linux/drivers/clocksource/timer-efm32.c
afzal mohammed cc2550b421 clocksource: Replace setup_irq() by request_irq()
request_irq() is preferred over setup_irq(). The early boot setup_irq()
invocations happen either via 'init_IRQ()' or 'time_init()', while
memory allocators are ready by 'mm_init()'.

Per tglx[1], setup_irq() existed in olden days when allocators were not
ready by the time early interrupts were initialized.

Hence replace setup_irq() by request_irq().

Seldom remove_irq() usage has been observed coupled with setup_irq(),
wherever that has been found, it too has been replaced by free_irq().

A build error that was reported by kbuild test robot <lkp@intel.com>
in the previous version of the patch also has been fixed.

[1] https://lkml.kernel.org/r/alpine.DEB.2.20.1710191609480.1971@nanos

Signed-off-by: afzal mohammed <afzal.mohd.ma@gmail.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/91961c77c1cf93d41523f5e1ac52043f32f97077.1582799709.git.afzal.mohd.ma@gmail.com
2020-02-27 12:15:24 +01:00

279 lines
6.6 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2013 Pengutronix
* Uwe Kleine-Koenig <u.kleine-koenig@pengutronix.de>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/clk.h>
#define TIMERn_CTRL 0x00
#define TIMERn_CTRL_PRESC(val) (((val) & 0xf) << 24)
#define TIMERn_CTRL_PRESC_1024 TIMERn_CTRL_PRESC(10)
#define TIMERn_CTRL_CLKSEL(val) (((val) & 0x3) << 16)
#define TIMERn_CTRL_CLKSEL_PRESCHFPERCLK TIMERn_CTRL_CLKSEL(0)
#define TIMERn_CTRL_OSMEN 0x00000010
#define TIMERn_CTRL_MODE(val) (((val) & 0x3) << 0)
#define TIMERn_CTRL_MODE_UP TIMERn_CTRL_MODE(0)
#define TIMERn_CTRL_MODE_DOWN TIMERn_CTRL_MODE(1)
#define TIMERn_CMD 0x04
#define TIMERn_CMD_START 0x00000001
#define TIMERn_CMD_STOP 0x00000002
#define TIMERn_IEN 0x0c
#define TIMERn_IF 0x10
#define TIMERn_IFS 0x14
#define TIMERn_IFC 0x18
#define TIMERn_IRQ_UF 0x00000002
#define TIMERn_TOP 0x1c
#define TIMERn_CNT 0x24
struct efm32_clock_event_ddata {
struct clock_event_device evtdev;
void __iomem *base;
unsigned periodic_top;
};
static int efm32_clock_event_shutdown(struct clock_event_device *evtdev)
{
struct efm32_clock_event_ddata *ddata =
container_of(evtdev, struct efm32_clock_event_ddata, evtdev);
writel_relaxed(TIMERn_CMD_STOP, ddata->base + TIMERn_CMD);
return 0;
}
static int efm32_clock_event_set_oneshot(struct clock_event_device *evtdev)
{
struct efm32_clock_event_ddata *ddata =
container_of(evtdev, struct efm32_clock_event_ddata, evtdev);
writel_relaxed(TIMERn_CMD_STOP, ddata->base + TIMERn_CMD);
writel_relaxed(TIMERn_CTRL_PRESC_1024 |
TIMERn_CTRL_CLKSEL_PRESCHFPERCLK |
TIMERn_CTRL_OSMEN |
TIMERn_CTRL_MODE_DOWN,
ddata->base + TIMERn_CTRL);
return 0;
}
static int efm32_clock_event_set_periodic(struct clock_event_device *evtdev)
{
struct efm32_clock_event_ddata *ddata =
container_of(evtdev, struct efm32_clock_event_ddata, evtdev);
writel_relaxed(TIMERn_CMD_STOP, ddata->base + TIMERn_CMD);
writel_relaxed(ddata->periodic_top, ddata->base + TIMERn_TOP);
writel_relaxed(TIMERn_CTRL_PRESC_1024 |
TIMERn_CTRL_CLKSEL_PRESCHFPERCLK |
TIMERn_CTRL_MODE_DOWN,
ddata->base + TIMERn_CTRL);
writel_relaxed(TIMERn_CMD_START, ddata->base + TIMERn_CMD);
return 0;
}
static int efm32_clock_event_set_next_event(unsigned long evt,
struct clock_event_device *evtdev)
{
struct efm32_clock_event_ddata *ddata =
container_of(evtdev, struct efm32_clock_event_ddata, evtdev);
writel_relaxed(TIMERn_CMD_STOP, ddata->base + TIMERn_CMD);
writel_relaxed(evt, ddata->base + TIMERn_CNT);
writel_relaxed(TIMERn_CMD_START, ddata->base + TIMERn_CMD);
return 0;
}
static irqreturn_t efm32_clock_event_handler(int irq, void *dev_id)
{
struct efm32_clock_event_ddata *ddata = dev_id;
writel_relaxed(TIMERn_IRQ_UF, ddata->base + TIMERn_IFC);
ddata->evtdev.event_handler(&ddata->evtdev);
return IRQ_HANDLED;
}
static struct efm32_clock_event_ddata clock_event_ddata = {
.evtdev = {
.name = "efm32 clockevent",
.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC,
.set_state_shutdown = efm32_clock_event_shutdown,
.set_state_periodic = efm32_clock_event_set_periodic,
.set_state_oneshot = efm32_clock_event_set_oneshot,
.set_next_event = efm32_clock_event_set_next_event,
.rating = 200,
},
};
static int __init efm32_clocksource_init(struct device_node *np)
{
struct clk *clk;
void __iomem *base;
unsigned long rate;
int ret;
clk = of_clk_get(np, 0);
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
pr_err("failed to get clock for clocksource (%d)\n", ret);
goto err_clk_get;
}
ret = clk_prepare_enable(clk);
if (ret) {
pr_err("failed to enable timer clock for clocksource (%d)\n",
ret);
goto err_clk_enable;
}
rate = clk_get_rate(clk);
base = of_iomap(np, 0);
if (!base) {
ret = -EADDRNOTAVAIL;
pr_err("failed to map registers for clocksource\n");
goto err_iomap;
}
writel_relaxed(TIMERn_CTRL_PRESC_1024 |
TIMERn_CTRL_CLKSEL_PRESCHFPERCLK |
TIMERn_CTRL_MODE_UP, base + TIMERn_CTRL);
writel_relaxed(TIMERn_CMD_START, base + TIMERn_CMD);
ret = clocksource_mmio_init(base + TIMERn_CNT, "efm32 timer",
DIV_ROUND_CLOSEST(rate, 1024), 200, 16,
clocksource_mmio_readl_up);
if (ret) {
pr_err("failed to init clocksource (%d)\n", ret);
goto err_clocksource_init;
}
return 0;
err_clocksource_init:
iounmap(base);
err_iomap:
clk_disable_unprepare(clk);
err_clk_enable:
clk_put(clk);
err_clk_get:
return ret;
}
static int __init efm32_clockevent_init(struct device_node *np)
{
struct clk *clk;
void __iomem *base;
unsigned long rate;
int irq;
int ret;
clk = of_clk_get(np, 0);
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
pr_err("failed to get clock for clockevent (%d)\n", ret);
goto err_clk_get;
}
ret = clk_prepare_enable(clk);
if (ret) {
pr_err("failed to enable timer clock for clockevent (%d)\n",
ret);
goto err_clk_enable;
}
rate = clk_get_rate(clk);
base = of_iomap(np, 0);
if (!base) {
ret = -EADDRNOTAVAIL;
pr_err("failed to map registers for clockevent\n");
goto err_iomap;
}
irq = irq_of_parse_and_map(np, 0);
if (!irq) {
ret = -ENOENT;
pr_err("failed to get irq for clockevent\n");
goto err_get_irq;
}
writel_relaxed(TIMERn_IRQ_UF, base + TIMERn_IEN);
clock_event_ddata.base = base;
clock_event_ddata.periodic_top = DIV_ROUND_CLOSEST(rate, 1024 * HZ);
clockevents_config_and_register(&clock_event_ddata.evtdev,
DIV_ROUND_CLOSEST(rate, 1024),
0xf, 0xffff);
ret = request_irq(irq, efm32_clock_event_handler, IRQF_TIMER,
"efm32 clockevent", &clock_event_ddata);
if (ret) {
pr_err("Failed setup irq\n");
goto err_setup_irq;
}
return 0;
err_setup_irq:
err_get_irq:
iounmap(base);
err_iomap:
clk_disable_unprepare(clk);
err_clk_enable:
clk_put(clk);
err_clk_get:
return ret;
}
/*
* This function asserts that we have exactly one clocksource and one
* clock_event_device in the end.
*/
static int __init efm32_timer_init(struct device_node *np)
{
static int has_clocksource, has_clockevent;
int ret = 0;
if (!has_clocksource) {
ret = efm32_clocksource_init(np);
if (!ret) {
has_clocksource = 1;
return 0;
}
}
if (!has_clockevent) {
ret = efm32_clockevent_init(np);
if (!ret) {
has_clockevent = 1;
return 0;
}
}
return ret;
}
TIMER_OF_DECLARE(efm32compat, "efm32,timer", efm32_timer_init);
TIMER_OF_DECLARE(efm32, "energymicro,efm32-timer", efm32_timer_init);