0
0
mirror of https://mirrors.bfsu.edu.cn/git/linux.git synced 2025-01-08 06:44:35 +08:00
linux/drivers/media/tuners/r820t.c
Daniel Kamil Kozar 3da3ee3f0d media: Print chip type explicitly when loading the Rafael Micro r820t module
The module currently prints only "Rafael Micro r820t successfully
identified" when successfully loaded, which might be misleading as the
module actually supports various chip types.

Link: https://lore.kernel.org/linux-media/20211119234401.271193-1-dkk089@gmail.com

Cc: linux-kernel@vger.kernel.org, Daniel Kamil Kozar <dkk089@gmail.com>
Signed-off-by: Daniel Kamil Kozar <dkk089@gmail.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
2021-12-07 11:29:57 +01:00

2407 lines
56 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Rafael Micro R820T driver
//
// Copyright (C) 2013 Mauro Carvalho Chehab
//
// This driver was written from scratch, based on an existing driver
// that it is part of rtl-sdr git tree, released under GPLv2:
// https://groups.google.com/forum/#!topic/ultra-cheap-sdr/Y3rBEOFtHug
// https://github.com/n1gp/gr-baz
//
// From what I understood from the threads, the original driver was converted
// to userspace from a Realtek tree. I couldn't find the original tree.
// However, the original driver look awkward on my eyes. So, I decided to
// write a new version from it from the scratch, while trying to reproduce
// everything found there.
//
// TODO:
// After locking, the original driver seems to have some routines to
// improve reception. This was not implemented here yet.
//
// RF Gain set/get is not implemented.
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/videodev2.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/bitrev.h>
#include "tuner-i2c.h"
#include "r820t.h"
/*
* FIXME: I think that there are only 32 registers, but better safe than
* sorry. After finishing the driver, we may review it.
*/
#define REG_SHADOW_START 5
#define NUM_REGS 27
#define NUM_IMR 5
#define IMR_TRIAL 9
#define VER_NUM 49
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "enable verbose debug messages");
static int no_imr_cal;
module_param(no_imr_cal, int, 0444);
MODULE_PARM_DESC(no_imr_cal, "Disable IMR calibration at module init");
/*
* enums and structures
*/
enum xtal_cap_value {
XTAL_LOW_CAP_30P = 0,
XTAL_LOW_CAP_20P,
XTAL_LOW_CAP_10P,
XTAL_LOW_CAP_0P,
XTAL_HIGH_CAP_0P
};
struct r820t_sect_type {
u8 phase_y;
u8 gain_x;
u16 value;
};
struct r820t_priv {
struct list_head hybrid_tuner_instance_list;
const struct r820t_config *cfg;
struct tuner_i2c_props i2c_props;
struct mutex lock;
u8 regs[NUM_REGS];
u8 buf[NUM_REGS + 1];
enum xtal_cap_value xtal_cap_sel;
u16 pll; /* kHz */
u32 int_freq;
u8 fil_cal_code;
bool imr_done;
bool has_lock;
bool init_done;
struct r820t_sect_type imr_data[NUM_IMR];
/* Store current mode */
u32 delsys;
enum v4l2_tuner_type type;
v4l2_std_id std;
u32 bw; /* in MHz */
};
struct r820t_freq_range {
u32 freq;
u8 open_d;
u8 rf_mux_ploy;
u8 tf_c;
u8 xtal_cap20p;
u8 xtal_cap10p;
u8 xtal_cap0p;
u8 imr_mem; /* Not used, currently */
};
#define VCO_POWER_REF 0x02
#define DIP_FREQ 32000000
/*
* Static constants
*/
static LIST_HEAD(hybrid_tuner_instance_list);
static DEFINE_MUTEX(r820t_list_mutex);
/* Those initial values start from REG_SHADOW_START */
static const u8 r820t_init_array[NUM_REGS] = {
0x83, 0x32, 0x75, /* 05 to 07 */
0xc0, 0x40, 0xd6, 0x6c, /* 08 to 0b */
0xf5, 0x63, 0x75, 0x68, /* 0c to 0f */
0x6c, 0x83, 0x80, 0x00, /* 10 to 13 */
0x0f, 0x00, 0xc0, 0x30, /* 14 to 17 */
0x48, 0xcc, 0x60, 0x00, /* 18 to 1b */
0x54, 0xae, 0x4a, 0xc0 /* 1c to 1f */
};
/* Tuner frequency ranges */
static const struct r820t_freq_range freq_ranges[] = {
{
.freq = 0,
.open_d = 0x08, /* low */
.rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
.tf_c = 0xdf, /* R27[7:0] band2,band0 */
.xtal_cap20p = 0x02, /* R16[1:0] 20pF (10) */
.xtal_cap10p = 0x01,
.xtal_cap0p = 0x00,
.imr_mem = 0,
}, {
.freq = 50, /* Start freq, in MHz */
.open_d = 0x08, /* low */
.rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
.tf_c = 0xbe, /* R27[7:0] band4,band1 */
.xtal_cap20p = 0x02, /* R16[1:0] 20pF (10) */
.xtal_cap10p = 0x01,
.xtal_cap0p = 0x00,
.imr_mem = 0,
}, {
.freq = 55, /* Start freq, in MHz */
.open_d = 0x08, /* low */
.rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
.tf_c = 0x8b, /* R27[7:0] band7,band4 */
.xtal_cap20p = 0x02, /* R16[1:0] 20pF (10) */
.xtal_cap10p = 0x01,
.xtal_cap0p = 0x00,
.imr_mem = 0,
}, {
.freq = 60, /* Start freq, in MHz */
.open_d = 0x08, /* low */
.rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
.tf_c = 0x7b, /* R27[7:0] band8,band4 */
.xtal_cap20p = 0x02, /* R16[1:0] 20pF (10) */
.xtal_cap10p = 0x01,
.xtal_cap0p = 0x00,
.imr_mem = 0,
}, {
.freq = 65, /* Start freq, in MHz */
.open_d = 0x08, /* low */
.rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
.tf_c = 0x69, /* R27[7:0] band9,band6 */
.xtal_cap20p = 0x02, /* R16[1:0] 20pF (10) */
.xtal_cap10p = 0x01,
.xtal_cap0p = 0x00,
.imr_mem = 0,
}, {
.freq = 70, /* Start freq, in MHz */
.open_d = 0x08, /* low */
.rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
.tf_c = 0x58, /* R27[7:0] band10,band7 */
.xtal_cap20p = 0x02, /* R16[1:0] 20pF (10) */
.xtal_cap10p = 0x01,
.xtal_cap0p = 0x00,
.imr_mem = 0,
}, {
.freq = 75, /* Start freq, in MHz */
.open_d = 0x00, /* high */
.rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
.tf_c = 0x44, /* R27[7:0] band11,band11 */
.xtal_cap20p = 0x02, /* R16[1:0] 20pF (10) */
.xtal_cap10p = 0x01,
.xtal_cap0p = 0x00,
.imr_mem = 0,
}, {
.freq = 80, /* Start freq, in MHz */
.open_d = 0x00, /* high */
.rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
.tf_c = 0x44, /* R27[7:0] band11,band11 */
.xtal_cap20p = 0x02, /* R16[1:0] 20pF (10) */
.xtal_cap10p = 0x01,
.xtal_cap0p = 0x00,
.imr_mem = 0,
}, {
.freq = 90, /* Start freq, in MHz */
.open_d = 0x00, /* high */
.rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
.tf_c = 0x34, /* R27[7:0] band12,band11 */
.xtal_cap20p = 0x01, /* R16[1:0] 10pF (01) */
.xtal_cap10p = 0x01,
.xtal_cap0p = 0x00,
.imr_mem = 0,
}, {
.freq = 100, /* Start freq, in MHz */
.open_d = 0x00, /* high */
.rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
.tf_c = 0x34, /* R27[7:0] band12,band11 */
.xtal_cap20p = 0x01, /* R16[1:0] 10pF (01) */
.xtal_cap10p = 0x01,
.xtal_cap0p = 0x00,
.imr_mem = 0,
}, {
.freq = 110, /* Start freq, in MHz */
.open_d = 0x00, /* high */
.rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
.tf_c = 0x24, /* R27[7:0] band13,band11 */
.xtal_cap20p = 0x01, /* R16[1:0] 10pF (01) */
.xtal_cap10p = 0x01,
.xtal_cap0p = 0x00,
.imr_mem = 1,
}, {
.freq = 120, /* Start freq, in MHz */
.open_d = 0x00, /* high */
.rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
.tf_c = 0x24, /* R27[7:0] band13,band11 */
.xtal_cap20p = 0x01, /* R16[1:0] 10pF (01) */
.xtal_cap10p = 0x01,
.xtal_cap0p = 0x00,
.imr_mem = 1,
}, {
.freq = 140, /* Start freq, in MHz */
.open_d = 0x00, /* high */
.rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
.tf_c = 0x14, /* R27[7:0] band14,band11 */
.xtal_cap20p = 0x01, /* R16[1:0] 10pF (01) */
.xtal_cap10p = 0x01,
.xtal_cap0p = 0x00,
.imr_mem = 1,
}, {
.freq = 180, /* Start freq, in MHz */
.open_d = 0x00, /* high */
.rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
.tf_c = 0x13, /* R27[7:0] band14,band12 */
.xtal_cap20p = 0x00, /* R16[1:0] 0pF (00) */
.xtal_cap10p = 0x00,
.xtal_cap0p = 0x00,
.imr_mem = 1,
}, {
.freq = 220, /* Start freq, in MHz */
.open_d = 0x00, /* high */
.rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
.tf_c = 0x13, /* R27[7:0] band14,band12 */
.xtal_cap20p = 0x00, /* R16[1:0] 0pF (00) */
.xtal_cap10p = 0x00,
.xtal_cap0p = 0x00,
.imr_mem = 2,
}, {
.freq = 250, /* Start freq, in MHz */
.open_d = 0x00, /* high */
.rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
.tf_c = 0x11, /* R27[7:0] highest,highest */
.xtal_cap20p = 0x00, /* R16[1:0] 0pF (00) */
.xtal_cap10p = 0x00,
.xtal_cap0p = 0x00,
.imr_mem = 2,
}, {
.freq = 280, /* Start freq, in MHz */
.open_d = 0x00, /* high */
.rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */
.tf_c = 0x00, /* R27[7:0] highest,highest */
.xtal_cap20p = 0x00, /* R16[1:0] 0pF (00) */
.xtal_cap10p = 0x00,
.xtal_cap0p = 0x00,
.imr_mem = 2,
}, {
.freq = 310, /* Start freq, in MHz */
.open_d = 0x00, /* high */
.rf_mux_ploy = 0x41, /* R26[7:6]=1 (bypass) R26[1:0]=1 (middle) */
.tf_c = 0x00, /* R27[7:0] highest,highest */
.xtal_cap20p = 0x00, /* R16[1:0] 0pF (00) */
.xtal_cap10p = 0x00,
.xtal_cap0p = 0x00,
.imr_mem = 2,
}, {
.freq = 450, /* Start freq, in MHz */
.open_d = 0x00, /* high */
.rf_mux_ploy = 0x41, /* R26[7:6]=1 (bypass) R26[1:0]=1 (middle) */
.tf_c = 0x00, /* R27[7:0] highest,highest */
.xtal_cap20p = 0x00, /* R16[1:0] 0pF (00) */
.xtal_cap10p = 0x00,
.xtal_cap0p = 0x00,
.imr_mem = 3,
}, {
.freq = 588, /* Start freq, in MHz */
.open_d = 0x00, /* high */
.rf_mux_ploy = 0x40, /* R26[7:6]=1 (bypass) R26[1:0]=0 (highest) */
.tf_c = 0x00, /* R27[7:0] highest,highest */
.xtal_cap20p = 0x00, /* R16[1:0] 0pF (00) */
.xtal_cap10p = 0x00,
.xtal_cap0p = 0x00,
.imr_mem = 3,
}, {
.freq = 650, /* Start freq, in MHz */
.open_d = 0x00, /* high */
.rf_mux_ploy = 0x40, /* R26[7:6]=1 (bypass) R26[1:0]=0 (highest) */
.tf_c = 0x00, /* R27[7:0] highest,highest */
.xtal_cap20p = 0x00, /* R16[1:0] 0pF (00) */
.xtal_cap10p = 0x00,
.xtal_cap0p = 0x00,
.imr_mem = 4,
}
};
static int r820t_xtal_capacitor[][2] = {
{ 0x0b, XTAL_LOW_CAP_30P },
{ 0x02, XTAL_LOW_CAP_20P },
{ 0x01, XTAL_LOW_CAP_10P },
{ 0x00, XTAL_LOW_CAP_0P },
{ 0x10, XTAL_HIGH_CAP_0P },
};
static const char *r820t_chip_enum_to_str(enum r820t_chip chip)
{
switch (chip) {
case CHIP_R820T:
return "R820T";
case CHIP_R620D:
return "R620D";
case CHIP_R828D:
return "R828D";
case CHIP_R828:
return "R828";
case CHIP_R828S:
return "R828S";
case CHIP_R820C:
return "R820C";
default:
return "<unknown>";
}
}
/*
* I2C read/write code and shadow registers logic
*/
static void shadow_store(struct r820t_priv *priv, u8 reg, const u8 *val,
int len)
{
int r = reg - REG_SHADOW_START;
if (r < 0) {
len += r;
r = 0;
}
if (len <= 0)
return;
if (len > NUM_REGS - r)
len = NUM_REGS - r;
tuner_dbg("%s: prev reg=%02x len=%d: %*ph\n",
__func__, r + REG_SHADOW_START, len, len, val);
memcpy(&priv->regs[r], val, len);
}
static int r820t_write(struct r820t_priv *priv, u8 reg, const u8 *val,
int len)
{
int rc, size, pos = 0;
/* Store the shadow registers */
shadow_store(priv, reg, val, len);
do {
if (len > priv->cfg->max_i2c_msg_len - 1)
size = priv->cfg->max_i2c_msg_len - 1;
else
size = len;
/* Fill I2C buffer */
priv->buf[0] = reg;
memcpy(&priv->buf[1], &val[pos], size);
rc = tuner_i2c_xfer_send(&priv->i2c_props, priv->buf, size + 1);
if (rc != size + 1) {
tuner_info("%s: i2c wr failed=%d reg=%02x len=%d: %*ph\n",
__func__, rc, reg, size, size, &priv->buf[1]);
if (rc < 0)
return rc;
return -EREMOTEIO;
}
tuner_dbg("%s: i2c wr reg=%02x len=%d: %*ph\n",
__func__, reg, size, size, &priv->buf[1]);
reg += size;
len -= size;
pos += size;
} while (len > 0);
return 0;
}
static inline int r820t_write_reg(struct r820t_priv *priv, u8 reg, u8 val)
{
u8 tmp = val; /* work around GCC PR81715 with asan-stack=1 */
return r820t_write(priv, reg, &tmp, 1);
}
static int r820t_read_cache_reg(struct r820t_priv *priv, int reg)
{
reg -= REG_SHADOW_START;
if (reg >= 0 && reg < NUM_REGS)
return priv->regs[reg];
else
return -EINVAL;
}
static inline int r820t_write_reg_mask(struct r820t_priv *priv, u8 reg, u8 val,
u8 bit_mask)
{
u8 tmp = val;
int rc = r820t_read_cache_reg(priv, reg);
if (rc < 0)
return rc;
tmp = (rc & ~bit_mask) | (tmp & bit_mask);
return r820t_write(priv, reg, &tmp, 1);
}
static int r820t_read(struct r820t_priv *priv, u8 reg, u8 *val, int len)
{
int rc, i;
u8 *p = &priv->buf[1];
priv->buf[0] = reg;
rc = tuner_i2c_xfer_send_recv(&priv->i2c_props, priv->buf, 1, p, len);
if (rc != len) {
tuner_info("%s: i2c rd failed=%d reg=%02x len=%d: %*ph\n",
__func__, rc, reg, len, len, p);
if (rc < 0)
return rc;
return -EREMOTEIO;
}
/* Copy data to the output buffer */
for (i = 0; i < len; i++)
val[i] = bitrev8(p[i]);
tuner_dbg("%s: i2c rd reg=%02x len=%d: %*ph\n",
__func__, reg, len, len, val);
return 0;
}
/*
* r820t tuning logic
*/
static int r820t_set_mux(struct r820t_priv *priv, u32 freq)
{
const struct r820t_freq_range *range;
int i, rc;
u8 val, reg08, reg09;
/* Get the proper frequency range */
freq = freq / 1000000;
for (i = 0; i < ARRAY_SIZE(freq_ranges) - 1; i++) {
if (freq < freq_ranges[i + 1].freq)
break;
}
range = &freq_ranges[i];
tuner_dbg("set r820t range#%d for frequency %d MHz\n", i, freq);
/* Open Drain */
rc = r820t_write_reg_mask(priv, 0x17, range->open_d, 0x08);
if (rc < 0)
return rc;
/* RF_MUX,Polymux */
rc = r820t_write_reg_mask(priv, 0x1a, range->rf_mux_ploy, 0xc3);
if (rc < 0)
return rc;
/* TF BAND */
rc = r820t_write_reg(priv, 0x1b, range->tf_c);
if (rc < 0)
return rc;
/* XTAL CAP & Drive */
switch (priv->xtal_cap_sel) {
case XTAL_LOW_CAP_30P:
case XTAL_LOW_CAP_20P:
val = range->xtal_cap20p | 0x08;
break;
case XTAL_LOW_CAP_10P:
val = range->xtal_cap10p | 0x08;
break;
case XTAL_HIGH_CAP_0P:
val = range->xtal_cap0p | 0x00;
break;
default:
case XTAL_LOW_CAP_0P:
val = range->xtal_cap0p | 0x08;
break;
}
rc = r820t_write_reg_mask(priv, 0x10, val, 0x0b);
if (rc < 0)
return rc;
if (priv->imr_done) {
reg08 = priv->imr_data[range->imr_mem].gain_x;
reg09 = priv->imr_data[range->imr_mem].phase_y;
} else {
reg08 = 0;
reg09 = 0;
}
rc = r820t_write_reg_mask(priv, 0x08, reg08, 0x3f);
if (rc < 0)
return rc;
rc = r820t_write_reg_mask(priv, 0x09, reg09, 0x3f);
return rc;
}
static int r820t_set_pll(struct r820t_priv *priv, enum v4l2_tuner_type type,
u32 freq)
{
u32 vco_freq;
int rc, i;
unsigned sleep_time = 10000;
u32 vco_fra; /* VCO contribution by SDM (kHz) */
u32 vco_min = 1770000;
u32 vco_max = vco_min * 2;
u32 pll_ref;
u16 n_sdm = 2;
u16 sdm = 0;
u8 mix_div = 2;
u8 div_buf = 0;
u8 div_num = 0;
u8 refdiv2 = 0;
u8 ni, si, nint, vco_fine_tune, val;
u8 data[5];
/* Frequency in kHz */
freq = freq / 1000;
pll_ref = priv->cfg->xtal / 1000;
#if 0
/* Doesn't exist on rtl-sdk, and on field tests, caused troubles */
if ((priv->cfg->rafael_chip == CHIP_R620D) ||
(priv->cfg->rafael_chip == CHIP_R828D) ||
(priv->cfg->rafael_chip == CHIP_R828)) {
/* ref set refdiv2, reffreq = Xtal/2 on ATV application */
if (type != V4L2_TUNER_DIGITAL_TV) {
pll_ref /= 2;
refdiv2 = 0x10;
sleep_time = 20000;
}
} else {
if (priv->cfg->xtal > 24000000) {
pll_ref /= 2;
refdiv2 = 0x10;
}
}
#endif
rc = r820t_write_reg_mask(priv, 0x10, refdiv2, 0x10);
if (rc < 0)
return rc;
/* set pll autotune = 128kHz */
rc = r820t_write_reg_mask(priv, 0x1a, 0x00, 0x0c);
if (rc < 0)
return rc;
/* set VCO current = 100 */
rc = r820t_write_reg_mask(priv, 0x12, 0x80, 0xe0);
if (rc < 0)
return rc;
/* Calculate divider */
while (mix_div <= 64) {
if (((freq * mix_div) >= vco_min) &&
((freq * mix_div) < vco_max)) {
div_buf = mix_div;
while (div_buf > 2) {
div_buf = div_buf >> 1;
div_num++;
}
break;
}
mix_div = mix_div << 1;
}
rc = r820t_read(priv, 0x00, data, sizeof(data));
if (rc < 0)
return rc;
vco_fine_tune = (data[4] & 0x30) >> 4;
tuner_dbg("mix_div=%d div_num=%d vco_fine_tune=%d\n",
mix_div, div_num, vco_fine_tune);
/*
* XXX: R828D/16MHz seems to have always vco_fine_tune=1.
* Due to that, this calculation goes wrong.
*/
if (priv->cfg->rafael_chip != CHIP_R828D) {
if (vco_fine_tune > VCO_POWER_REF)
div_num = div_num - 1;
else if (vco_fine_tune < VCO_POWER_REF)
div_num = div_num + 1;
}
rc = r820t_write_reg_mask(priv, 0x10, div_num << 5, 0xe0);
if (rc < 0)
return rc;
vco_freq = freq * mix_div;
nint = vco_freq / (2 * pll_ref);
vco_fra = vco_freq - 2 * pll_ref * nint;
/* boundary spur prevention */
if (vco_fra < pll_ref / 64) {
vco_fra = 0;
} else if (vco_fra > pll_ref * 127 / 64) {
vco_fra = 0;
nint++;
} else if ((vco_fra > pll_ref * 127 / 128) && (vco_fra < pll_ref)) {
vco_fra = pll_ref * 127 / 128;
} else if ((vco_fra > pll_ref) && (vco_fra < pll_ref * 129 / 128)) {
vco_fra = pll_ref * 129 / 128;
}
ni = (nint - 13) / 4;
si = nint - 4 * ni - 13;
rc = r820t_write_reg(priv, 0x14, ni + (si << 6));
if (rc < 0)
return rc;
/* pw_sdm */
if (!vco_fra)
val = 0x08;
else
val = 0x00;
rc = r820t_write_reg_mask(priv, 0x12, val, 0x08);
if (rc < 0)
return rc;
/* sdm calculator */
while (vco_fra > 1) {
if (vco_fra > (2 * pll_ref / n_sdm)) {
sdm = sdm + 32768 / (n_sdm / 2);
vco_fra = vco_fra - 2 * pll_ref / n_sdm;
if (n_sdm >= 0x8000)
break;
}
n_sdm = n_sdm << 1;
}
tuner_dbg("freq %d kHz, pll ref %d%s, sdm=0x%04x\n",
freq, pll_ref, refdiv2 ? " / 2" : "", sdm);
rc = r820t_write_reg(priv, 0x16, sdm >> 8);
if (rc < 0)
return rc;
rc = r820t_write_reg(priv, 0x15, sdm & 0xff);
if (rc < 0)
return rc;
for (i = 0; i < 2; i++) {
usleep_range(sleep_time, sleep_time + 1000);
/* Check if PLL has locked */
rc = r820t_read(priv, 0x00, data, 3);
if (rc < 0)
return rc;
if (data[2] & 0x40)
break;
if (!i) {
/* Didn't lock. Increase VCO current */
rc = r820t_write_reg_mask(priv, 0x12, 0x60, 0xe0);
if (rc < 0)
return rc;
}
}
if (!(data[2] & 0x40)) {
priv->has_lock = false;
return 0;
}
priv->has_lock = true;
tuner_dbg("tuner has lock at frequency %d kHz\n", freq);
/* set pll autotune = 8kHz */
rc = r820t_write_reg_mask(priv, 0x1a, 0x08, 0x08);
return rc;
}
static int r820t_sysfreq_sel(struct r820t_priv *priv, u32 freq,
enum v4l2_tuner_type type,
v4l2_std_id std,
u32 delsys)
{
int rc;
u8 mixer_top, lna_top, cp_cur, div_buf_cur, lna_vth_l, mixer_vth_l;
u8 air_cable1_in, cable2_in, pre_dect, lna_discharge, filter_cur;
tuner_dbg("adjusting tuner parameters for the standard\n");
switch (delsys) {
case SYS_DVBT:
if ((freq == 506000000) || (freq == 666000000) ||
(freq == 818000000)) {
mixer_top = 0x14; /* mixer top:14 , top-1, low-discharge */
lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */
cp_cur = 0x28; /* 101, 0.2 */
div_buf_cur = 0x20; /* 10, 200u */
} else {
mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */
lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */
cp_cur = 0x38; /* 111, auto */
div_buf_cur = 0x30; /* 11, 150u */
}
lna_vth_l = 0x53; /* lna vth 0.84 , vtl 0.64 */
mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */
air_cable1_in = 0x00;
cable2_in = 0x00;
pre_dect = 0x40;
lna_discharge = 14;
filter_cur = 0x40; /* 10, low */
break;
case SYS_DVBT2:
mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */
lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */
lna_vth_l = 0x53; /* lna vth 0.84 , vtl 0.64 */
mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */
air_cable1_in = 0x00;
cable2_in = 0x00;
pre_dect = 0x40;
lna_discharge = 14;
cp_cur = 0x38; /* 111, auto */
div_buf_cur = 0x30; /* 11, 150u */
filter_cur = 0x40; /* 10, low */
break;
case SYS_ISDBT:
mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */
lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */
lna_vth_l = 0x75; /* lna vth 1.04 , vtl 0.84 */
mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */
air_cable1_in = 0x00;
cable2_in = 0x00;
pre_dect = 0x40;
lna_discharge = 14;
cp_cur = 0x38; /* 111, auto */
div_buf_cur = 0x30; /* 11, 150u */
filter_cur = 0x40; /* 10, low */
break;
case SYS_DVBC_ANNEX_A:
mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */
lna_top = 0xe5;
lna_vth_l = 0x62;
mixer_vth_l = 0x75;
air_cable1_in = 0x60;
cable2_in = 0x00;
pre_dect = 0x40;
lna_discharge = 14;
cp_cur = 0x38; /* 111, auto */
div_buf_cur = 0x30; /* 11, 150u */
filter_cur = 0x40; /* 10, low */
break;
default: /* DVB-T 8M */
mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */
lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */
lna_vth_l = 0x53; /* lna vth 0.84 , vtl 0.64 */
mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */
air_cable1_in = 0x00;
cable2_in = 0x00;
pre_dect = 0x40;
lna_discharge = 14;
cp_cur = 0x38; /* 111, auto */
div_buf_cur = 0x30; /* 11, 150u */
filter_cur = 0x40; /* 10, low */
break;
}
if (priv->cfg->use_diplexer &&
((priv->cfg->rafael_chip == CHIP_R820T) ||
(priv->cfg->rafael_chip == CHIP_R828S) ||
(priv->cfg->rafael_chip == CHIP_R820C))) {
if (freq > DIP_FREQ)
air_cable1_in = 0x00;
else
air_cable1_in = 0x60;
cable2_in = 0x00;
}
if (priv->cfg->use_predetect) {
rc = r820t_write_reg_mask(priv, 0x06, pre_dect, 0x40);
if (rc < 0)
return rc;
}
rc = r820t_write_reg_mask(priv, 0x1d, lna_top, 0xc7);
if (rc < 0)
return rc;
rc = r820t_write_reg_mask(priv, 0x1c, mixer_top, 0xf8);
if (rc < 0)
return rc;
rc = r820t_write_reg(priv, 0x0d, lna_vth_l);
if (rc < 0)
return rc;
rc = r820t_write_reg(priv, 0x0e, mixer_vth_l);
if (rc < 0)
return rc;
/* Air-IN only for Astrometa */
rc = r820t_write_reg_mask(priv, 0x05, air_cable1_in, 0x60);
if (rc < 0)
return rc;
rc = r820t_write_reg_mask(priv, 0x06, cable2_in, 0x08);
if (rc < 0)
return rc;
rc = r820t_write_reg_mask(priv, 0x11, cp_cur, 0x38);
if (rc < 0)
return rc;
rc = r820t_write_reg_mask(priv, 0x17, div_buf_cur, 0x30);
if (rc < 0)
return rc;
rc = r820t_write_reg_mask(priv, 0x0a, filter_cur, 0x60);
if (rc < 0)
return rc;
/*
* Original driver initializes regs 0x05 and 0x06 with the
* same value again on this point. Probably, it is just an
* error there
*/
/*
* Set LNA
*/
tuner_dbg("adjusting LNA parameters\n");
if (type != V4L2_TUNER_ANALOG_TV) {
/* LNA TOP: lowest */
rc = r820t_write_reg_mask(priv, 0x1d, 0, 0x38);
if (rc < 0)
return rc;
/* 0: normal mode */
rc = r820t_write_reg_mask(priv, 0x1c, 0, 0x04);
if (rc < 0)
return rc;
/* 0: PRE_DECT off */
rc = r820t_write_reg_mask(priv, 0x06, 0, 0x40);
if (rc < 0)
return rc;
/* agc clk 250hz */
rc = r820t_write_reg_mask(priv, 0x1a, 0x30, 0x30);
if (rc < 0)
return rc;
msleep(250);
/* write LNA TOP = 3 */
rc = r820t_write_reg_mask(priv, 0x1d, 0x18, 0x38);
if (rc < 0)
return rc;
/*
* write discharge mode
* FIXME: IMHO, the mask here is wrong, but it matches
* what's there at the original driver
*/
rc = r820t_write_reg_mask(priv, 0x1c, mixer_top, 0x04);
if (rc < 0)
return rc;
/* LNA discharge current */
rc = r820t_write_reg_mask(priv, 0x1e, lna_discharge, 0x1f);
if (rc < 0)
return rc;
/* agc clk 60hz */
rc = r820t_write_reg_mask(priv, 0x1a, 0x20, 0x30);
if (rc < 0)
return rc;
} else {
/* PRE_DECT off */
rc = r820t_write_reg_mask(priv, 0x06, 0, 0x40);
if (rc < 0)
return rc;
/* write LNA TOP */
rc = r820t_write_reg_mask(priv, 0x1d, lna_top, 0x38);
if (rc < 0)
return rc;
/*
* write discharge mode
* FIXME: IMHO, the mask here is wrong, but it matches
* what's there at the original driver
*/
rc = r820t_write_reg_mask(priv, 0x1c, mixer_top, 0x04);
if (rc < 0)
return rc;
/* LNA discharge current */
rc = r820t_write_reg_mask(priv, 0x1e, lna_discharge, 0x1f);
if (rc < 0)
return rc;
/* agc clk 1Khz, external det1 cap 1u */
rc = r820t_write_reg_mask(priv, 0x1a, 0x00, 0x30);
if (rc < 0)
return rc;
rc = r820t_write_reg_mask(priv, 0x10, 0x00, 0x04);
if (rc < 0)
return rc;
}
return 0;
}
static int r820t_set_tv_standard(struct r820t_priv *priv,
unsigned bw,
enum v4l2_tuner_type type,
v4l2_std_id std, u32 delsys)
{
int rc, i;
u32 if_khz, filt_cal_lo;
u8 data[5], val;
u8 filt_gain, img_r, filt_q, hp_cor, ext_enable, loop_through;
u8 lt_att, flt_ext_widest, polyfil_cur;
bool need_calibration;
tuner_dbg("selecting the delivery system\n");
if (delsys == SYS_ISDBT) {
if_khz = 4063;
filt_cal_lo = 59000;
filt_gain = 0x10; /* +3db, 6mhz on */
img_r = 0x00; /* image negative */
filt_q = 0x10; /* r10[4]:low q(1'b1) */
hp_cor = 0x6a; /* 1.7m disable, +2cap, 1.25mhz */
ext_enable = 0x40; /* r30[6], ext enable; r30[5]:0 ext at lna max */
loop_through = 0x00; /* r5[7], lt on */
lt_att = 0x00; /* r31[7], lt att enable */
flt_ext_widest = 0x80; /* r15[7]: flt_ext_wide on */
polyfil_cur = 0x60; /* r25[6:5]:min */
} else if (delsys == SYS_DVBC_ANNEX_A) {
if_khz = 5070;
filt_cal_lo = 73500;
filt_gain = 0x10; /* +3db, 6mhz on */
img_r = 0x00; /* image negative */
filt_q = 0x10; /* r10[4]:low q(1'b1) */
hp_cor = 0x0b; /* 1.7m disable, +0cap, 1.0mhz */
ext_enable = 0x40; /* r30[6]=1 ext enable; r30[5]:1 ext at lna max-1 */
loop_through = 0x00; /* r5[7], lt on */
lt_att = 0x00; /* r31[7], lt att enable */
flt_ext_widest = 0x00; /* r15[7]: flt_ext_wide off */
polyfil_cur = 0x60; /* r25[6:5]:min */
} else if (delsys == SYS_DVBC_ANNEX_C) {
if_khz = 4063;
filt_cal_lo = 55000;
filt_gain = 0x10; /* +3db, 6mhz on */
img_r = 0x00; /* image negative */
filt_q = 0x10; /* r10[4]:low q(1'b1) */
hp_cor = 0x6a; /* 1.7m disable, +0cap, 1.0mhz */
ext_enable = 0x40; /* r30[6]=1 ext enable; r30[5]:1 ext at lna max-1 */
loop_through = 0x00; /* r5[7], lt on */
lt_att = 0x00; /* r31[7], lt att enable */
flt_ext_widest = 0x80; /* r15[7]: flt_ext_wide on */
polyfil_cur = 0x60; /* r25[6:5]:min */
} else {
if (bw <= 6) {
if_khz = 3570;
filt_cal_lo = 56000; /* 52000->56000 */
filt_gain = 0x10; /* +3db, 6mhz on */
img_r = 0x00; /* image negative */
filt_q = 0x10; /* r10[4]:low q(1'b1) */
hp_cor = 0x6b; /* 1.7m disable, +2cap, 1.0mhz */
ext_enable = 0x60; /* r30[6]=1 ext enable; r30[5]:1 ext at lna max-1 */
loop_through = 0x00; /* r5[7], lt on */
lt_att = 0x00; /* r31[7], lt att enable */
flt_ext_widest = 0x00; /* r15[7]: flt_ext_wide off */
polyfil_cur = 0x60; /* r25[6:5]:min */
} else if (bw == 7) {
#if 0
/*
* There are two 7 MHz tables defined on the original
* driver, but just the second one seems to be visible
* by rtl2832. Keep this one here commented, as it
* might be needed in the future
*/
if_khz = 4070;
filt_cal_lo = 60000;
filt_gain = 0x10; /* +3db, 6mhz on */
img_r = 0x00; /* image negative */
filt_q = 0x10; /* r10[4]:low q(1'b1) */
hp_cor = 0x2b; /* 1.7m disable, +1cap, 1.0mhz */
ext_enable = 0x60; /* r30[6]=1 ext enable; r30[5]:1 ext at lna max-1 */
loop_through = 0x00; /* r5[7], lt on */
lt_att = 0x00; /* r31[7], lt att enable */
flt_ext_widest = 0x00; /* r15[7]: flt_ext_wide off */
polyfil_cur = 0x60; /* r25[6:5]:min */
#endif
/* 7 MHz, second table */
if_khz = 4570;
filt_cal_lo = 63000;
filt_gain = 0x10; /* +3db, 6mhz on */
img_r = 0x00; /* image negative */
filt_q = 0x10; /* r10[4]:low q(1'b1) */
hp_cor = 0x2a; /* 1.7m disable, +1cap, 1.25mhz */
ext_enable = 0x60; /* r30[6]=1 ext enable; r30[5]:1 ext at lna max-1 */
loop_through = 0x00; /* r5[7], lt on */
lt_att = 0x00; /* r31[7], lt att enable */
flt_ext_widest = 0x00; /* r15[7]: flt_ext_wide off */
polyfil_cur = 0x60; /* r25[6:5]:min */
} else {
if_khz = 4570;
filt_cal_lo = 68500;
filt_gain = 0x10; /* +3db, 6mhz on */
img_r = 0x00; /* image negative */
filt_q = 0x10; /* r10[4]:low q(1'b1) */
hp_cor = 0x0b; /* 1.7m disable, +0cap, 1.0mhz */
ext_enable = 0x60; /* r30[6]=1 ext enable; r30[5]:1 ext at lna max-1 */
loop_through = 0x00; /* r5[7], lt on */
lt_att = 0x00; /* r31[7], lt att enable */
flt_ext_widest = 0x00; /* r15[7]: flt_ext_wide off */
polyfil_cur = 0x60; /* r25[6:5]:min */
}
}
/* Initialize the shadow registers */
memcpy(priv->regs, r820t_init_array, sizeof(r820t_init_array));
/* Init Flag & Xtal_check Result */
if (priv->imr_done)
val = 1 | priv->xtal_cap_sel << 1;
else
val = 0;
rc = r820t_write_reg_mask(priv, 0x0c, val, 0x0f);
if (rc < 0)
return rc;
/* version */
rc = r820t_write_reg_mask(priv, 0x13, VER_NUM, 0x3f);
if (rc < 0)
return rc;
/* for LT Gain test */
if (type != V4L2_TUNER_ANALOG_TV) {
rc = r820t_write_reg_mask(priv, 0x1d, 0x00, 0x38);
if (rc < 0)
return rc;
usleep_range(1000, 2000);
}
priv->int_freq = if_khz * 1000;
/* Check if standard changed. If so, filter calibration is needed */
if (type != priv->type)
need_calibration = true;
else if ((type == V4L2_TUNER_ANALOG_TV) && (std != priv->std))
need_calibration = true;
else if ((type == V4L2_TUNER_DIGITAL_TV) &&
((delsys != priv->delsys) || bw != priv->bw))
need_calibration = true;
else
need_calibration = false;
if (need_calibration) {
tuner_dbg("calibrating the tuner\n");
for (i = 0; i < 2; i++) {
/* Set filt_cap */
rc = r820t_write_reg_mask(priv, 0x0b, hp_cor, 0x60);
if (rc < 0)
return rc;
/* set cali clk =on */
rc = r820t_write_reg_mask(priv, 0x0f, 0x04, 0x04);
if (rc < 0)
return rc;
/* X'tal cap 0pF for PLL */
rc = r820t_write_reg_mask(priv, 0x10, 0x00, 0x03);
if (rc < 0)
return rc;
rc = r820t_set_pll(priv, type, filt_cal_lo * 1000);
if (rc < 0 || !priv->has_lock)
return rc;
/* Start Trigger */
rc = r820t_write_reg_mask(priv, 0x0b, 0x10, 0x10);
if (rc < 0)
return rc;
usleep_range(1000, 2000);
/* Stop Trigger */
rc = r820t_write_reg_mask(priv, 0x0b, 0x00, 0x10);
if (rc < 0)
return rc;
/* set cali clk =off */
rc = r820t_write_reg_mask(priv, 0x0f, 0x00, 0x04);
if (rc < 0)
return rc;
/* Check if calibration worked */
rc = r820t_read(priv, 0x00, data, sizeof(data));
if (rc < 0)
return rc;
priv->fil_cal_code = data[4] & 0x0f;
if (priv->fil_cal_code && priv->fil_cal_code != 0x0f)
break;
}
/* narrowest */
if (priv->fil_cal_code == 0x0f)
priv->fil_cal_code = 0;
}
rc = r820t_write_reg_mask(priv, 0x0a,
filt_q | priv->fil_cal_code, 0x1f);
if (rc < 0)
return rc;
/* Set BW, Filter_gain, & HP corner */
rc = r820t_write_reg_mask(priv, 0x0b, hp_cor, 0xef);
if (rc < 0)
return rc;
/* Set Img_R */
rc = r820t_write_reg_mask(priv, 0x07, img_r, 0x80);
if (rc < 0)
return rc;
/* Set filt_3dB, V6MHz */
rc = r820t_write_reg_mask(priv, 0x06, filt_gain, 0x30);
if (rc < 0)
return rc;
/* channel filter extension */
rc = r820t_write_reg_mask(priv, 0x1e, ext_enable, 0x60);
if (rc < 0)
return rc;
/* Loop through */
rc = r820t_write_reg_mask(priv, 0x05, loop_through, 0x80);
if (rc < 0)
return rc;
/* Loop through attenuation */
rc = r820t_write_reg_mask(priv, 0x1f, lt_att, 0x80);
if (rc < 0)
return rc;
/* filter extension widest */
rc = r820t_write_reg_mask(priv, 0x0f, flt_ext_widest, 0x80);
if (rc < 0)
return rc;
/* RF poly filter current */
rc = r820t_write_reg_mask(priv, 0x19, polyfil_cur, 0x60);
if (rc < 0)
return rc;
/* Store current standard. If it changes, re-calibrate the tuner */
priv->delsys = delsys;
priv->type = type;
priv->std = std;
priv->bw = bw;
return 0;
}
static int r820t_read_gain(struct r820t_priv *priv)
{
u8 data[4];
int rc;
rc = r820t_read(priv, 0x00, data, sizeof(data));
if (rc < 0)
return rc;
return ((data[3] & 0x08) << 1) + ((data[3] & 0xf0) >> 4);
}
#if 0
/* FIXME: This routine requires more testing */
/*
* measured with a Racal 6103E GSM test set at 928 MHz with -60 dBm
* input power, for raw results see:
* http://steve-m.de/projects/rtl-sdr/gain_measurement/r820t/
*/
static const int r820t_lna_gain_steps[] = {
0, 9, 13, 40, 38, 13, 31, 22, 26, 31, 26, 14, 19, 5, 35, 13
};
static const int r820t_mixer_gain_steps[] = {
0, 5, 10, 10, 19, 9, 10, 25, 17, 10, 8, 16, 13, 6, 3, -8
};
static int r820t_set_gain_mode(struct r820t_priv *priv,
bool set_manual_gain,
int gain)
{
int rc;
if (set_manual_gain) {
int i, total_gain = 0;
uint8_t mix_index = 0, lna_index = 0;
u8 data[4];
/* LNA auto off */
rc = r820t_write_reg_mask(priv, 0x05, 0x10, 0x10);
if (rc < 0)
return rc;
/* Mixer auto off */
rc = r820t_write_reg_mask(priv, 0x07, 0, 0x10);
if (rc < 0)
return rc;
rc = r820t_read(priv, 0x00, data, sizeof(data));
if (rc < 0)
return rc;
/* set fixed VGA gain for now (16.3 dB) */
rc = r820t_write_reg_mask(priv, 0x0c, 0x08, 0x9f);
if (rc < 0)
return rc;
for (i = 0; i < 15; i++) {
if (total_gain >= gain)
break;
total_gain += r820t_lna_gain_steps[++lna_index];
if (total_gain >= gain)
break;
total_gain += r820t_mixer_gain_steps[++mix_index];
}
/* set LNA gain */
rc = r820t_write_reg_mask(priv, 0x05, lna_index, 0x0f);
if (rc < 0)
return rc;
/* set Mixer gain */
rc = r820t_write_reg_mask(priv, 0x07, mix_index, 0x0f);
if (rc < 0)
return rc;
} else {
/* LNA */
rc = r820t_write_reg_mask(priv, 0x05, 0, 0x10);
if (rc < 0)
return rc;
/* Mixer */
rc = r820t_write_reg_mask(priv, 0x07, 0x10, 0x10);
if (rc < 0)
return rc;
/* set fixed VGA gain for now (26.5 dB) */
rc = r820t_write_reg_mask(priv, 0x0c, 0x0b, 0x9f);
if (rc < 0)
return rc;
}
return 0;
}
#endif
static int generic_set_freq(struct dvb_frontend *fe,
u32 freq /* in HZ */,
unsigned bw,
enum v4l2_tuner_type type,
v4l2_std_id std, u32 delsys)
{
struct r820t_priv *priv = fe->tuner_priv;
int rc;
u32 lo_freq;
tuner_dbg("should set frequency to %d kHz, bw %d MHz\n",
freq / 1000, bw);
rc = r820t_set_tv_standard(priv, bw, type, std, delsys);
if (rc < 0)
goto err;
if ((type == V4L2_TUNER_ANALOG_TV) && (std == V4L2_STD_SECAM_LC))
lo_freq = freq - priv->int_freq;
else
lo_freq = freq + priv->int_freq;
rc = r820t_set_mux(priv, lo_freq);
if (rc < 0)
goto err;
rc = r820t_set_pll(priv, type, lo_freq);
if (rc < 0 || !priv->has_lock)
goto err;
rc = r820t_sysfreq_sel(priv, freq, type, std, delsys);
if (rc < 0)
goto err;
tuner_dbg("%s: PLL locked on frequency %d Hz, gain=%d\n",
__func__, freq, r820t_read_gain(priv));
err:
if (rc < 0)
tuner_dbg("%s: failed=%d\n", __func__, rc);
return rc;
}
/*
* r820t standby logic
*/
static int r820t_standby(struct r820t_priv *priv)
{
int rc;
/* If device was not initialized yet, don't need to standby */
if (!priv->init_done)
return 0;
rc = r820t_write_reg(priv, 0x06, 0xb1);
if (rc < 0)
return rc;
rc = r820t_write_reg(priv, 0x05, 0x03);
if (rc < 0)
return rc;
rc = r820t_write_reg(priv, 0x07, 0x3a);
if (rc < 0)
return rc;
rc = r820t_write_reg(priv, 0x08, 0x40);
if (rc < 0)
return rc;
rc = r820t_write_reg(priv, 0x09, 0xc0);
if (rc < 0)
return rc;
rc = r820t_write_reg(priv, 0x0a, 0x36);
if (rc < 0)
return rc;
rc = r820t_write_reg(priv, 0x0c, 0x35);
if (rc < 0)
return rc;
rc = r820t_write_reg(priv, 0x0f, 0x68);
if (rc < 0)
return rc;
rc = r820t_write_reg(priv, 0x11, 0x03);
if (rc < 0)
return rc;
rc = r820t_write_reg(priv, 0x17, 0xf4);
if (rc < 0)
return rc;
rc = r820t_write_reg(priv, 0x19, 0x0c);
/* Force initial calibration */
priv->type = -1;
return rc;
}
/*
* r820t device init logic
*/
static int r820t_xtal_check(struct r820t_priv *priv)
{
int rc, i;
u8 data[3], val;
/* Initialize the shadow registers */
memcpy(priv->regs, r820t_init_array, sizeof(r820t_init_array));
/* cap 30pF & Drive Low */
rc = r820t_write_reg_mask(priv, 0x10, 0x0b, 0x0b);
if (rc < 0)
return rc;
/* set pll autotune = 128kHz */
rc = r820t_write_reg_mask(priv, 0x1a, 0x00, 0x0c);
if (rc < 0)
return rc;
/* set manual initial reg = 111111; */
rc = r820t_write_reg_mask(priv, 0x13, 0x7f, 0x7f);
if (rc < 0)
return rc;
/* set auto */
rc = r820t_write_reg_mask(priv, 0x13, 0x00, 0x40);
if (rc < 0)
return rc;
/* Try several xtal capacitor alternatives */
for (i = 0; i < ARRAY_SIZE(r820t_xtal_capacitor); i++) {
rc = r820t_write_reg_mask(priv, 0x10,
r820t_xtal_capacitor[i][0], 0x1b);
if (rc < 0)
return rc;
usleep_range(5000, 6000);
rc = r820t_read(priv, 0x00, data, sizeof(data));
if (rc < 0)
return rc;
if (!(data[2] & 0x40))
continue;
val = data[2] & 0x3f;
if (priv->cfg->xtal == 16000000 && (val > 29 || val < 23))
break;
if (val != 0x3f)
break;
}
if (i == ARRAY_SIZE(r820t_xtal_capacitor))
return -EINVAL;
return r820t_xtal_capacitor[i][1];
}
static int r820t_imr_prepare(struct r820t_priv *priv)
{
int rc;
/* Initialize the shadow registers */
memcpy(priv->regs, r820t_init_array, sizeof(r820t_init_array));
/* lna off (air-in off) */
rc = r820t_write_reg_mask(priv, 0x05, 0x20, 0x20);
if (rc < 0)
return rc;
/* mixer gain mode = manual */
rc = r820t_write_reg_mask(priv, 0x07, 0, 0x10);
if (rc < 0)
return rc;
/* filter corner = lowest */
rc = r820t_write_reg_mask(priv, 0x0a, 0x0f, 0x0f);
if (rc < 0)
return rc;
/* filter bw=+2cap, hp=5M */
rc = r820t_write_reg_mask(priv, 0x0b, 0x60, 0x6f);
if (rc < 0)
return rc;
/* adc=on, vga code mode, gain = 26.5dB */
rc = r820t_write_reg_mask(priv, 0x0c, 0x0b, 0x9f);
if (rc < 0)
return rc;
/* ring clk = on */
rc = r820t_write_reg_mask(priv, 0x0f, 0, 0x08);
if (rc < 0)
return rc;
/* ring power = on */
rc = r820t_write_reg_mask(priv, 0x18, 0x10, 0x10);
if (rc < 0)
return rc;
/* from ring = ring pll in */
rc = r820t_write_reg_mask(priv, 0x1c, 0x02, 0x02);
if (rc < 0)
return rc;
/* sw_pdect = det3 */
rc = r820t_write_reg_mask(priv, 0x1e, 0x80, 0x80);
if (rc < 0)
return rc;
/* Set filt_3dB */
rc = r820t_write_reg_mask(priv, 0x06, 0x20, 0x20);
return rc;
}
static int r820t_multi_read(struct r820t_priv *priv)
{
int rc, i;
u16 sum = 0;
u8 data[2], min = 255, max = 0;
usleep_range(5000, 6000);
for (i = 0; i < 6; i++) {
rc = r820t_read(priv, 0x00, data, sizeof(data));
if (rc < 0)
return rc;
sum += data[1];
if (data[1] < min)
min = data[1];
if (data[1] > max)
max = data[1];
}
rc = sum - max - min;
return rc;
}
static int r820t_imr_cross(struct r820t_priv *priv,
struct r820t_sect_type iq_point[3],
u8 *x_direct)
{
struct r820t_sect_type cross[5]; /* (0,0)(0,Q-1)(0,I-1)(Q-1,0)(I-1,0) */
struct r820t_sect_type tmp;
int i, rc;
u8 reg08, reg09;
reg08 = r820t_read_cache_reg(priv, 8) & 0xc0;
reg09 = r820t_read_cache_reg(priv, 9) & 0xc0;
tmp.gain_x = 0;
tmp.phase_y = 0;
tmp.value = 255;
for (i = 0; i < 5; i++) {
switch (i) {
case 0:
cross[i].gain_x = reg08;
cross[i].phase_y = reg09;
break;
case 1:
cross[i].gain_x = reg08; /* 0 */
cross[i].phase_y = reg09 + 1; /* Q-1 */
break;
case 2:
cross[i].gain_x = reg08; /* 0 */
cross[i].phase_y = (reg09 | 0x20) + 1; /* I-1 */
break;
case 3:
cross[i].gain_x = reg08 + 1; /* Q-1 */
cross[i].phase_y = reg09;
break;
default:
cross[i].gain_x = (reg08 | 0x20) + 1; /* I-1 */
cross[i].phase_y = reg09;
}
rc = r820t_write_reg(priv, 0x08, cross[i].gain_x);
if (rc < 0)
return rc;
rc = r820t_write_reg(priv, 0x09, cross[i].phase_y);
if (rc < 0)
return rc;
rc = r820t_multi_read(priv);
if (rc < 0)
return rc;
cross[i].value = rc;
if (cross[i].value < tmp.value)
tmp = cross[i];
}
if ((tmp.phase_y & 0x1f) == 1) { /* y-direction */
*x_direct = 0;
iq_point[0] = cross[0];
iq_point[1] = cross[1];
iq_point[2] = cross[2];
} else { /* (0,0) or x-direction */
*x_direct = 1;
iq_point[0] = cross[0];
iq_point[1] = cross[3];
iq_point[2] = cross[4];
}
return 0;
}
static void r820t_compre_cor(struct r820t_sect_type iq[3])
{
int i;
for (i = 3; i > 0; i--) {
if (iq[0].value > iq[i - 1].value)
swap(iq[0], iq[i - 1]);
}
}
static int r820t_compre_step(struct r820t_priv *priv,
struct r820t_sect_type iq[3], u8 reg)
{
int rc;
struct r820t_sect_type tmp;
/*
* Purpose: if (Gain<9 or Phase<9), Gain+1 or Phase+1 and compare
* with min value:
* new < min => update to min and continue
* new > min => Exit
*/
/* min value already saved in iq[0] */
tmp.phase_y = iq[0].phase_y;
tmp.gain_x = iq[0].gain_x;
while (((tmp.gain_x & 0x1f) < IMR_TRIAL) &&
((tmp.phase_y & 0x1f) < IMR_TRIAL)) {
if (reg == 0x08)
tmp.gain_x++;
else
tmp.phase_y++;
rc = r820t_write_reg(priv, 0x08, tmp.gain_x);
if (rc < 0)
return rc;
rc = r820t_write_reg(priv, 0x09, tmp.phase_y);
if (rc < 0)
return rc;
rc = r820t_multi_read(priv);
if (rc < 0)
return rc;
tmp.value = rc;
if (tmp.value <= iq[0].value) {
iq[0].gain_x = tmp.gain_x;
iq[0].phase_y = tmp.phase_y;
iq[0].value = tmp.value;
} else {
return 0;
}
}
return 0;
}
static int r820t_iq_tree(struct r820t_priv *priv,
struct r820t_sect_type iq[3],
u8 fix_val, u8 var_val, u8 fix_reg)
{
int rc, i;
u8 tmp, var_reg;
/*
* record IMC results by input gain/phase location then adjust
* gain or phase positive 1 step and negative 1 step,
* both record results
*/
if (fix_reg == 0x08)
var_reg = 0x09;
else
var_reg = 0x08;
for (i = 0; i < 3; i++) {
rc = r820t_write_reg(priv, fix_reg, fix_val);
if (rc < 0)
return rc;
rc = r820t_write_reg(priv, var_reg, var_val);
if (rc < 0)
return rc;
rc = r820t_multi_read(priv);
if (rc < 0)
return rc;
iq[i].value = rc;
if (fix_reg == 0x08) {
iq[i].gain_x = fix_val;
iq[i].phase_y = var_val;
} else {
iq[i].phase_y = fix_val;
iq[i].gain_x = var_val;
}
if (i == 0) { /* try right-side point */
var_val++;
} else if (i == 1) { /* try left-side point */
/* if absolute location is 1, change I/Q direction */
if ((var_val & 0x1f) < 0x02) {
tmp = 2 - (var_val & 0x1f);
/* b[5]:I/Q selection. 0:Q-path, 1:I-path */
if (var_val & 0x20) {
var_val &= 0xc0;
var_val |= tmp;
} else {
var_val |= 0x20 | tmp;
}
} else {
var_val -= 2;
}
}
}
return 0;
}
static int r820t_section(struct r820t_priv *priv,
struct r820t_sect_type *iq_point)
{
int rc;
struct r820t_sect_type compare_iq[3], compare_bet[3];
/* Try X-1 column and save min result to compare_bet[0] */
if (!(iq_point->gain_x & 0x1f))
compare_iq[0].gain_x = ((iq_point->gain_x) & 0xdf) + 1; /* Q-path, Gain=1 */
else
compare_iq[0].gain_x = iq_point->gain_x - 1; /* left point */
compare_iq[0].phase_y = iq_point->phase_y;
/* y-direction */
rc = r820t_iq_tree(priv, compare_iq, compare_iq[0].gain_x,
compare_iq[0].phase_y, 0x08);
if (rc < 0)
return rc;
r820t_compre_cor(compare_iq);
compare_bet[0] = compare_iq[0];
/* Try X column and save min result to compare_bet[1] */
compare_iq[0].gain_x = iq_point->gain_x;
compare_iq[0].phase_y = iq_point->phase_y;
rc = r820t_iq_tree(priv, compare_iq, compare_iq[0].gain_x,
compare_iq[0].phase_y, 0x08);
if (rc < 0)
return rc;
r820t_compre_cor(compare_iq);
compare_bet[1] = compare_iq[0];
/* Try X+1 column and save min result to compare_bet[2] */
if ((iq_point->gain_x & 0x1f) == 0x00)
compare_iq[0].gain_x = ((iq_point->gain_x) | 0x20) + 1; /* I-path, Gain=1 */
else
compare_iq[0].gain_x = iq_point->gain_x + 1;
compare_iq[0].phase_y = iq_point->phase_y;
rc = r820t_iq_tree(priv, compare_iq, compare_iq[0].gain_x,
compare_iq[0].phase_y, 0x08);
if (rc < 0)
return rc;
r820t_compre_cor(compare_iq);
compare_bet[2] = compare_iq[0];
r820t_compre_cor(compare_bet);
*iq_point = compare_bet[0];
return 0;
}
static int r820t_vga_adjust(struct r820t_priv *priv)
{
int rc;
u8 vga_count;
/* increase vga power to let image significant */
for (vga_count = 12; vga_count < 16; vga_count++) {
rc = r820t_write_reg_mask(priv, 0x0c, vga_count, 0x0f);
if (rc < 0)
return rc;
usleep_range(10000, 11000);
rc = r820t_multi_read(priv);
if (rc < 0)
return rc;
if (rc > 40 * 4)
break;
}
return 0;
}
static int r820t_iq(struct r820t_priv *priv, struct r820t_sect_type *iq_pont)
{
struct r820t_sect_type compare_iq[3];
int rc;
u8 x_direction = 0; /* 1:x, 0:y */
u8 dir_reg, other_reg;
r820t_vga_adjust(priv);
rc = r820t_imr_cross(priv, compare_iq, &x_direction);
if (rc < 0)
return rc;
if (x_direction == 1) {
dir_reg = 0x08;
other_reg = 0x09;
} else {
dir_reg = 0x09;
other_reg = 0x08;
}
/* compare and find min of 3 points. determine i/q direction */
r820t_compre_cor(compare_iq);
/* increase step to find min value of this direction */
rc = r820t_compre_step(priv, compare_iq, dir_reg);
if (rc < 0)
return rc;
/* the other direction */
rc = r820t_iq_tree(priv, compare_iq, compare_iq[0].gain_x,
compare_iq[0].phase_y, dir_reg);
if (rc < 0)
return rc;
/* compare and find min of 3 points. determine i/q direction */
r820t_compre_cor(compare_iq);
/* increase step to find min value on this direction */
rc = r820t_compre_step(priv, compare_iq, other_reg);
if (rc < 0)
return rc;
/* check 3 points again */
rc = r820t_iq_tree(priv, compare_iq, compare_iq[0].gain_x,
compare_iq[0].phase_y, other_reg);
if (rc < 0)
return rc;
r820t_compre_cor(compare_iq);
/* section-9 check */
rc = r820t_section(priv, compare_iq);
*iq_pont = compare_iq[0];
/* reset gain/phase control setting */
rc = r820t_write_reg_mask(priv, 0x08, 0, 0x3f);
if (rc < 0)
return rc;
rc = r820t_write_reg_mask(priv, 0x09, 0, 0x3f);
return rc;
}
static int r820t_f_imr(struct r820t_priv *priv, struct r820t_sect_type *iq_pont)
{
int rc;
r820t_vga_adjust(priv);
/*
* search surrounding points from previous point
* try (x-1), (x), (x+1) columns, and find min IMR result point
*/
rc = r820t_section(priv, iq_pont);
if (rc < 0)
return rc;
return 0;
}
static int r820t_imr(struct r820t_priv *priv, unsigned imr_mem, bool im_flag)
{
struct r820t_sect_type imr_point;
int rc;
u32 ring_vco, ring_freq, ring_ref;
u8 n_ring, n;
int reg18, reg19, reg1f;
if (priv->cfg->xtal > 24000000)
ring_ref = priv->cfg->xtal / 2000;
else
ring_ref = priv->cfg->xtal / 1000;
n_ring = 15;
for (n = 0; n < 16; n++) {
if ((16 + n) * 8 * ring_ref >= 3100000) {
n_ring = n;
break;
}
}
reg18 = r820t_read_cache_reg(priv, 0x18);
reg19 = r820t_read_cache_reg(priv, 0x19);
reg1f = r820t_read_cache_reg(priv, 0x1f);
reg18 &= 0xf0; /* set ring[3:0] */
reg18 |= n_ring;
ring_vco = (16 + n_ring) * 8 * ring_ref;
reg18 &= 0xdf; /* clear ring_se23 */
reg19 &= 0xfc; /* clear ring_seldiv */
reg1f &= 0xfc; /* clear ring_att */
switch (imr_mem) {
case 0:
ring_freq = ring_vco / 48;
reg18 |= 0x20; /* ring_se23 = 1 */
reg19 |= 0x03; /* ring_seldiv = 3 */
reg1f |= 0x02; /* ring_att 10 */
break;
case 1:
ring_freq = ring_vco / 16;
reg18 |= 0x00; /* ring_se23 = 0 */
reg19 |= 0x02; /* ring_seldiv = 2 */
reg1f |= 0x00; /* pw_ring 00 */
break;
case 2:
ring_freq = ring_vco / 8;
reg18 |= 0x00; /* ring_se23 = 0 */
reg19 |= 0x01; /* ring_seldiv = 1 */
reg1f |= 0x03; /* pw_ring 11 */
break;
case 3:
ring_freq = ring_vco / 6;
reg18 |= 0x20; /* ring_se23 = 1 */
reg19 |= 0x00; /* ring_seldiv = 0 */
reg1f |= 0x03; /* pw_ring 11 */
break;
case 4:
ring_freq = ring_vco / 4;
reg18 |= 0x00; /* ring_se23 = 0 */
reg19 |= 0x00; /* ring_seldiv = 0 */
reg1f |= 0x01; /* pw_ring 01 */
break;
default:
ring_freq = ring_vco / 4;
reg18 |= 0x00; /* ring_se23 = 0 */
reg19 |= 0x00; /* ring_seldiv = 0 */
reg1f |= 0x01; /* pw_ring 01 */
break;
}
/* write pw_ring, n_ring, ringdiv2 registers */
/* n_ring, ring_se23 */
rc = r820t_write_reg(priv, 0x18, reg18);
if (rc < 0)
return rc;
/* ring_sediv */
rc = r820t_write_reg(priv, 0x19, reg19);
if (rc < 0)
return rc;
/* pw_ring */
rc = r820t_write_reg(priv, 0x1f, reg1f);
if (rc < 0)
return rc;
/* mux input freq ~ rf_in freq */
rc = r820t_set_mux(priv, (ring_freq - 5300) * 1000);
if (rc < 0)
return rc;
rc = r820t_set_pll(priv, V4L2_TUNER_DIGITAL_TV,
(ring_freq - 5300) * 1000);
if (!priv->has_lock)
rc = -EINVAL;
if (rc < 0)
return rc;
if (im_flag) {
rc = r820t_iq(priv, &imr_point);
} else {
imr_point.gain_x = priv->imr_data[3].gain_x;
imr_point.phase_y = priv->imr_data[3].phase_y;
imr_point.value = priv->imr_data[3].value;
rc = r820t_f_imr(priv, &imr_point);
}
if (rc < 0)
return rc;
/* save IMR value */
switch (imr_mem) {
case 0:
priv->imr_data[0].gain_x = imr_point.gain_x;
priv->imr_data[0].phase_y = imr_point.phase_y;
priv->imr_data[0].value = imr_point.value;
break;
case 1:
priv->imr_data[1].gain_x = imr_point.gain_x;
priv->imr_data[1].phase_y = imr_point.phase_y;
priv->imr_data[1].value = imr_point.value;
break;
case 2:
priv->imr_data[2].gain_x = imr_point.gain_x;
priv->imr_data[2].phase_y = imr_point.phase_y;
priv->imr_data[2].value = imr_point.value;
break;
case 3:
priv->imr_data[3].gain_x = imr_point.gain_x;
priv->imr_data[3].phase_y = imr_point.phase_y;
priv->imr_data[3].value = imr_point.value;
break;
case 4:
priv->imr_data[4].gain_x = imr_point.gain_x;
priv->imr_data[4].phase_y = imr_point.phase_y;
priv->imr_data[4].value = imr_point.value;
break;
default:
priv->imr_data[4].gain_x = imr_point.gain_x;
priv->imr_data[4].phase_y = imr_point.phase_y;
priv->imr_data[4].value = imr_point.value;
break;
}
return 0;
}
static int r820t_imr_callibrate(struct r820t_priv *priv)
{
int rc, i;
int xtal_cap = 0;
if (priv->init_done)
return 0;
/* Detect Xtal capacitance */
if ((priv->cfg->rafael_chip == CHIP_R820T) ||
(priv->cfg->rafael_chip == CHIP_R828S) ||
(priv->cfg->rafael_chip == CHIP_R820C)) {
priv->xtal_cap_sel = XTAL_HIGH_CAP_0P;
} else {
/* Initialize registers */
rc = r820t_write(priv, 0x05,
r820t_init_array, sizeof(r820t_init_array));
if (rc < 0)
return rc;
for (i = 0; i < 3; i++) {
rc = r820t_xtal_check(priv);
if (rc < 0)
return rc;
if (!i || rc > xtal_cap)
xtal_cap = rc;
}
priv->xtal_cap_sel = xtal_cap;
}
/*
* Disables IMR calibration. That emulates the same behaviour
* as what is done by rtl-sdr userspace library. Useful for testing
*/
if (no_imr_cal) {
priv->init_done = true;
return 0;
}
/* Initialize registers */
rc = r820t_write(priv, 0x05,
r820t_init_array, sizeof(r820t_init_array));
if (rc < 0)
return rc;
rc = r820t_imr_prepare(priv);
if (rc < 0)
return rc;
rc = r820t_imr(priv, 3, true);
if (rc < 0)
return rc;
rc = r820t_imr(priv, 1, false);
if (rc < 0)
return rc;
rc = r820t_imr(priv, 0, false);
if (rc < 0)
return rc;
rc = r820t_imr(priv, 2, false);
if (rc < 0)
return rc;
rc = r820t_imr(priv, 4, false);
if (rc < 0)
return rc;
priv->init_done = true;
priv->imr_done = true;
return 0;
}
#if 0
/* Not used, for now */
static int r820t_gpio(struct r820t_priv *priv, bool enable)
{
return r820t_write_reg_mask(priv, 0x0f, enable ? 1 : 0, 0x01);
}
#endif
/*
* r820t frontend operations and tuner attach code
*
* All driver locks and i2c control are only in this part of the code
*/
static int r820t_init(struct dvb_frontend *fe)
{
struct r820t_priv *priv = fe->tuner_priv;
int rc;
tuner_dbg("%s:\n", __func__);
mutex_lock(&priv->lock);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
rc = r820t_imr_callibrate(priv);
if (rc < 0)
goto err;
/* Initialize registers */
rc = r820t_write(priv, 0x05,
r820t_init_array, sizeof(r820t_init_array));
err:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
mutex_unlock(&priv->lock);
if (rc < 0)
tuner_dbg("%s: failed=%d\n", __func__, rc);
return rc;
}
static int r820t_sleep(struct dvb_frontend *fe)
{
struct r820t_priv *priv = fe->tuner_priv;
int rc;
tuner_dbg("%s:\n", __func__);
mutex_lock(&priv->lock);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
rc = r820t_standby(priv);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
mutex_unlock(&priv->lock);
tuner_dbg("%s: failed=%d\n", __func__, rc);
return rc;
}
static int r820t_set_analog_freq(struct dvb_frontend *fe,
struct analog_parameters *p)
{
struct r820t_priv *priv = fe->tuner_priv;
unsigned bw;
int rc;
tuner_dbg("%s called\n", __func__);
/* if std is not defined, choose one */
if (!p->std)
p->std = V4L2_STD_MN;
if ((p->std == V4L2_STD_PAL_M) || (p->std == V4L2_STD_NTSC))
bw = 6;
else
bw = 8;
mutex_lock(&priv->lock);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
rc = generic_set_freq(fe, 62500l * p->frequency, bw,
V4L2_TUNER_ANALOG_TV, p->std, SYS_UNDEFINED);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
mutex_unlock(&priv->lock);
return rc;
}
static int r820t_set_params(struct dvb_frontend *fe)
{
struct r820t_priv *priv = fe->tuner_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int rc;
unsigned bw;
tuner_dbg("%s: delivery_system=%d frequency=%d bandwidth_hz=%d\n",
__func__, c->delivery_system, c->frequency, c->bandwidth_hz);
mutex_lock(&priv->lock);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
bw = (c->bandwidth_hz + 500000) / 1000000;
if (!bw)
bw = 8;
rc = generic_set_freq(fe, c->frequency, bw,
V4L2_TUNER_DIGITAL_TV, 0, c->delivery_system);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
mutex_unlock(&priv->lock);
if (rc)
tuner_dbg("%s: failed=%d\n", __func__, rc);
return rc;
}
static int r820t_signal(struct dvb_frontend *fe, u16 *strength)
{
struct r820t_priv *priv = fe->tuner_priv;
int rc = 0;
mutex_lock(&priv->lock);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
if (priv->has_lock) {
rc = r820t_read_gain(priv);
if (rc < 0)
goto err;
/* A higher gain at LNA means a lower signal strength */
*strength = (45 - rc) << 4 | 0xff;
if (*strength == 0xff)
*strength = 0;
} else {
*strength = 0;
}
err:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
mutex_unlock(&priv->lock);
tuner_dbg("%s: %s, gain=%d strength=%d\n",
__func__,
priv->has_lock ? "PLL locked" : "no signal",
rc, *strength);
return 0;
}
static int r820t_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct r820t_priv *priv = fe->tuner_priv;
tuner_dbg("%s:\n", __func__);
*frequency = priv->int_freq;
return 0;
}
static void r820t_release(struct dvb_frontend *fe)
{
struct r820t_priv *priv = fe->tuner_priv;
tuner_dbg("%s:\n", __func__);
mutex_lock(&r820t_list_mutex);
if (priv)
hybrid_tuner_release_state(priv);
mutex_unlock(&r820t_list_mutex);
fe->tuner_priv = NULL;
}
static const struct dvb_tuner_ops r820t_tuner_ops = {
.info = {
.name = "Rafael Micro R820T",
.frequency_min_hz = 42 * MHz,
.frequency_max_hz = 1002 * MHz,
},
.init = r820t_init,
.release = r820t_release,
.sleep = r820t_sleep,
.set_params = r820t_set_params,
.set_analog_params = r820t_set_analog_freq,
.get_if_frequency = r820t_get_if_frequency,
.get_rf_strength = r820t_signal,
};
struct dvb_frontend *r820t_attach(struct dvb_frontend *fe,
struct i2c_adapter *i2c,
const struct r820t_config *cfg)
{
struct r820t_priv *priv;
int rc = -ENODEV;
u8 data[5];
int instance;
mutex_lock(&r820t_list_mutex);
instance = hybrid_tuner_request_state(struct r820t_priv, priv,
hybrid_tuner_instance_list,
i2c, cfg->i2c_addr,
"r820t");
switch (instance) {
case 0:
/* memory allocation failure */
goto err_no_gate;
case 1:
/* new tuner instance */
priv->cfg = cfg;
mutex_init(&priv->lock);
fe->tuner_priv = priv;
break;
case 2:
/* existing tuner instance */
fe->tuner_priv = priv;
break;
}
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
/* check if the tuner is there */
rc = r820t_read(priv, 0x00, data, sizeof(data));
if (rc < 0)
goto err;
rc = r820t_sleep(fe);
if (rc < 0)
goto err;
tuner_info(
"Rafael Micro r820t successfully identified, chip type: %s\n",
r820t_chip_enum_to_str(cfg->rafael_chip));
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
mutex_unlock(&r820t_list_mutex);
memcpy(&fe->ops.tuner_ops, &r820t_tuner_ops,
sizeof(struct dvb_tuner_ops));
return fe;
err:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
err_no_gate:
mutex_unlock(&r820t_list_mutex);
pr_info("%s: failed=%d\n", __func__, rc);
r820t_release(fe);
return NULL;
}
EXPORT_SYMBOL_GPL(r820t_attach);
MODULE_DESCRIPTION("Rafael Micro r820t silicon tuner driver");
MODULE_AUTHOR("Mauro Carvalho Chehab");
MODULE_LICENSE("GPL v2");