
if (vm_num)
val++;
if (!val)
return -ENODEV;
pvt_info = devm_kcalloc(dev, val + 2, sizeof(*pvt_info), GFP_KERNEL);
if (!pvt_info)
return -ENOMEM;
pvt_info[0] = &pvt_chip;
index = 1;
if (ts_num) {
ret = pvt_get_regmap(pdev, "ts", pvt);
if (ret)
return ret;
temp_config = devm_kcalloc(dev, ts_num + 1,
sizeof(*temp_config), GFP_KERNEL);
if (!temp_config)
return -ENOMEM;
memset32(temp_config, HWMON_T_INPUT, ts_num);
pvt_temp.config = temp_config;
pvt_info[index++] = &pvt_temp;
}
if (pd_num) {
ret = pvt_get_regmap(pdev, "pd", pvt);
if (ret)
return ret;
}
if (vm_num) {
u32 num = vm_num;
ret = pvt_get_regmap(pdev, "vm", pvt);
if (ret)
return ret;
pvt->vm_idx = devm_kcalloc(dev, vm_num, sizeof(*pvt->vm_idx),
GFP_KERNEL);
if (!pvt->vm_idx)
return -ENOMEM;
ret = device_property_read_u8_array(dev, "intel,vm-map",
pvt->vm_idx, vm_num);
if (ret) {
num = 0;
} else {
for (i = 0; i < vm_num; i++)
if (pvt->vm_idx[i] >= vm_num ||
pvt->vm_idx[i] == 0xff) {
num = i;
break;
}
}
/*
* Incase intel,vm-map property is not defined, we assume
* incremental channel numbers.
*/
for (i = num; i < vm_num; i++)
pvt->vm_idx[i] = i;
in_config = devm_kcalloc(dev, num + 1,
sizeof(*in_config), GFP_KERNEL);
if (!in_config)
return -ENOMEM;
memset32(in_config, HWMON_I_INPUT, num);
in_config[num] = 0;
pvt_in.config = in_config;
pvt_info[index++] = &pvt_in;
}
ret = pvt_init(pvt);
if (ret) {
dev_err(dev, "failed to init pvt: %d\n", ret);
return ret;
}
pvt_chip_info.info = pvt_info;
hwmon_dev = devm_hwmon_device_register_with_info(dev, "pvt",
pvt,
&pvt_chip_info,
NULL);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const struct of_device_id moortec_pvt_of_match[] = {
{ .compatible = "moortec,mr75203" },
{ }
};
MODULE_DEVICE_TABLE(of, moortec_pvt_of_match);
static struct platform_driver moortec_pvt_driver = {
.driver = {
.name = "moortec-pvt",
.of_match_table = moortec_pvt_of_match,
},
.probe = mr75203_probe,
};
module_platform_driver(moortec_pvt_driver);
MODULE_LICENSE("GPL v2");